JP6490466B2 - Waste treatment facility and method of operating waste treatment facility - Google Patents

Waste treatment facility and method of operating waste treatment facility Download PDF

Info

Publication number
JP6490466B2
JP6490466B2 JP2015060331A JP2015060331A JP6490466B2 JP 6490466 B2 JP6490466 B2 JP 6490466B2 JP 2015060331 A JP2015060331 A JP 2015060331A JP 2015060331 A JP2015060331 A JP 2015060331A JP 6490466 B2 JP6490466 B2 JP 6490466B2
Authority
JP
Japan
Prior art keywords
furnace
air
combustion air
heat
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015060331A
Other languages
Japanese (ja)
Other versions
JP2016180528A (en
Inventor
晃治 坂田
晃治 坂田
和基 西村
和基 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2015060331A priority Critical patent/JP6490466B2/en
Publication of JP2016180528A publication Critical patent/JP2016180528A/en
Application granted granted Critical
Publication of JP6490466B2 publication Critical patent/JP6490466B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Air Supply (AREA)
  • Incineration Of Waste (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は、廃棄物処理設備及び廃棄物処理設備の操炉方法に関する。   The present invention relates to a waste treatment facility and a furnace operation method for the waste treatment facility.

様々な汚水が微生物を用いた生物処理により浄化された後に河川等に放流され、或いは再利用されている。このような生物処理によって発生する大量の汚泥は脱水処理された後に最終処分場に埋め立てられ、または焼却処理若しくは溶融処理されている。   Various sewage is purified by biological treatment using microorganisms and then discharged into rivers or reused. A large amount of sludge generated by such biological treatment is dehydrated and then buried in a final disposal site, or is incinerated or melted.

図7には、このような汚泥等の廃棄物を焼却処理する従来の廃棄物処理設備100が示されている。当該廃棄物処理設備100は、流動床式焼却炉101と、押込み送風機102と、押込み送風機102で供給される燃焼用空気を流動床式焼却炉101の排熱で予熱する熱交換器103と、流動床式焼却炉101で生じた排ガスを浄化する排ガス処理設備104を備え、排ガス処理設備104の下流側には流動床式焼却炉101の炉内を負圧に維持する誘引送風機105を備えている。   FIG. 7 shows a conventional waste treatment facility 100 that incinerates waste such as sludge. The waste treatment facility 100 includes a fluidized bed incinerator 101, a forced air blower 102, a heat exchanger 103 that preheats combustion air supplied by the forced air blower 102 with exhaust heat from the fluidized bed incinerator 101, An exhaust gas treatment facility 104 for purifying exhaust gas generated in the fluidized bed incinerator 101 is provided, and an induction blower 105 for maintaining the inside of the fluidized bed incinerator 101 at a negative pressure is provided downstream of the exhaust gas treatment facility 104. Yes.

特許文献1には、省エネルギー化を目指した廃棄物処理システムが開示されている。図8に示すように、当該廃棄物処理システムは、汚泥を燃料として燃焼させる汚泥処理システム200で、汚泥を燃焼させる流動床式の燃焼炉201と、燃焼炉201によって生成された燃焼ガスを利用して燃焼炉201に供給する圧縮空気を生成及び送風する過給機202とを備えている。   Patent Document 1 discloses a waste treatment system aimed at energy saving. As shown in FIG. 8, the waste treatment system is a sludge treatment system 200 that burns sludge as fuel, and uses a fluidized bed combustion furnace 201 that burns sludge, and combustion gas generated by the combustion furnace 201. And a supercharger 202 that generates and blows compressed air to be supplied to the combustion furnace 201.

過給機202は、流動床式燃焼炉201から排出され排ガス処理設備206で浄化された排ガスで駆動されるタービン203と、タービン203の回転動力が伝達されるコンプレッサ204を備えて構成され、コンプレッサ204から出力される圧縮空気が熱交換器205で予熱された後に燃焼用空気として燃焼炉201に供給され、炉内は正圧で操炉される。   The supercharger 202 includes a turbine 203 driven by exhaust gas discharged from the fluidized bed combustion furnace 201 and purified by the exhaust gas treatment facility 206, and a compressor 204 to which the rotational power of the turbine 203 is transmitted. The compressed air output from 204 is preheated by the heat exchanger 205 and then supplied to the combustion furnace 201 as combustion air, and the inside of the furnace is operated at a positive pressure.

特許文献2,3には、燃焼用圧縮空気や白煙防止用圧縮空気を生成して予熱器に供給するための押込み送風機を必要とせず、エネルギー効率に優れる廃棄物焼却設備及び処理方法を提供することを目的とする廃棄物処理設備が開示されている。   Patent Documents 2 and 3 provide a waste incineration facility and a processing method that are excellent in energy efficiency without the need for a forced blower for generating compressed air for combustion and compressed air for preventing white smoke and supplying it to the preheater. A waste treatment facility intended to do so is disclosed.

図9に示すように、当該廃棄物処理設備300は、流動床式焼却炉301と、流動床式焼却炉301からの排ガスとの連続的なガス−ガス熱交換により流動床式焼却炉300に供給する燃焼用圧縮空気の予熱を行う第1の予熱器302と、第1の予熱器302で加熱されて流動床式焼却炉300に向かう燃焼用圧縮空気によってタービン303を回転し、この回転によってコンプレッサ304で第1の予熱器302に供給する圧縮空気の生成及び送風を行う第1の過給機305と、第1の予熱器302より上流側に設けられ運転開始時にタービン303を回転させる第1の始動用空気供給装置を備えている。また、第1の過給機305の動力で駆動される発電機を備えた構成も提案されている。   As shown in FIG. 9, the waste treatment facility 300 is converted into a fluidized bed incinerator 300 by continuous gas-gas heat exchange between the fluidized bed incinerator 301 and the exhaust gas from the fluidized bed incinerator 301. The first preheater 302 that preheats the compressed air for combustion to be supplied, and the turbine 303 is rotated by the compressed air for combustion that is heated by the first preheater 302 toward the fluidized bed incinerator 300, A first supercharger 305 that generates and blows compressed air to be supplied to the first preheater 302 by the compressor 304 and a first turbocharger 305 that is provided upstream of the first preheater 302 and rotates the turbine 303 at the start of operation. 1 start-up air supply device. In addition, a configuration including a generator driven by the power of the first supercharger 305 has been proposed.

特許第3783024号公報Japanese Patent No. 3783024 特許第4831309号公報Japanese Patent No. 4831309 特開2014−167382号公報JP 2014-167382 A

しかし、図7に示した従来の廃棄物処理設備100では、流動床等で生じる通気圧損に抗して十分な量の燃焼用空気を押込み送風機102によって流動床式焼却炉101に供給するとともに、誘引送風機105で排ガスを誘引して炉内を負圧に維持する必要があるため、押込み送風機102及び誘引送風機105に要する動力コストつまり電力費が非常に高くなるという問題があった。   However, in the conventional waste treatment facility 100 shown in FIG. 7, a sufficient amount of combustion air is supplied to the fluidized bed incinerator 101 by the forced air blower 102 against the aeration pressure loss generated in the fluidized bed or the like. Since it is necessary to attract the exhaust gas by the induction fan 105 and maintain the inside of the furnace at a negative pressure, there is a problem that the power cost, that is, the power cost, required for the pusher fan 102 and the induction fan 105 becomes very high.

図8に示した廃棄物処理システムでは、誘引送風機を設置することなく燃焼用圧縮空気の残圧で煙道に排ガスを圧送するように構成されているので、正圧となる炉室や煙道に配置される各排ガス処理設備から高温の排ガスが噴き出すことが無いように確実にシールする必要があり、そのために設備コストが上昇するという問題や、仮にシールが破れると高温の排ガスが噴き出して重大な事故につながる虞があるという問題があった。   The waste treatment system shown in FIG. 8 is configured to pump exhaust gas to the flue with the residual pressure of the compressed air for combustion without installing an induction blower. It is necessary to ensure that high-temperature exhaust gas is not ejected from each exhaust gas treatment facility installed in the system, which increases the equipment cost, and if the seal is broken, high-temperature exhaust gas is ejected. There was a problem that could lead to a serious accident.

特に、原理上、コンプレッサ204の入口からタービン203の入口までの間で昇圧する必要があり、この部位に異常が生じすると燃焼排ガスが吹き出して、重大な事故や災害を招く虞があった。また高温の排ガスに対応して耐熱性を備えた除塵装置を使用する必要があり、それだけ設備費が嵩むという問題もあった。   In particular, in principle, it is necessary to increase the pressure between the inlet of the compressor 204 and the inlet of the turbine 203. If an abnormality occurs in this part, combustion exhaust gas may blow out, which may cause a serious accident or disaster. In addition, it is necessary to use a dust remover having heat resistance corresponding to high-temperature exhaust gas, and there is a problem that the equipment cost increases accordingly.

さらに、特許文献2,3に開示された廃棄物処理設備300では、コンプレッサで圧縮した空気を予熱器で予熱して燃焼空気として供給しても、流動層の通気圧損が大きいためにタービンで十分な膨張仕事が得られず、実質的に流動床式焼却炉に燃焼空気を送風することができなかった。尚、予熱器で燃焼空気の予熱量を大きくすることも考えられるが、その結果として高価な耐熱性の高いタービンや予熱器を用いなければならず現実的ではない。   Furthermore, in the waste treatment facility 300 disclosed in Patent Documents 2 and 3, even if the air compressed by the compressor is preheated by a preheater and supplied as combustion air, the fluidized bed has a large airflow pressure loss, so that the turbine is sufficient. Expansion work could not be obtained, and combustion air could not be blown into the fluidized bed incinerator. Although it is conceivable to increase the preheating amount of the combustion air with a preheater, as a result, an expensive heat-resistant turbine or preheater must be used, which is not practical.

また、特許文献2に記載された廃棄物処理設備では、炉の立上げ時に過給機のコンプレッサによって高圧となった送風路に始動用空気を導入する必要があるため、吐出し圧力の大きな送風機を用いる必要があり、これにより設備コスト及び動力コストが上昇するという問題があった。また、コンプレッサ側への逆流の防止やこれに伴う締切空気の排除等を行なうために設備構成が複雑になり、立ち上げ時に複雑な操作が必要になるという問題もあった。   Further, in the waste treatment facility described in Patent Document 2, it is necessary to introduce start-up air into the air passage that has become high pressure by the compressor of the supercharger when the furnace is started up. As a result, there is a problem that the equipment cost and the power cost increase. In addition, the equipment configuration is complicated to prevent backflow to the compressor side and to eliminate the shut-off air associated therewith, and there is also a problem that a complicated operation is required at startup.

本発明の目的は、上述した問題点に鑑み、押込み送風機に要する動力コストを抑制した操炉が可能な廃棄物処理設備及び廃棄物処理設備の操炉方法を提供する点にある。   In view of the above-described problems, an object of the present invention is to provide a waste treatment facility capable of operating a furnace with reduced power cost required for a forced blower and a method for operating the waste treatment facility.

上述の目的を達成するため、本発明による廃棄物処理設備の第一特徴構成は、特許請求の範囲の書類の請求項1に記載した通り、汚泥等の廃棄物を焼却処理する流動床炉及びシャフト炉を含む熱処理炉を備えている廃棄物処理設備であって、前記熱処理炉の炉内燃焼熱及び/または煙道に導かれる排ガスの保有熱により燃焼用空気を予熱する第1熱交換器と、前記第1熱交換器で予熱された燃焼用空気により回転するタービンと、前記タービンの回転により前記第1熱交換器に燃焼用空気を供給するコンプレッサとを含む過給機と、前記コンプレッサへ燃焼用空気を予備圧縮して供給する押込み送風機と、前記第1熱交換機をバイパスするバイパス送風路と、前記バイパス送風路に設けられ、前記バイパス送風路を通風する燃焼用空気を加熱する熱風炉と、を備えている点にある。 In order to achieve the above-mentioned object, the first characteristic configuration of the waste treatment facility according to the present invention is a fluidized bed furnace for incinerating waste such as sludge, as described in claim 1 of the claims. A waste treatment facility equipped with a heat treatment furnace including a shaft furnace, wherein the first heat exchanger preheats combustion air by the heat of combustion in the furnace of the heat treatment furnace and / or the retained heat of exhaust gas guided to the flue A turbocharger including: a turbine that is rotated by combustion air preheated by the first heat exchanger; and a compressor that supplies combustion air to the first heat exchanger by rotation of the turbine; and the compressor a pusher fan supplies precompressed combustion air to a bypass air passage that bypasses the first heat exchanger, provided in the bypass air passage, heating the combustion air for ventilating the bypass airflow path There in that it includes that and a hot-air furnace, the.

送風路を経由して押込み送風機により予備圧縮された燃焼用空気がコンプレッサに供給されるので、コンプレッサのみならず押込み送風機でも圧縮された空気が第1熱交換器で予熱されるようになる。つまり、コンプレッサによる圧縮仕事に押込み送風機による圧縮仕事が嵩上げされるので、熱処理炉に燃焼用空気を供給する際に生じる通気圧損等の損失分を差し引いても、十分に燃焼用空気を供給することができる。また、そのために要する押込み送風機の動力は、燃焼用空気が過給機と第1熱交換器を経ることによる作用を受けることによって抑えられるため、全体として運転コストを下げることができる。   Since the combustion air pre-compressed by the forced air blower is supplied to the compressor via the air passage, the air compressed not only by the compressor but also by the forced air blower is preheated by the first heat exchanger. In other words, since the compression work by the forced air blower is increased to the compression work by the compressor, the combustion air can be sufficiently supplied even if a loss such as a ventilation pressure loss generated when supplying the combustion air to the heat treatment furnace is subtracted. Can do. In addition, since the power of the forced blower required for this is suppressed by the action of the combustion air through the supercharger and the first heat exchanger, the operating cost can be reduced as a whole.

ところで、熱処理炉の始動時には炉の廃熱を利用することができず、また送風路や熱交換器の通風による圧力損失も生じる。しかし、熱処理炉の始動時に第1熱交換機をバイパスすることにより送風経路を短縮することができ、バイパス送風路に備えた熱風炉によって燃焼用空気を加熱することにより、タービンへの熱供給と熱処理炉の昇温が可能になる。尚、熱処理炉の立上げの後でもバイパス送風路への送風量を調整することにより、予熱空気温度を調整できるようになるため、過給機による増圧量や熱処理炉の温度調整も可能になる。By the way, when the heat treatment furnace is started, waste heat of the furnace cannot be used, and pressure loss due to ventilation of the air passage or the heat exchanger also occurs. However, by bypassing the first heat exchanger at the start of the heat treatment furnace, the air blowing path can be shortened, and the combustion air is heated by the hot air furnace provided in the bypass air passage so that the heat supply to the turbine and the heat treatment are performed. The furnace can be heated. In addition, since the preheated air temperature can be adjusted by adjusting the air flow rate to the bypass air passage even after the heat treatment furnace is started up, the amount of pressure increase by the turbocharger and the heat treatment furnace temperature can be adjusted. Become.

同第二の特徴構成は、同請求項2に記載した通り、上述した第一の特徴構成に加えて、前記第1熱交換器が前記煙道に導かれる排ガスの保有熱により燃焼用空気を予熱するように構成され、前記煙道に前記第1熱交換器と並列または直列に第2熱交換器を配置して、前記タービンから排出された燃焼用空気を前記第2熱交換器でさらに予熱した後に前記熱処理炉へ供給する給気路を設けている点にある。   In addition to the first characteristic configuration described above, the second characteristic configuration is the same as that described in claim 2, and the first heat exchanger is configured to reduce combustion air by the retained heat of the exhaust gas guided to the flue. A second heat exchanger is arranged in the flue in parallel or in series with the first heat exchanger, and combustion air exhausted from the turbine is further removed by the second heat exchanger. An air supply path for supplying the heat treatment furnace after preheating is provided.

タービンから排出された燃焼用空気を第2熱交換器でさらに予熱することによって、バーナに多量の化石燃料を供給して加熱しなくても炉内の燃焼温度を維持することができるようになり、化石燃料の消費量を低減させることができるようになる。   By further preheating the combustion air discharged from the turbine with the second heat exchanger, the combustion temperature in the furnace can be maintained without supplying a large amount of fossil fuel to the burner and heating it. The consumption of fossil fuel can be reduced.

同第三の特徴構成は、同請求項3に記載した通り、上述した第一または第二の特徴構成に加えて、前記熱処理炉への燃焼用空気の供給量が目標量となるように前記押込み送風機の回転数を制御する制御部をさらに備えている点にある。   In addition to the first or second characteristic configuration described above, the third characteristic configuration is the above-described first or second characteristic configuration, so that the supply amount of combustion air to the heat treatment furnace becomes a target amount. It is in the point further provided with the control part which controls the number of rotations of a forced air blower.

コンプレッサによる圧縮仕事を利用するため、押込み送風機のみによって熱処理炉で生じる通気圧損以上の圧力で燃焼用空気を供給する必要がなく、制御部により押込み送風機の回転数を制御することによって熱処理炉への燃焼用空気の供給量を目標量に調整するようにする。その結果、ダンパ機構等の抵抗を設けて供給量を調整するような動力コストの嵩む構成を採用する必要がなくなる。尚、炉の立上げ時であっても立上げ後と異なる特段の制御を行なう必要がない。   Since the compression work by the compressor is used, it is not necessary to supply combustion air at a pressure higher than the ventilation pressure loss generated in the heat treatment furnace only by the forced blower, and by controlling the rotational speed of the forced blower by the control unit, Adjust the supply amount of combustion air to the target amount. As a result, it is not necessary to employ a configuration with high power cost such as providing a resistance such as a damper mechanism to adjust the supply amount. Even when the furnace is started up, it is not necessary to perform special control different from that after the start up.

同第四の特徴構成は、同請求項4に記載した通り、上述した第三の特徴構成に加えて、前記制御部は、少なくとも前記熱処理炉の排ガスに含まれる酸素濃度に基づいて前記目標量を設定するように構成されている点にある。   In the fourth feature configuration, as described in claim 4, in addition to the third feature configuration described above, the control unit is configured to control the target amount based on at least an oxygen concentration contained in the exhaust gas of the heat treatment furnace. The point is that it is configured to set.

通常、予め想定される理論空気量に基づいて完全燃焼に要する空気量が設定され、そのときに排ガスに残存する基準酸素濃度が設定される。酸素ガスセンサSgにより検出される排ガスの酸素濃度が基準酸素濃度より高い場合に目標空気量を減少し、排ガスの酸素濃度が基準酸素濃度より低い場合に目標空気量を増加するように制御部によって燃焼用空気の供給量が増減調整される。つまり、熱処理炉の排ガスに含まれる酸素濃度を指標に用いることにより、熱処理炉で燃焼する汚泥の有機成分に対して適正な量の燃焼用空気量が把握でき、その指標に基づいて目標量が設定されるので、必要量に対して大きく過不足することなく燃焼用空気を供給することができるようになる。   Usually, an air amount required for complete combustion is set based on a theoretical air amount assumed in advance, and a reference oxygen concentration remaining in the exhaust gas is set at that time. Combustion by the control unit so as to decrease the target air amount when the oxygen concentration of the exhaust gas detected by the oxygen gas sensor Sg is higher than the reference oxygen concentration and to increase the target air amount when the oxygen concentration of the exhaust gas is lower than the reference oxygen concentration The supply amount of irrigation air is adjusted up or down. In other words, by using the oxygen concentration contained in the exhaust gas of the heat treatment furnace as an index, an appropriate amount of combustion air can be grasped for the organic components of the sludge combusted in the heat treatment furnace, and the target amount is determined based on the index. Since it is set, it becomes possible to supply the combustion air without greatly exceeding the required amount.

同第五の特徴構成は、同請求項5に記載した通り、上述の第一から第四の何れかの特徴構成に加えて、前記熱処理炉からの排ガスを引抜く誘引送風機を備えている点にある。 The fifth characterizing feature of the can, as noted in the claim 5, in addition the first above the fourth one characteristic feature of the, and a attractant blower withdrawing gas from the previous SL heat treatment furnace In the point.

上述の構成によれば、炉内を負圧に維持しながら安全に操炉することができるようになる。   According to the above configuration, the furnace can be safely operated while maintaining the inside of the furnace at a negative pressure.

本発明による廃棄物処理設備の操炉方法の特徴構成は、同請求項に記載した通り、汚泥等の廃棄物を焼却処理する流動床炉及びシャフト炉を含む熱処理炉を備えている廃棄物処理設備の操炉方法であって、押込み送風機により予備圧縮された燃焼用空気をコンプレッサで圧縮する圧縮工程と、前記圧縮工程で圧縮された燃焼用空気を、前記熱処理炉の炉内燃焼熱及び/または煙道に導かれる排ガスの保有熱により予熱する予熱工程と、前記予熱工程で予熱された燃焼用空気でタービンを回転させて動力を前記コンプレッサへ伝える圧縮動力生成工程と、前記圧縮動力生成工程で前記タービンから排気された燃焼用空気を前記熱処理炉に供給する燃焼用空気供給工程と、少なくとも前記熱処理炉の始動時に、前記圧縮工程で圧縮された燃焼用空気を、前記予熱工程をバイパスするバイパス送風路に導き、前記バイパス送風路に備えた熱風炉で予熱する第二予熱工程と、を含む点にある。 Characteristic feature of the furnace operation method of waste disposal plant according to the invention, the as described in claim 6, waste and a heat treatment furnace comprising a fluidized bed furnace and a shaft furnace for incineration of waste sludge, such as A furnace operation method for a processing facility, wherein a compression step of compressing combustion air pre-compressed by a forced blower with a compressor, and combustion air compressed in the compression step, A preheating step for preheating by the retained heat of the exhaust gas guided to the flue, a compression power generation step for rotating the turbine with combustion air preheated in the preheating step and transmitting power to the compressor, and the compression power generation the combustion air and the combustion air supply step of supplying to the heat treatment furnace exhausted from the turbine in step, at start of at least the heat treatment furnace, a compressed combustion in the compression step Mind, the preheating step led to the bypass air passage bypassing the, in that it includes a second preheating step of preheating in a hot air furnace provided with the bypass airflow path.

同第二の特徴構成は、同請求項に記載した通り、上述の第一の特徴構成に加えて、圧縮動力生成工程で前記タービンから排気された燃焼用空気を、前記熱処理炉の炉内燃焼熱及び/または煙道に導かれる排ガスの保有熱により再度予熱する第2予熱工程をさらに備え、前記第2予熱工程で再度予熱された燃焼用空気を前記燃焼用空気供給工程に供給する点にある。 As described in claim 7 , the second characteristic configuration includes, in addition to the first characteristic configuration described above, combustion air exhausted from the turbine in the compression power generation step in the furnace of the heat treatment furnace. A second preheating step of preheating again with combustion heat and / or retained heat of exhaust gas guided to the flue, and supplying the combustion air preheated again in the second preheating step to the combustion air supply step It is in.

同第三の特徴構成は、同請求項に記載した通り、上述の第一または第二の特徴構成に加えて、前記押込み送風機により予備圧縮された燃焼用空気が目標空気量となるように前記押込み送風機の回転数を制御する押込み送風機制御工程をさらに備えている点にある。 In the third feature configuration, as described in claim 8 , in addition to the first or second feature configuration described above, the combustion air pre-compressed by the forced air blower becomes a target air amount. It is in the point further provided with the pushing air blower control process which controls the rotation speed of the said pushing air blower.

以上説明した通り、本発明によれば、押込み送風機に要する動力コストを抑制した操炉が可能な廃棄物処理設備及び廃棄物処理設備の操炉方法を提供することができるようになった。   As described above, according to the present invention, it is possible to provide a waste treatment facility capable of operating a furnace with reduced power cost required for a forced blower and a method for operating the waste treatment facility.

本発明による廃棄物処理設備及び廃棄物処理設備の操炉方法の説明図Explanatory drawing of the furnace operation method of the waste processing equipment and waste processing equipment by the present invention (a),(b),(c)は過給機のブレイトンサイクルを説明する線図(A), (b), (c) is a diagram explaining the Brayton cycle of the turbocharger 別実施形態を示す廃棄物処理設備の説明図Explanatory drawing of the waste disposal facility showing another embodiment 別実施形態を示す廃棄物処理設備の説明図Explanatory drawing of the waste disposal facility showing another embodiment 別実施形態を示す廃棄物処理設備の説明図Explanatory drawing of the waste disposal facility showing another embodiment 別実施形態を示す廃棄物処理設備の説明図Explanatory drawing of the waste disposal facility showing another embodiment 従来技術の廃棄物処理設備の説明図Explanatory drawing of the waste treatment facility of the prior art 従来技術の廃棄物処理設備の説明図Explanatory drawing of the waste treatment facility of the prior art 従来技術の廃棄物処理設備の説明図Explanatory drawing of the waste treatment facility of the prior art

以下、本発明による廃棄物処理設備及び廃棄物処理設備の操炉方法の実施形態を説明する。   Hereinafter, embodiments of the waste treatment facility and the furnace operation method of the waste treatment facility according to the present invention will be described.

図1には、汚泥等の廃棄物を焼却処理する廃棄物処理設備1が示されている。廃棄物処理設備1は、汚泥が貯留された汚泥貯留槽20と、汚泥投入機構21と、廃棄物処理炉の一例である流動床式焼却炉2と、排ガス処理設備等を備えている。   FIG. 1 shows a waste treatment facility 1 for incinerating waste such as sludge. The waste treatment facility 1 includes a sludge storage tank 20 in which sludge is stored, a sludge charging mechanism 21, a fluidized bed incinerator 2 which is an example of a waste treatment furnace, an exhaust gas treatment facility, and the like.

流動床式焼却炉2は、空気供給機構Aから供給される高温空気によって形成される流動床に汚泥投入機構21から供給される汚泥を投入して加熱し、ガス化された汚泥をフリーボード部で燃焼させる処理炉である。符号14aは、立上げ時に炉内を加熱する昇温バーナで、炉が昇温した後には符号14bの補助バーナで燃焼に必要な熱量を補って操炉される。   The fluidized bed incinerator 2 heats the sludge supplied from the sludge input mechanism 21 to the fluidized bed formed by the high temperature air supplied from the air supply mechanism A, and heats the gasified sludge to the free board section. It is a processing furnace that burns in Reference numeral 14a is a temperature rising burner that heats the inside of the furnace at the time of start-up. After the furnace has been heated, the auxiliary burner indicated by reference numeral 14b is operated to supplement the amount of heat necessary for combustion.

流動床式焼却炉2の煙道に沿って、排ガスの保有熱により燃焼用空気を予熱する第1熱交換器3、煤塵を捕集する集塵装置9、アルカリ剤を噴霧して排ガス中の酸性ガス成分を中和する排煙処理塔10等が順に配置されている。   Along the flue of the fluidized bed incinerator 2, a first heat exchanger 3 that preheats combustion air by the retained heat of the exhaust gas, a dust collector 9 that collects soot, and an alkali agent are sprayed in the exhaust gas. A flue gas treatment tower 10 and the like for neutralizing the acid gas component are sequentially arranged.

排煙処理塔10の下流側には炉内を負圧に維持する誘引送風機11が設けられ、誘引送風機11によって誘引された排ガスが煙突12から排気される。   An induction blower 11 that maintains a negative pressure in the furnace is provided on the downstream side of the flue gas treatment tower 10, and exhaust gas attracted by the induction blower 11 is exhausted from the chimney 12.

上述した空気供給機構Aは、押込み送風機5と、過給機4と、第1熱交換器3とを備えて構成されている。押込み送風機5により1〜19kPaに予備圧縮された燃焼用空気が送風路8を介して過給機4を構成するコンプレッサ4bの給気口に供給され、コンプレッサ4bで0.1〜0.3MPaに圧縮された空気が第1熱交換器3で予熱された後にタービン4aに供給され、タービン4aから排気された圧縮空気が流動床式焼却炉2に供給される。   The air supply mechanism A described above includes a pusher blower 5, a supercharger 4, and a first heat exchanger 3. Combustion air preliminarily compressed to 1 to 19 kPa by the pusher blower 5 is supplied to the air supply port of the compressor 4b constituting the supercharger 4 through the air passage 8, and the compressor 4b reduces the pressure to 0.1 to 0.3 MPa. The compressed air is preheated by the first heat exchanger 3 and then supplied to the turbine 4a. The compressed air exhausted from the turbine 4a is supplied to the fluidized bed incinerator 2.

コンプレッサ4bで圧縮された空気は、第1熱交換器3で800〜1000℃の排ガスと熱交換されて500〜750℃に予熱された後にタービン4aに供給される。   The air compressed by the compressor 4b is heat-exchanged with the exhaust gas at 800 to 1000 ° C. by the first heat exchanger 3 and preheated to 500 to 750 ° C. and then supplied to the turbine 4a.

第1熱交換器3で予熱された圧縮空気がタービン4aに供給されることによってタービン4aが回転駆動され、さらに駆動軸と連結されたコンプレッサ4bが駆動されるようになる。タービン4aから排出された400〜650℃,0.02〜0.04MPaの圧縮空気は流動用空気つまり燃焼用空気として流動床式焼却炉2に供給されて流動床が形成される。尚、本明細書で説明する圧力はゲージ圧である。   When the compressed air preheated by the first heat exchanger 3 is supplied to the turbine 4a, the turbine 4a is rotationally driven, and the compressor 4b connected to the drive shaft is driven. The compressed air of 400 to 650 ° C. and 0.02 to 0.04 MPa discharged from the turbine 4a is supplied to the fluidized bed incinerator 2 as fluidizing air, that is, combustion air, to form a fluidized bed. In addition, the pressure demonstrated in this specification is a gauge pressure.

押込み送風機5により予備圧縮された燃焼用空気が過給機4のコンプレッサ4bに供給されるので、コンプレッサ4bのみならず押込み送風機5によっても圧縮された空気が、第1熱交換器3で予熱されるようになる。これにより、タービン4aの膨張仕事量が、コンプレッサ4bの圧縮仕事量以上になり、流動床式焼却炉2に流動床を形成する際の通気圧損より高い圧力で燃焼用空気を供給することができるように構成されている。   Since the combustion air pre-compressed by the pusher blower 5 is supplied to the compressor 4b of the supercharger 4, the air compressed not only by the compressor 4b but also by the pusher blower 5 is preheated by the first heat exchanger 3. Become so. Thereby, the expansion work of the turbine 4a becomes more than the compression work of the compressor 4b, and combustion air can be supplied at a pressure higher than the ventilation pressure loss when forming the fluidized bed in the fluidized bed incinerator 2. It is configured as follows.

図2(a)に示すように、ガスタービンや過給機はブレイトンサイクルに従って動作する装置であり、コンプレッサでの断熱圧縮による昇圧プロセス(図中、1→2)と、燃焼器や熱交換器での給熱プロセス(図中、2→3)、タービンでの断熱膨張による降圧プロセス(図中、3→4)が繰り返される。タービンでの膨張仕事がコンプレッサでの圧縮仕事を上回る場合に回転が維持される。   As shown in FIG. 2 (a), the gas turbine and the supercharger are devices that operate according to the Brayton cycle, and a pressure increasing process (1 → 2 in the figure) by adiabatic compression in the compressor, a combustor and a heat exchanger. The heat supply process (2 → 3 in the figure) and the pressure reduction process (3 → 4 in the figure) by adiabatic expansion in the turbine are repeated. Rotation is maintained when the expansion work at the turbine exceeds the compression work at the compressor.

しかし、図2(b)に示すように、コンプレッサ4bの給気口を大気開放して外気を直接吸引するような構成を採用すると、タービン4aでの膨張仕事量xが流動床への通気圧損x1と通風抵抗x2で制約を受けるため、タービン4aでの膨張仕事量xが、コンプレッサ4bでの圧縮仕事量yより少なくなり(x<y)、過給機4を運転できなくなる。   However, as shown in FIG. 2B, when a configuration is adopted in which the air supply port of the compressor 4b is opened to the atmosphere and the outside air is directly sucked, the expansion work amount x in the turbine 4a is reduced by the air pressure loss to the fluidized bed. Since it is restricted by x1 and ventilation resistance x2, the expansion work x in the turbine 4a becomes smaller than the compression work y in the compressor 4b (x <y), and the supercharger 4 cannot be operated.

そこで、本発明では、押込み送風機5から送風路8を介してコンプレッサ4bに空気を供給するように構成されている。
図2(c)に示すように、押込み送風機5により予備圧縮された燃焼用空気がコンプレッサ4bの給気口に供給されるので、コンプレッサ4bでの圧縮仕事量yが予備圧縮分y1だけ実質的に小さくなり(x>y)、流動床への通気圧損x1と通風抵抗x2があっても過給機4を適正に稼働させることができるようになる。
Therefore, in the present invention, air is supplied from the pusher blower 5 to the compressor 4b through the blower path 8.
As shown in FIG. 2 (c), the combustion air pre-compressed by the pusher blower 5 is supplied to the air supply port of the compressor 4b, so that the compression work y in the compressor 4b is substantially equal to the pre-compression amount y1. (X> y), the turbocharger 4 can be operated properly even if there is a ventilation pressure loss x1 and ventilation resistance x2 to the fluidized bed.

また、過給機4を使用しない場合よりも押込み送風機5による吐出圧力を低下させることができるので、押込み送風機5の消費電力を低減させることができる。但し、流動床式焼却炉2の立上げ時には専ら押込み送風機5のみで流動床を形成する必要があるが、過給機4の通風抵抗は小さく、立ち上げにより昇温されるに伴い過給機4による動力コストの低減効果を得られる。   Moreover, since the discharge pressure by the pusher blower 5 can be reduced as compared with the case where the supercharger 4 is not used, the power consumption of the pusher blower 5 can be reduced. However, when the fluidized bed incinerator 2 is started up, it is necessary to form the fluidized bed only with the forced blower 5 alone, but the ventilation resistance of the supercharger 4 is small, and the supercharger is raised as the temperature is raised by the start-up. 4 can reduce the power cost.

尚、始動時には、過給機が機能しないため、押込み送風機からの送風圧力を上昇させる必要があるが、立上げ時の昇温初期の期間に限られるので、運転コストの増大にはつながらないし、特許文献2に開示されたような複雑な操作も不要になる。   At the time of start-up, since the supercharger does not function, it is necessary to increase the air pressure from the pusher fan, but it is limited to the initial temperature rise period at the time of start-up, so it does not increase the operating cost, A complicated operation as disclosed in Patent Document 2 is also unnecessary.

再び図1を参照して説明する。廃棄物処理設備1には制御部6が備えられている。制御部6は、フリーボード部の出口部に備えた酸素ガスセンサSgにより検出される排ガスの酸素濃度に基づいて押込み送風機5の回転数を制御することにより、流動床式焼却炉2が適切な燃焼状態に維持されるように、流動床式焼却炉2への燃焼用空気の供給量を調整するように構成されている。   A description will be given with reference to FIG. 1 again. The waste treatment facility 1 is provided with a control unit 6. The control unit 6 controls the rotational speed of the forced blower 5 on the basis of the oxygen concentration of the exhaust gas detected by the oxygen gas sensor Sg provided at the outlet of the free board unit, so that the fluidized bed incinerator 2 performs appropriate combustion. The supply amount of the combustion air to the fluidized bed incinerator 2 is adjusted so as to be maintained in the state.

制御部6は、酸素ガスセンサSgにより検出される排ガスの酸素濃度と目標酸素濃度との偏差に基づいて演算を行なうことにより、炉内に供給されるべき目標空気量を算出する。予め想定される理論空気量に基づいて完全燃焼に要する空気量を設定し、そのときに排ガスに残存する基準酸素濃度が算出されている。酸素ガスセンサSgにより検出される排ガスの酸素濃度が基準酸素濃度より高い場合に目標空気量を減少し、排ガスの酸素濃度が基準酸素濃度より低い場合に目標空気量を増加するようにフィードバック演算が行なわれる。   The controller 6 calculates the target air amount to be supplied into the furnace by performing a calculation based on the deviation between the oxygen concentration of the exhaust gas detected by the oxygen gas sensor Sg and the target oxygen concentration. An air amount required for complete combustion is set based on a theoretical air amount assumed in advance, and a reference oxygen concentration remaining in the exhaust gas at that time is calculated. Feedback calculation is performed so that the target air amount is decreased when the oxygen concentration of the exhaust gas detected by the oxygen gas sensor Sg is higher than the reference oxygen concentration, and is increased when the oxygen concentration of the exhaust gas is lower than the reference oxygen concentration. It is.

さらに、制御部6は、押込み送風機5とコンプレッサ4bとの間に設置された流量計Mで検知された空気量と目標空気量との偏差に基づいて押込み送風機5の目標回転数を算出し、押込み送風機5が当該目標回転数となるようにインバータ7を制御する。   Further, the control unit 6 calculates the target rotational speed of the forced air blower 5 based on the deviation between the air amount detected by the flow meter M installed between the forced air blower 5 and the compressor 4b and the target air amount, The inverter 7 is controlled so that the pushing fan 5 has the target rotational speed.

排ガスに含まれる酸素濃度を指標に用いることにより、流動床式焼却炉2で燃焼する汚泥の有機成分に対して適正な量の燃焼用空気量が把握でき、その指標に基づいて目標量が設定されるので、必要量に対して大きく過不足することなく燃焼用空気を供給することができるようになる。   By using the oxygen concentration contained in the exhaust gas as an indicator, it is possible to grasp the appropriate amount of combustion air for the organic components of the sludge combusted in the fluidized bed incinerator 2, and the target amount is set based on the indicator. Therefore, it becomes possible to supply the combustion air without greatly exceeding the required amount.

気体は温度と圧力が変化することにより体積が変化するため、流量を計測する場合は温度と圧力に応じて補正をかける必要がある。そのため温度や圧力が想定域から外れた場合は誤差が大きくなるので、できれば温度や圧力の変化が少ないところに流量計Mを設置することが望ましい。尚、押込み送風機への空気の流入側は温度及び圧力の変化が最も小さいが、流量計Mを設置するための新たな配管が必要になる。また、コンプレッサの出口側、熱交換器の出口側、タービンの出口側の何れであっても温度及び/または圧力が上昇するため、押込み送風機からコンプレッサへの送風路に流量計Mを備えるのが好ましい。   Since the volume of gas changes due to changes in temperature and pressure, it is necessary to make corrections according to temperature and pressure when measuring the flow rate. For this reason, if the temperature or pressure deviates from the assumed range, the error increases. Therefore, it is desirable to install the flow meter M where there is little change in temperature or pressure if possible. In addition, although the change of temperature and pressure is the smallest in the inflow side of the air to a forced air blower, the new piping for installing the flow meter M is needed. Further, since the temperature and / or pressure rises at any of the outlet side of the compressor, the outlet side of the heat exchanger, and the outlet side of the turbine, a flow meter M is provided in the air passage from the pusher fan to the compressor. preferable.

また、押込み送風機5の燃焼用空気の供給量の調整方法は、動力コストが嵩む要因となるダンパ機構等の抵抗を受けて調整する方法ではなく、押込み送風機5の回転数を制御する方法による。この方法により、動力コストや装置コストの抑制を図れることに加えて、より簡便な制御方法を提供できることになる。   Moreover, the adjustment method of the supply amount of the combustion air of the pusher blower 5 is not a method of adjusting by receiving resistance of a damper mechanism or the like that causes the power cost to increase, but is a method of controlling the rotational speed of the pusher blower 5. This method can provide a simpler control method in addition to the power cost and the apparatus cost.

即ち、上述の廃棄物処理設備で、押込み送風機により予備圧縮された燃焼用空気をコンプレッサで圧縮する圧縮工程と、圧縮工程で圧縮された燃焼用空気を、熱処理炉の炉内燃焼熱及び/または煙道に導かれる排ガスの保有熱により予熱する予熱工程と、予熱工程で予熱された燃焼用空気でタービンを回転させて動力をコンプレッサへ伝える圧縮動力生成工程と、圧縮動力生成工程でタービンから排気された燃焼用空気を熱処理炉に供給する燃焼用空気供給工程と、を含む廃棄物処理設備の操炉方法が実現される。   That is, in the above-described waste treatment facility, a compression process in which combustion air pre-compressed by an indenter blower is compressed by a compressor, and combustion air compressed in the compression process is converted into in-core combustion heat of a heat treatment furnace and / or A preheating process that preheats with the retained heat of the exhaust gas that is led to the flue, a compression power generation process that rotates the turbine with the combustion air preheated in the preheating process and transmits the power to the compressor, and an exhaust from the turbine in the compression power generation process And a combustion air supply step of supplying the burned combustion air to the heat treatment furnace.

以下、本発明の別実施形態を説明する。
図3に示すように、排ガスの流れ方向に沿って第1熱交換器3と直列になるように煙道に第2熱交換器13を配置して、タービン4aから排出された高温の圧縮空気を第2熱交換器13でさらに予熱した後に、流動床式焼却炉2へ燃焼用空気として供給する給気路17を備えていることが好ましい。
Hereinafter, another embodiment of the present invention will be described.
As shown in FIG. 3, the high-temperature compressed air discharged from the turbine 4a is arranged by arranging the second heat exchanger 13 in the flue so as to be in series with the first heat exchanger 3 along the flow direction of the exhaust gas. It is preferable to provide an air supply passage 17 that is further preheated by the second heat exchanger 13 and then supplied as combustion air to the fluidized bed incinerator 2.

タービン4aから排出された高温の圧縮空気を第2熱交換器13でさらに予熱することによって、被処理物が含水率の高い汚泥であっても、補助バーナ14bに化石燃料を供給して加熱することなく、炉内の燃焼温度を適切な状態に維持することができる。これによって、化石燃料の消費量を低減させることができる。   By further preheating the high-temperature compressed air discharged from the turbine 4a with the second heat exchanger 13, even if the object to be treated is sludge having a high water content, fossil fuel is supplied to the auxiliary burner 14b and heated. The combustion temperature in the furnace can be maintained in an appropriate state. Thereby, the consumption of fossil fuel can be reduced.

図4に示すように、排ガスの流れ方向に沿って第2熱交換器13を第1熱交換器3と並列となるように煙道に配置してもよい。   As shown in FIG. 4, the second heat exchanger 13 may be arranged in the flue so as to be in parallel with the first heat exchanger 3 along the flow direction of the exhaust gas.

尚、炉内に供給する圧縮空気の温度を調整すべく、第2熱交換器13をバイパスするバイパス管15を設けて、第2熱交換器13で加熱された圧縮空気との混合量を調整可能に構成してもよい。   In order to adjust the temperature of the compressed air supplied into the furnace, a bypass pipe 15 that bypasses the second heat exchanger 13 is provided to adjust the mixing amount with the compressed air heated by the second heat exchanger 13. You may comprise.

バイパス管15及び第2熱交換器13への給気管夫々に流量調整バルブを設けて、各バルブの開度を調整することにより、流動床式焼却炉2に供給される燃焼用空気の温度を目標温度に調整することができる。   A flow rate adjusting valve is provided in each of the air supply pipes to the bypass pipe 15 and the second heat exchanger 13, and the temperature of the combustion air supplied to the fluidized bed incinerator 2 is adjusted by adjusting the opening degree of each valve. The target temperature can be adjusted.

上述した実施形態では押込み送風機5が目標回転数となるようにインバータ7を制御する例を説明したが、インバータ7を用いずに押込み送風機5とコンプレッサ4bとの間の通風経路にバルブV1を設けるとともに、通風経路を大気開放可能なバルブV2(図5参照)を設けて送風量を調整してもよい。   In the embodiment described above, the example in which the inverter 7 is controlled so that the forced air blower 5 reaches the target rotational speed has been described, but the valve V1 is provided in the ventilation path between the forced air blower 5 and the compressor 4b without using the inverter 7. At the same time, a ventilation rate may be adjusted by providing a valve V2 (see FIG. 5) that can open the ventilation path to the atmosphere.

図5に示すように、炉の立上げ時にはバルブV1を開いて押込み送風機5から送風し、炉が立ち上がった後にはバルブV2を開放して外気の吸引を許容することで押込み送風機5により送風しなくても必要な燃焼用空気の供給量が確保できるように構成してもよい。   As shown in FIG. 5, when the furnace is started up, the valve V1 is opened and air is blown from the pusher blower 5, and after the furnace is raised, the valve V2 is opened to allow the outside air to be sucked and blown by the pusher blower 5. You may comprise so that the supply amount of the required combustion air can be ensured even if it is not.

さらに、流動床式焼却炉2で発熱量が高い被処理物を焼却する場合には、燃焼温度を抑えるために、炉内温度を低下させる冷却機構や抽熱機構を備えればよい。   Furthermore, when incinerating an object to be processed having a high calorific value in the fluidized bed incinerator 2, a cooling mechanism or a heat extraction mechanism for lowering the furnace temperature may be provided in order to suppress the combustion temperature.

例えば、流動床部に2流体ノズルを備えた冷却装置16aを設置したり、フリーボード部に水噴霧機構を備えた冷却装置16bを配置したりすればよい。制御部6によって2流体ノズルからの水噴霧量や水噴霧機構からの水噴霧量を調整し、蒸発潜熱を利用して温度を調整することができる。   For example, a cooling device 16a having a two-fluid nozzle may be installed in the fluidized bed portion, or a cooling device 16b having a water spray mechanism may be placed in the free board portion. The controller 6 can adjust the water spray amount from the two-fluid nozzle and the water spray amount from the water spray mechanism, and can adjust the temperature using the latent heat of evaporation.

上述した実施形態では、何れも第1熱交換器3が煙道に導かれる排ガスの保有熱により圧縮空気を予熱するように構成された例を説明したが、第1熱交換器3は煙道に設置される態様に限るものではなく、例えば流動床式焼却炉2のフリーボード部に設置して炉内燃焼熱により圧縮空気を予熱するように構成されていてもよい。   In the above-described embodiments, the first heat exchanger 3 is configured to preheat the compressed air by the retained heat of the exhaust gas guided to the flue. However, the first heat exchanger 3 is configured to flue. It is not restricted to the aspect installed in this, For example, it may be comprised in the free board part of the fluidized bed type incinerator 2, and it may be comprised so that compressed air may be preheated with the combustion heat in a furnace.

図6には、図1に示した廃棄物処理設備を円滑に立ち上げるための好ましい構成が示されている。第1熱交換機3をバイパスするバイパス送風路8bを備え、バイパス送風路8bを通風する燃焼用空気を加熱する熱風炉14cを備えている。さらに、第1熱交換機3の上流側近傍にバルブV3、バイパス送風路8bの熱風炉14c上流側にバルブV4を備えている。   FIG. 6 shows a preferred configuration for smoothly starting up the waste treatment facility shown in FIG. A bypass air passage 8b that bypasses the first heat exchanger 3 is provided, and a hot air furnace 14c that heats the combustion air passing through the bypass air passage 8b is provided. Further, a valve V3 is provided in the vicinity of the upstream side of the first heat exchanger 3, and a valve V4 is provided on the upstream side of the hot stove 14c of the bypass air passage 8b.

立上げ時にバルブV3を閉じるとともにバルブV4を開放して、押込み送風機5からの燃焼用空気を熱風炉14cで加熱してタービン4aに供給する。炉内の昇温の程度に応じてバルブV3の開度を次第に大きく、バルブV4の開度を次第に小さく調整することにより、第1熱交換機3への空気分配量を増し、定常運転時には熱風炉14cを停止して燃料消費量を抑制する。バイパス送風路8bへの通気量を調整することによって、予熱空気温度を調整することができるので、過給機4による増圧量や流動床式焼却炉の燃焼温度の制御も可能になる。尚、立ち上げ時に炉の昇温バーナ14aを同時に用いることも可能であり、何れか一方のみ用いてもよい。何れか一方のみ用いる場合には炉内の均一な加熱という観点で熱風炉14cを用いる方が好ましい。   When starting up, the valve V3 is closed and the valve V4 is opened, and the combustion air from the forced air blower 5 is heated by the hot stove 14c and supplied to the turbine 4a. The amount of air distribution to the first heat exchanger 3 is increased by gradually increasing the opening of the valve V3 and gradually decreasing the opening of the valve V4 in accordance with the degree of temperature rise in the furnace. The fuel consumption is suppressed by stopping 14c. Since the preheated air temperature can be adjusted by adjusting the amount of ventilation to the bypass air passage 8b, the amount of pressure increase by the supercharger 4 and the combustion temperature of the fluidized bed incinerator can be controlled. It is possible to use the furnace temperature raising burner 14a at the time of start-up, and only one of them may be used. When only one of them is used, it is preferable to use the hot stove 14c from the viewpoint of uniform heating in the furnace.

熱処理炉の立上げ時には炉の廃熱を利用することができず、また送風路や熱交換器の通風による圧力損失も生じる。しかし、熱処理炉の立上げ時に第1熱交換機をバイパスすることにより送風経路を短縮することができ、熱風炉によって燃焼用空気を加熱することにより、タービンへの熱供給と熱処理炉の昇温が可能になる。尚、熱処理炉の立上げの後でもバイパス送風路への送風量を調整することにより、予熱空気温度を調整できるようになるため、過給機による増圧量や熱処理炉の温度調整も可能になる。   When the heat treatment furnace is started up, waste heat of the furnace cannot be used, and pressure loss due to ventilation of the air passage or the heat exchanger occurs. However, by bypassing the first heat exchanger when starting up the heat treatment furnace, the air flow path can be shortened, and by heating the combustion air with the hot air furnace, the heat supply to the turbine and the temperature rise of the heat treatment furnace can be reduced. It becomes possible. In addition, since the preheated air temperature can be adjusted by adjusting the air flow rate to the bypass air passage even after the heat treatment furnace is started up, the amount of pressure increase by the turbocharger and the heat treatment furnace temperature can be adjusted. Become.

上述した実施形態は、熱処理炉として流動床式焼却炉2を採用した場合について説明したが、本発明が適用される焼却炉は流動床式焼却炉2に限らず、流動床式焼却炉2と同様に通気圧損が大きいシャフト炉等の他の形式の工業炉にも適用可能である。例えば、底部にコークスベッドが形成され、当該コークスベッドに燃焼用空気を供給する羽口が形成されたシャフト炉の上方から汚泥を投入して溶融するような熱処理炉やスクラップを投入して溶解するキュポラ等であっても、本発明が適用可能である。   Although embodiment mentioned above demonstrated the case where the fluidized-bed type incinerator 2 was employ | adopted as a heat treatment furnace, the incinerator to which this invention is applied is not restricted to the fluidized-bed type incinerator 2, Similarly, the present invention can be applied to other types of industrial furnaces such as a shaft furnace having a large airflow pressure loss. For example, a coke bed is formed at the bottom, and a heat treatment furnace or scrap that melts by pouring sludge from above the shaft furnace in which the tuyere that supplies combustion air to the coke bed is formed is melted by charging. The present invention can also be applied to a cupola or the like.

上述した実施形態は、何れも本発明の一例であり、当該記載により本発明が限定されるものではなく、各部の具体的構成は本発明の作用効果が奏される範囲で適宜変更設計可能であることはいうまでもない。   Each of the above-described embodiments is an example of the present invention, and the present invention is not limited by the description. The specific configuration of each part can be appropriately changed and designed within the range where the effects of the present invention are exhibited. Needless to say.

1:廃棄物処理設備
2:流動床式焼却炉
3:第1熱交換器
4:過給機
4a:タービン
4b:コンプレッサ
5:押込み送風機
6:制御部
8:送風路
13:第2熱交換器
1: Waste treatment facility 2: Fluidized bed incinerator 3: First heat exchanger 4: Supercharger 4a: Turbine 4b: Compressor 5: Pushing fan 6: Control unit 8: Air passage 13: Second heat exchanger

Claims (8)

汚泥等の廃棄物を焼却処理する流動床炉及びシャフト炉を含む熱処理炉を備えている廃棄物処理設備であって、
前記熱処理炉の炉内燃焼熱及び/または煙道に導かれる排ガスの保有熱により燃焼用空気を予熱する第1熱交換器と、
前記第1熱交換器で予熱された燃焼用空気により回転するタービンと、前記タービンの回転により前記第1熱交換器に燃焼用空気を供給するコンプレッサとを含む過給機と、
前記コンプレッサへ燃焼用空気を予備圧縮して供給する押込み送風機と、
前記第1熱交換機をバイパスするバイパス送風路と、
前記バイパス送風路に設けられ、前記バイパス送風路を通風する燃焼用空気を加熱する熱風炉と、
を備えている廃棄物処理設備。
A waste treatment facility equipped with a heat treatment furnace including a fluidized bed furnace and a shaft furnace for incinerating waste such as sludge,
A first heat exchanger that preheats combustion air using in-furnace combustion heat of the heat treatment furnace and / or retained heat of exhaust gas guided to a flue;
A turbocharger comprising: a turbine rotating by combustion air preheated by the first heat exchanger; and a compressor for supplying combustion air to the first heat exchanger by rotation of the turbine;
A forced blower for precompressing and supplying combustion air to the compressor;
A bypass air passage that bypasses the first heat exchanger;
A hot stove for heating combustion air provided in the bypass air passage and passing through the bypass air passage;
Waste treatment facility equipped with.
前記第1熱交換器が前記煙道に導かれる排ガスの保有熱により燃焼用空気を予熱するように構成され、前記煙道に前記第1熱交換器と並列または直列に第2熱交換器を配置して、前記タービンから排出された燃焼用空気を前記第2熱交換器でさらに予熱した後に前記熱処理炉へ供給する給気路を設けている請求項1記載の廃棄物処理設備。   The first heat exchanger is configured to preheat combustion air by the retained heat of exhaust gas guided to the flue, and a second heat exchanger is provided in the flue in parallel or in series with the first heat exchanger. The waste treatment facility according to claim 1, wherein an air supply passage is provided for supplying the combustion air discharged from the turbine to the heat treatment furnace after further preheating with the second heat exchanger. 前記熱処理炉への燃焼用空気の供給量が目標量となるように前記押込み送風機の回転数を制御する制御部をさらに備えている請求項1または2記載の廃棄物処理設備。   The waste treatment facility according to claim 1 or 2, further comprising a control unit that controls the number of revolutions of the forced air blower so that a supply amount of combustion air to the heat treatment furnace becomes a target amount. 前記制御部は、少なくとも前記熱処理炉の排ガスに含まれる酸素濃度に基づいて前記目標量を設定するように構成されている請求項3記載の廃棄物処理設備。   The waste treatment facility according to claim 3, wherein the control unit is configured to set the target amount based on at least an oxygen concentration contained in an exhaust gas of the heat treatment furnace. 前記熱処理炉からの排ガスを引抜く誘引送風機を備えている請求項1からの何れかに記載の廃棄物処理設備。 The waste treatment facility according to any one of claims 1 to 4 , further comprising an induction blower for extracting exhaust gas from the heat treatment furnace. 汚泥等の廃棄物を焼却処理する流動床炉及びシャフト炉を含む熱処理炉を備えている廃棄物処理設備の操炉方法であって、
押込み送風機により予備圧縮された燃焼用空気をコンプレッサで圧縮する圧縮工程と、
前記圧縮工程で圧縮された燃焼用空気を、前記熱処理炉の炉内燃焼熱及び/または煙道に導かれる排ガスの保有熱により予熱する予熱工程と、
前記予熱工程で予熱された燃焼用空気でタービンを回転させて動力を前記コンプレッサへ伝える圧縮動力生成工程と、
前記圧縮動力生成工程で前記タービンから排気された燃焼用空気を前記熱処理炉に供給する燃焼用空気供給工程と、
少なくとも前記熱処理炉の始動時に、前記圧縮工程で圧縮された燃焼用空気を、前記予熱工程をバイパスするバイパス送風路に導き、前記バイパス送風路に備えた熱風炉で予熱する第二予熱工程と、
を含む廃棄物処理設備の操炉方法。
A method of operating a waste treatment facility comprising a heat treatment furnace including a fluidized bed furnace and a shaft furnace for incinerating waste such as sludge,
A compression step of compressing the combustion air pre-compressed by the forced blower with a compressor;
A preheating step in which the combustion air compressed in the compression step is preheated by the in-furnace combustion heat of the heat treatment furnace and / or the retained heat of the exhaust gas guided to the flue;
A compression power generation step of rotating the turbine with combustion air preheated in the preheating step and transmitting power to the compressor;
A combustion air supply step of supplying the combustion air exhausted from the turbine in the compression power generation step to the heat treatment furnace;
At least at the time of starting the heat treatment furnace, the combustion air compressed in the compression step is led to a bypass air passage bypassing the preheating step, and preheated in a hot air furnace provided in the bypass air passage;
Of waste treatment facilities including
圧縮動力生成工程で前記タービンから排気された燃焼用空気を、前記熱処理炉の炉内燃焼熱及び/または煙道に導かれる排ガスの保有熱により再度予熱する第2予熱工程をさらに備え、
前記第2予熱工程で再度予熱された燃焼用空気を前記燃焼用空気供給工程に供給する請求項記載の廃棄物処理設備の操炉方法。
A second preheating step of preheating the combustion air exhausted from the turbine in the compression power generation step again by the in-furnace combustion heat of the heat treatment furnace and / or the retained heat of the exhaust gas guided to the flue;
The furnace operation method for a waste treatment facility according to claim 6 , wherein the combustion air preheated again in the second preheating step is supplied to the combustion air supply step.
前記押込み送風機により予備圧縮された燃焼用空気が目標空気量となるように前記押込み送風機の回転数を制御する押込み送風機制御工程をさらに備えている請求項または記載の廃棄物処理設備の操炉方法。 The operation of the waste treatment facility according to claim 6 or 7 , further comprising a pusher blower control step of controlling a rotation speed of the pusher blower so that the combustion air pre-compressed by the pusher blower has a target air amount. Furnace method.
JP2015060331A 2015-03-24 2015-03-24 Waste treatment facility and method of operating waste treatment facility Active JP6490466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015060331A JP6490466B2 (en) 2015-03-24 2015-03-24 Waste treatment facility and method of operating waste treatment facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015060331A JP6490466B2 (en) 2015-03-24 2015-03-24 Waste treatment facility and method of operating waste treatment facility

Publications (2)

Publication Number Publication Date
JP2016180528A JP2016180528A (en) 2016-10-13
JP6490466B2 true JP6490466B2 (en) 2019-03-27

Family

ID=57131688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015060331A Active JP6490466B2 (en) 2015-03-24 2015-03-24 Waste treatment facility and method of operating waste treatment facility

Country Status (1)

Country Link
JP (1) JP6490466B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2625189C1 (en) * 2016-10-17 2017-07-12 Олег Савельевич Кочетов System for recycling wet carbon-containing wastes
JP7075574B2 (en) * 2017-05-29 2022-05-26 国立研究開発法人産業技術総合研究所 Combustion furnace of organic waste and treatment system of organic waste using the combustion furnace
JP6766772B2 (en) * 2017-07-25 2020-10-14 Jfeエンジニアリング株式会社 Power generation system using waste heat in sewage sludge incineration equipment and operation method of power generation system
JP7254438B2 (en) * 2017-08-23 2023-04-10 株式会社クボタ Operation method of waste disposal facility and waste disposal facility
JP6947608B2 (en) * 2017-11-07 2021-10-13 株式会社クボタ How to operate waste treatment equipment and waste treatment equipment
JP6389973B1 (en) * 2018-01-30 2018-09-12 株式会社神鋼環境ソリューション Waste treatment facility
JP7064939B2 (en) * 2018-04-27 2022-05-11 株式会社神鋼環境ソリューション Waste treatment equipment
JP7061053B2 (en) * 2018-10-02 2022-04-27 メタウォーター株式会社 Waste treatment equipment
JP7316925B2 (en) * 2019-12-25 2023-07-28 株式会社クボタ Waste treatment equipment and operation method of waste treatment equipment
JP7311451B2 (en) * 2020-03-25 2023-07-19 メタウォーター株式会社 Attraction system, Incineration system
CN113058711A (en) * 2021-03-22 2021-07-02 潘军 Special novel waste treatment equipment of animal doctor

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4116005A (en) * 1977-06-06 1978-09-26 General Electric Company Combined cycle power plant with atmospheric fluidized bed combustor
DE2743830C2 (en) * 1977-09-29 1984-03-22 Saarbergwerke AG, 6600 Saarbrücken Method for operating a combined gas-steam power plant and gas-steam power plant for carrying out the method
JPS57102525A (en) * 1980-12-17 1982-06-25 Ishikawajima Harima Heavy Ind Co Ltd Gas turbine
JPS57199734U (en) * 1981-06-10 1982-12-18
US4476674A (en) * 1982-06-10 1984-10-16 Westinghouse Electric Corp. Power generating plant employing a reheat pressurized fluidized bed combustor system
DE3225140A1 (en) * 1982-07-06 1984-01-12 Brown, Boveri & Cie Ag, 6800 Mannheim METHOD FOR THE OPERATION OF A STEAM POWER PLANT EQUIPPED WITH A FLUIDIZED LIFE BURNER, IN PARTICULAR HEATING POWER PLANT
JPS63183313A (en) * 1987-01-24 1988-07-28 Ishikawajima Harima Heavy Ind Co Ltd Heated air supply system
US5261226A (en) * 1991-08-23 1993-11-16 Westinghouse Electric Corp. Topping combustor for an indirect fired gas turbine
JP4831309B2 (en) * 2005-12-20 2011-12-07 独立行政法人土木研究所 Waste treatment facility and waste treatment method
JP4991986B2 (en) * 2006-07-25 2012-08-08 独立行政法人土木研究所 Pressure incinerator equipment and its startup method
JP5067653B2 (en) * 2006-07-25 2012-11-07 独立行政法人土木研究所 Pressurized incinerator equipment and operating method thereof
US20100300099A1 (en) * 2009-05-27 2010-12-02 Moxian Chen Air-medium power system
JP5401302B2 (en) * 2009-12-28 2014-01-29 三機工業株式会社 Operating method of pressurized fluidized incinerator and pressurized fluidized incinerator equipment
JP2015194308A (en) * 2014-03-31 2015-11-05 株式会社クボタ Incineration equipment and incineration method
JP6266440B2 (en) * 2014-05-30 2018-01-24 メタウォーター株式会社 Waste treatment facility and waste treatment method

Also Published As

Publication number Publication date
JP2016180528A (en) 2016-10-13

Similar Documents

Publication Publication Date Title
JP6490466B2 (en) Waste treatment facility and method of operating waste treatment facility
JP6655467B2 (en) Furnace operation method of waste treatment equipment and waste treatment equipment
JP5067653B2 (en) Pressurized incinerator equipment and operating method thereof
JP6800594B2 (en) Waste treatment equipment and how to operate the waste treatment equipment
JP6333021B2 (en) Incineration processing equipment and incineration processing method
JP6580398B2 (en) Waste treatment facility and operation method of waste treatment facility
US20200095899A1 (en) Apparatus for extracting energy from waste heat
CN106678830A (en) Waste incineration flue gas and air system and incineration control method
JP2015227748A (en) Waste treatment system and waste treatment method
JP2015194308A (en) Incineration equipment and incineration method
JP4771309B2 (en) Pressurized fluidized incineration equipment and its startup method
JP2014105612A (en) Waste heat recovery facility, waste heat recovery method and waste treatment furnace
JP2004084981A (en) Waste incinerator
JP2015194307A (en) Incineration equipment and incineration method
JP2017190929A (en) Waste treatment facility
JP6297417B2 (en) Waste treatment facility and waste treatment method
JP4714912B2 (en) Pressurized fluidized incineration equipment and its startup method
CN109737435A (en) Thermal accumulating incinerator overtemperature treatment process and device
JP2009121778A (en) Pressurized fluidized incineration facility and operation method for pressurized fluidized incineration facility
JP6678265B1 (en) Apparatus and method for treating flue gas
JP7156922B2 (en) Waste treatment equipment and operation method of waste treatment equipment
CN206347578U (en) A kind of waste incineration air and gas system
JP6947608B2 (en) How to operate waste treatment equipment and waste treatment equipment
JP2022097537A (en) Incinerator with supercharger
JP5574911B2 (en) Incineration equipment and its operating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190227

R150 Certificate of patent or registration of utility model

Ref document number: 6490466

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150