JP2015194308A - Incineration equipment and incineration method - Google Patents

Incineration equipment and incineration method Download PDF

Info

Publication number
JP2015194308A
JP2015194308A JP2014072776A JP2014072776A JP2015194308A JP 2015194308 A JP2015194308 A JP 2015194308A JP 2014072776 A JP2014072776 A JP 2014072776A JP 2014072776 A JP2014072776 A JP 2014072776A JP 2015194308 A JP2015194308 A JP 2015194308A
Authority
JP
Japan
Prior art keywords
compressed air
turbine
heat exchanger
exhaust gas
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014072776A
Other languages
Japanese (ja)
Inventor
野邑 尚史
Hisafumi Nomura
尚史 野邑
野島 智之
Tomoyuki Nojima
智之 野島
修 横田
Osamu Yokota
修 横田
謙吾 村木
Kengo Muraki
謙吾 村木
孝浩 堀井
Takahiro Horii
孝浩 堀井
古北 克
Katsu Furukita
克 古北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2014072776A priority Critical patent/JP2015194308A/en
Publication of JP2015194308A publication Critical patent/JP2015194308A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Abstract

PROBLEM TO BE SOLVED: To provide incineration equipment and an incineration method capable of keeping the inside of a furnace in negative pressure without installing an induction air blower consuming a large amount of electric power.SOLUTION: Incineration equipment includes a first heat exchanger 20 preheating compressed air by in-furnace combustion heat of an incinerator 2 and/or potential heat of an exhaust gas guided to a flue, and a turbine device 30 including a turbine 31 rotated by the compressed air of high temperature preheated by the first heat exchanger 20 and a compressor 32 supplying the compressed air to the first heat exchanger 20 by rotation of the turbine 31, and further includes an exhaust gas induction device 40 for inducing the exhaust gas guided to the flue by using kinetic energy obtained by recovering the in-furnace combustion heat and/or the potential heat of the exhaust gas by the turbine device 30.

Description

本発明は、焼却処理設備及び焼却処理方法に関する。   The present invention relates to an incineration processing facility and an incineration processing method.

特許文献1には、燃焼用圧縮空気や白煙防止用圧縮空気を生成し予熱器に供給するためのブロアを必要とせず、エネルギー効率に優れる廃棄物焼却設備及び処理方法を提供することを目的として、流動床式焼却炉と、流動床式焼却炉からの排ガスとの連続的なガス−ガス熱交換により流動床式焼却炉に供給する燃焼用圧縮空気の予熱を行う第1の予熱器と、第1の予熱器で加熱されて流動床式焼却炉に向かう燃焼用圧縮空気によってタービンを回転し、この回転によってコンプレッサで第1の予熱器に供給する圧縮空気の生成及び送風を行う第1の過給機と、第1の予熱器より上流側に設けられ運転開始時にタービンを回転させる第1の始動用空気供給装置を備えた廃棄物処理設備が提案されている。   Patent Document 1 aims to provide a waste incineration facility and a processing method that are excellent in energy efficiency without requiring a blower for generating compressed air for combustion and compressed air for preventing white smoke and supplying it to a preheater. And a first preheater for preheating combustion compressed air supplied to the fluidized bed incinerator by continuous gas-gas heat exchange with the exhaust gas from the fluidized bed incinerator. The turbine is rotated by compressed air for combustion which is heated by the first preheater and goes to the fluidized bed incinerator, and the compressor generates and blows compressed air to be supplied to the first preheater by this rotation. And a waste treatment facility including a first start-up air supply device that is provided upstream of the first preheater and rotates the turbine at the start of operation has been proposed.

特許第4831309号公報Japanese Patent No. 4831309

しかし、特許文献1に開示された廃棄物処理設備では、炉内を負圧に維持するために煙道に大きな電力を消費する誘引送風機を設ける必要があり、エネルギー効率を向上させるという点では、さらなる改良の余地があった。   However, in the waste treatment facility disclosed in Patent Document 1, it is necessary to provide an induction blower that consumes a large amount of power in the flue in order to maintain the inside of the furnace at a negative pressure, and in terms of improving energy efficiency, There was room for further improvement.

また、誘引送風機を設置せずに燃焼用圧縮空気の残圧で煙道に排ガスを圧送する場合には、正圧となる炉室や煙道に配置される各排ガス処理設備から高温の排ガスが噴き出すことが無いように確実にシールする必要があり、そのために設備コストが上昇するという問題や、仮にシールが破れると高温の排ガスが噴き出して重大な事故につながる虞があるという問題があった。   In addition, when exhaust gas is pumped to the flue with the residual pressure of the compressed air for combustion without installing an induction blower, high-temperature exhaust gas is discharged from each exhaust gas treatment facility placed in the furnace chamber or flue that is at positive pressure. There is a problem that it is necessary to surely seal so as not to be ejected, which increases the equipment cost, and there is a problem that if the seal is broken, high-temperature exhaust gas is ejected and a serious accident may occur.

本発明の目的は、上述した問題点に鑑み、大きな電力を消費する誘引送風機を設けることなく炉内を負圧に維持可能な焼却処理設備及び焼却処理方法を提供する点にある。   In view of the above-described problems, an object of the present invention is to provide an incineration processing facility and an incineration processing method capable of maintaining the inside of a furnace at a negative pressure without providing an induction blower that consumes large electric power.

上述の目的を達成するため、本発明による焼却処理設備の第一特徴構成は、特許請求の範囲の請求項1に記載した通り、焼却炉の炉内燃焼熱及び/または煙道に導かれる排ガスの保有熱により圧縮空気を予熱する第1熱交換器と、前記第1熱交換器で予熱された高温の圧縮空気により回転するタービンと、前記タービンの回転により前記第1熱交換器に圧縮空気を供給するコンプレッサとを含むタービン装置と、を備え、前記タービン装置によって炉内燃焼熱及び/または排ガスの保有熱を回収して得られた運動エネルギーを用いて前記煙道に導かれた排ガスを誘引する排ガス誘引装置を備えている点にある。   In order to achieve the above-mentioned object, the first characteristic configuration of the incineration processing equipment according to the present invention is as described in claim 1 of the present invention, and the exhaust gas guided to the combustion heat in the incinerator and / or the flue A first heat exchanger that preheats the compressed air by the retained heat, a turbine that rotates by the high-temperature compressed air preheated by the first heat exchanger, and the compressed air that is supplied to the first heat exchanger by the rotation of the turbine A turbine device including a compressor for supplying exhaust gas, and the exhaust gas introduced into the flue using the kinetic energy obtained by recovering the combustion heat in the furnace and / or the retained heat of the exhaust gas by the turbine device. It is in the point provided with the exhaust gas attracting device to attract.

第1熱交換器によって焼却炉の炉内燃焼熱及び/または排ガスの保有熱を回収した高温の圧縮空気によってタービンが駆動され、タービンと連結されるコンプレッサが駆動されて圧縮空気が生成される。排ガス誘引装置は、このとき回収した排ガスの保有熱から生成される運動エネルギーを用いることによって煙道に導かれた排ガスを誘引するので、誘引送風機を駆動するための電力のような別途のエネルギーが不要になり、エネルギー効率を一層に向上させることができ、また炉内を負圧に維持できる。   The turbine is driven by the high-temperature compressed air that has recovered the in-furnace combustion heat of the incinerator and / or the retained heat of the exhaust gas by the first heat exchanger, and the compressor connected to the turbine is driven to generate compressed air. The exhaust gas attracting device attracts the exhaust gas guided to the flue by using the kinetic energy generated from the retained heat of the exhaust gas recovered at this time, so there is no additional energy such as electric power for driving the induction fan. It becomes unnecessary, energy efficiency can be further improved, and the inside of the furnace can be maintained at a negative pressure.

同第二の特徴構成は、同請求項2に記載した通り、上述した第一の特徴構成に加えて、前記排ガス誘引装置は、前記煙道に導かれた排ガスを、前記タービンから排出される高温の圧縮空気の流れよって誘引するエジェクタで構成されている点にある。   In the second characteristic configuration, as described in claim 2, in addition to the first characteristic configuration described above, the exhaust gas attraction device discharges the exhaust gas guided to the flue from the turbine. It is in the point comprised by the ejector attracted by the flow of hot compressed air.

タービンから排出される高温の圧縮空気がエジェクタの空気供給ポートに供給され、煙道の排ガスが真空ポートから吸引されてディフューザーに流出するようになるので、電力によって駆動される誘引送風機を備えなくても炉内が負圧に維持される。しかも、排ガスがディフューザーで高温の圧縮空気と混合して加熱されるので、排ガスの昇温及び湿度低下により、白防効果も併せて実現されるようになる。   High-temperature compressed air discharged from the turbine is supplied to the air supply port of the ejector, and flue exhaust gas is sucked from the vacuum port and flows out to the diffuser, so there is no induction blower driven by electric power. Also, the inside of the furnace is maintained at a negative pressure. In addition, since the exhaust gas is heated by being mixed with high-temperature compressed air by the diffuser, the anti-whitening effect is also realized by raising the temperature and reducing the humidity of the exhaust gas.

同第三の特徴構成は、同請求項3に記載した通り、上述した第一の特徴構成に加えて、前記排ガス誘引装置は、前記タービン装置の軸動力で回転軸が駆動される誘引送風機を備えて構成されている点にある。   In the third feature configuration, as described in claim 3, in addition to the first feature configuration described above, the exhaust gas induction device includes an induction blower in which a rotating shaft is driven by shaft power of the turbine device. It is in the point where it is prepared.

第1熱交換器によって焼却炉の炉内燃焼熱及び/または排ガスの保有熱を回収した高温の圧縮空気によって駆動されるタービンの軸動力で誘引送風機が回転駆動されて煙道の排ガスが誘引される。つまり、誘引送風機を回転駆動するために別途の電力が不要になる。   The induction blower is rotationally driven by the shaft power of the turbine driven by the high-temperature compressed air that has recovered the combustion heat in the incinerator and / or the retained heat of the exhaust gas by the first heat exchanger, and the flue gas is attracted. The That is, no separate electric power is required to rotationally drive the induction fan.

同第四の特徴構成は、同請求項4に記載した通り、上述した第一の特徴構成に加えて、前記焼却炉が、燃焼用空気として高温の圧縮空気が供給される焼却炉である点にある。   In the fourth feature configuration, as described in claim 4, in addition to the first feature configuration described above, the incinerator is an incinerator to which high-temperature compressed air is supplied as combustion air. It is in.

燃焼用空気を供給するための別途のブロワーファンが不要になる。   A separate blower fan for supplying combustion air is not required.

同第五の特徴構成は、同請求項5に記載した通り、上述した第一から第四の何れかの特徴構成に加えて、前記焼却炉に投入される被処理物を、前記タービンから排出される高温の圧縮空気によって乾燥する乾燥機を備えている点にある。   In the fifth feature configuration, as described in claim 5, in addition to any of the first to fourth feature configurations described above, an object to be treated that is put into the incinerator is discharged from the turbine. It is in the point provided with the dryer which dries with high temperature compressed air.

例えば、脱水汚泥等のように含水量がある程度多い被処理物を焼却する場合には、バーナに化石燃料を供給して加熱する必要があるが、乾燥機に第1熱交換器で加熱された高温の圧縮空気を供給して被処理物をある程度乾燥処理しておけば、化石燃料の消費量も低減できるようになる。   For example, in the case of incinerating an object to be treated having a high water content such as dehydrated sludge, it is necessary to supply fossil fuel to the burner and heat it, but the dryer was heated by the first heat exchanger. If high-temperature compressed air is supplied to dry the workpiece to some extent, the consumption of fossil fuel can be reduced.

同第六の特徴構成は、同請求項6に記載した通り、上述した第一から第五の何れかの特徴構成に加えて、前記第1熱交換器が前記煙道に導かれる排ガスの保有熱により圧縮空気を予熱するように構成され、前記煙道に前記第1熱交換器と並列または直列に第2熱交換器を配置して、前記タービンから排出された高温の圧縮空気を前記第2熱交換器でさらに予熱した後に前記焼却炉へ燃焼用空気として供給する点にある。   In addition to any one of the first to fifth feature configurations described above, the sixth feature configuration has the exhaust gas that is led to the flue by the first heat exchanger. Compressed air is preheated by heat, a second heat exchanger is disposed in parallel or in series with the first heat exchanger in the flue, and the hot compressed air discharged from the turbine is It is in the point which supplies as combustion air to the said incinerator after further preheating with 2 heat exchangers.

タービンから排出された高温の圧縮空気を第2熱交換器でさらに予熱することによって、バーナに化石燃料を供給して加熱しなくても炉内の燃焼温度を十分な値に維持することができるようになり、化石燃料の消費量を低減させることができるようになる。   By further preheating the hot compressed air discharged from the turbine with the second heat exchanger, the combustion temperature in the furnace can be maintained at a sufficient value without supplying fossil fuel to the burner and heating it. As a result, the consumption of fossil fuel can be reduced.

同第七の特徴構成は、同請求項7に記載した通り、上述した第一から第六の何れかの特徴構成に加えて、前記コンプレッサで生成された圧縮空気を、前記タービンから排出された高温の圧縮空気で予熱する第3熱交換器を備え、前記第3熱交換器で予熱された圧縮空気を前記第1熱交換機に供給するように構成されている点にある。   In the seventh feature configuration, in addition to any one of the first to sixth feature configurations described above, the compressed air generated by the compressor is discharged from the turbine. A third heat exchanger that preheats with high-temperature compressed air is provided, and the compressed air preheated by the third heat exchanger is configured to be supplied to the first heat exchanger.

第3熱交換器を設けることによってタービンに供給される圧縮空気の持ち込み熱量を高めることができ、コンプレッサによる圧縮空気の生成量を増すことが可能になる。例えば、タービンに発電機を接続した場合には発電量を一層高めることができるようになる。第3熱交換器は予熱源、予熱対象ともに空気であるため、酸性成分が含まれる排ガスと異なり、低温腐食を招くことが無いので予熱源の持つ熱量を高効率で回収できるようになる。   By providing the third heat exchanger, the amount of heat brought in by the compressed air supplied to the turbine can be increased, and the amount of compressed air generated by the compressor can be increased. For example, when a generator is connected to the turbine, the amount of power generation can be further increased. In the third heat exchanger, since both the preheating source and the preheating target are air, unlike the exhaust gas containing acidic components, low temperature corrosion is not caused, so that the heat amount of the preheating source can be recovered with high efficiency.

同第八の特徴構成は、同請求項8に記載した通り、上述した第一から第七の何れかの特徴構成に加えて、前記第1熱交換器が前記煙道に導かれる排ガスの保有熱により圧縮空気を予熱するように構成され、前記煙道に前記第1熱交換器と直列に第4熱交換器を配置して、前記第4熱交換器で予熱された高温の圧縮空気により回転する第2タービンと、前記第2タービンの回転により前記第4熱交換器に圧縮空気を供給する第2コンプレッサとを含む第2タービン装置を備えている点にある。   In the eighth feature configuration, in addition to any one of the first to seventh feature configurations described above, the first heat exchanger holds exhaust gas that is led to the flue. Compressed air is preheated by heat, a fourth heat exchanger is arranged in series with the first heat exchanger in the flue, and the hot compressed air preheated by the fourth heat exchanger is used. The second turbine apparatus includes a rotating second turbine and a second compressor that supplies compressed air to the fourth heat exchanger by the rotation of the second turbine.

2系統のタービン装置によって高温の圧縮空気が得られるようになり、それぞれの高温の圧縮空気を焼却炉の各プロセスに高い自由度で供給できるようになり、より安定した操炉が可能になる。例えば、一方の高温の圧縮空気を排ガス誘引装置に供給し、他方の高温の圧縮空気を燃焼用空気に供給することができる。   High-temperature compressed air can be obtained by the two systems of turbine devices, and the respective high-temperature compressed air can be supplied to each process of the incinerator with a high degree of freedom, thereby enabling more stable operation. For example, one hot compressed air can be supplied to the exhaust gas attraction device, and the other hot compressed air can be supplied to the combustion air.

同第九の特徴構成は、同請求項9に記載した通り、上述した第一から第八の何れかの特徴構成に加えて、前記焼却炉で焼却処理される被処理物が下水汚泥を含むバイオマスである点にある。   In the ninth feature configuration, in addition to any one of the first to eighth feature configurations described above, the object to be incinerated in the incinerator includes sewage sludge. It is in the point of being biomass.

焼却処理される被処理物が下水汚泥を含むバイオマスであることが好ましく、エネルギー効率よく十分な高温で焼却処理可能になるため、地球温暖化の原因ガスである亜酸化窒素の発生量も極めて効果的に抑制することができるようになる。   The material to be incinerated is preferably biomass containing sewage sludge, and because it can be incinerated at a sufficiently high temperature with high energy efficiency, the amount of nitrous oxide that is a source of global warming is also extremely effective. Can be suppressed.

本発明による焼却処理方法の第一の特徴構成は、同請求項10に記載した通り、タービンと連動するコンプレッサで圧縮空気を生成し、焼却炉の炉内燃焼熱及び/または煙道に導かれる排ガスの保有熱により圧縮空気を予熱し、予熱された高温の圧縮空気でタービンを回転し、炉内燃焼熱及び/または排ガスの保有熱を回収して得られた運動エネルギーを用いて前記煙道に導かれた排ガスを誘引する点にある。   The first characteristic configuration of the incineration processing method according to the present invention is that, as described in claim 10, compressed air is generated by a compressor operating in conjunction with a turbine, and is led to in-furnace combustion heat and / or flue of the incinerator. The flue is preheated by compressed heat by the retained heat of the exhaust gas, the turbine is rotated by the preheated high-temperature compressed air, and the kinetic energy obtained by collecting the combustion heat in the furnace and / or the retained heat of the exhaust gas is used. It is in the point of attracting exhaust gas led to.

以上説明した通り、本発明によれば、大きな電力を消費する誘引送風機を設けることなく炉内を負圧に維持可能な焼却処理設備及び焼却処理方法を提供することができるようになった。   As described above, according to the present invention, it is possible to provide an incineration processing facility and an incineration processing method capable of maintaining the inside of a furnace at a negative pressure without providing an induction blower that consumes large electric power.

本発明による焼却処理設備及び焼却処理方法の説明図Explanatory drawing of incineration processing equipment and incineration processing method by the present invention 別実施形態を示す焼却処理設備の説明図Explanatory drawing of incineration processing equipment showing another embodiment 別実施形態を示す焼却処理設備の説明図Explanatory drawing of incineration processing equipment showing another embodiment 別実施形態を示す焼却処理設備の説明図Explanatory drawing of incineration processing equipment showing another embodiment 別実施形態を示す焼却処理設備の説明図Explanatory drawing of incineration processing equipment showing another embodiment 別実施形態を示す焼却処理設備の説明図Explanatory drawing of incineration processing equipment showing another embodiment 別実施形態を示す焼却処理設備の説明図Explanatory drawing of incineration processing equipment showing another embodiment

以下、本発明による焼却処理設備及び焼却処理方法の実施形態を説明する。
図1には、焼却処理設備1が示されている。焼却処理設備1は、バイオマスが貯留されたサイロ10と、バイオマス投入機構11と、燃焼用空気として高温の圧縮空気が供給される流動床式焼却炉2を備えている。流動床式焼却炉2の煙道に沿って第1熱交換器20と、セラミックフィルタを備えた耐熱性の高い集塵装置16と、アルカリ剤を噴霧して排ガス中の酸性ガス成分を中和する排煙処理塔17及び煙突18が配置されている。符合12は燃焼バーナである。
Hereinafter, embodiments of the incineration processing equipment and the incineration processing method according to the present invention will be described.
FIG. 1 shows an incineration processing facility 1. The incineration processing facility 1 includes a silo 10 in which biomass is stored, a biomass charging mechanism 11, and a fluidized bed incinerator 2 to which high-temperature compressed air is supplied as combustion air. Along the flue of the fluidized bed incinerator 2, the first heat exchanger 20, a highly heat-resistant dust collector 16 equipped with a ceramic filter, and an alkali agent are sprayed to neutralize acid gas components in the exhaust gas. A flue gas processing tower 17 and a chimney 18 are disposed. Reference numeral 12 denotes a combustion burner.

焼却処理設備1の被処理物であるバイオマスには、例えば下水汚泥を生物処理する活性汚泥法や、生物処理して膜ろ過する膜分離活性汚泥法等の方式を採用した汚水処理設備で発生した余剰汚泥を脱水した脱水汚泥や、食品工場等で発生した汚水を浄化処理して発生した汚泥等の高含水率の有機性の汚泥等、様々な動植物由来の汚泥が含まれる。   Biomass, which is a material to be treated by the incineration treatment facility 1, is generated in a sewage treatment facility that employs a method such as an activated sludge method that biologically treats sewage sludge or a membrane separation activated sludge method that performs biological treatment and membrane filtration. This includes sludge derived from various animals and plants, such as dewatered sludge from which excess sludge has been dewatered and organic sludge having a high water content such as sludge generated by purifying sludge generated in food factories.

焼却処理設備1には、第1熱交換器20で予熱された高温の圧縮空気により回転するタービン31と、タービン31の回転により第1熱交換器20に圧縮空気を供給するコンプレッサ32とを含むタービン装置30を備え、タービン装置30によって排ガスの保有熱を回収して得られた運動エネルギーを用いて煙道に導かれた排ガスを誘引する排ガス誘引装置40を備えている。   The incineration treatment facility 1 includes a turbine 31 that is rotated by high-temperature compressed air preheated by the first heat exchanger 20 and a compressor 32 that supplies compressed air to the first heat exchanger 20 by the rotation of the turbine 31. A turbine device 30 is provided, and an exhaust gas attracting device 40 for attracting the exhaust gas guided to the flue using the kinetic energy obtained by collecting the retained heat of the exhaust gas by the turbine device 30 is provided.

タービン31と軸連結されるコンプレッサ32が駆動されて100〜150℃,0.2〜0.3MPaの圧縮空気が生成され、コンプレッサ32で生成された圧縮空気が第1熱交換器20に供給されて、流動床式焼却炉2の煙道に導かれる約900℃の排ガスの保有熱により650〜750℃,0.2〜0.3MPaに予熱される。尚、本明細書で説明する圧力はゲージ圧である。   A compressor 32 connected to the turbine 31 is driven to generate compressed air of 100 to 150 ° C. and 0.2 to 0.3 MPa, and the compressed air generated by the compressor 32 is supplied to the first heat exchanger 20. Thus, it is preheated to 650 to 750 ° C. and 0.2 to 0.3 MPa by the retained heat of the exhaust gas at about 900 ° C. guided to the flue of the fluidized bed incinerator 2. In addition, the pressure demonstrated in this specification is a gauge pressure.

第1熱交換器20で予熱された圧縮空気がタービン31に供給されることによってタービン31が回転駆動され、さらに駆動軸と連結されたコンプレッサ32が駆動されるようになる。タービン31から排出された500〜600℃,0.05〜0.15MPaの圧縮空気の一部は、流動用空気つまり燃焼用空気として流動床式焼却炉2に供給されて流動床が形成される。さらに、タービン装置30の出力軸に発電機Gが連結され、タービン31の回転動力によって発電可能に構成されている。   When the compressed air preheated by the first heat exchanger 20 is supplied to the turbine 31, the turbine 31 is rotationally driven, and the compressor 32 connected to the drive shaft is driven. Part of the compressed air of 500 to 600 ° C. and 0.05 to 0.15 MPa discharged from the turbine 31 is supplied to the fluidized bed incinerator 2 as fluidizing air, that is, combustion air, to form a fluidized bed. . Further, a generator G is connected to the output shaft of the turbine device 30 so that power can be generated by the rotational power of the turbine 31.

バイオマス投入機構11によって炉内に投入された汚泥は、流動床で加熱されて燃焼し、その燃焼ガスが約850℃から900℃で燃焼して煙道に流出する。汚泥の燃焼時に地球温暖化ガスである亜酸化窒素が発生しないように、必要に応じて燃焼バーナ12に重油やガス等の化石燃料が供給され、炉内での燃焼温度が850℃以上に維持される。   The sludge charged into the furnace by the biomass charging mechanism 11 is heated and burned in the fluidized bed, and the combustion gas burns at about 850 ° C. to 900 ° C. and flows out into the flue. In order to prevent the generation of nitrous oxide, a global warming gas, during combustion of sludge, fossil fuels such as heavy oil and gas are supplied to the combustion burner 12 as necessary, and the combustion temperature in the furnace is maintained at 850 ° C. or higher. Is done.

タービン31から排出された500〜600℃,0.05〜0.15MPaの圧縮空気の一部は、排ガス誘引装置40に供給される。排ガス誘引装置40は、第1熱交換器20で回収した排ガスの保有熱から生成される運動エネルギーを用いることによって煙道に導かれた排ガスを誘引して煙突18から排出する。   A part of the compressed air of 500 to 600 ° C. and 0.05 to 0.15 MPa discharged from the turbine 31 is supplied to the exhaust gas induction device 40. The exhaust gas attracting device 40 attracts exhaust gas guided to the flue by using kinetic energy generated from the retained heat of the exhaust gas recovered by the first heat exchanger 20 and discharges it from the chimney 18.

排ガス誘引装置40は、煙道に導かれた排ガスを、タービン31から排出される高温の圧縮空気の流れよって誘引するエジェクタで構成されている。   The exhaust gas attracting device 40 is composed of an ejector that attracts the exhaust gas guided to the flue by the flow of high-temperature compressed air discharged from the turbine 31.

タービン31から排出され燃焼用空気として流動床式焼却炉2に供給される高温の圧縮空気の一部がエジェクタを構成する空気供給ポート40aに供給され、煙道の排ガスが真空ポート40bから吸引されてディフューザー40cに流出するようになるので、電力によって駆動される誘引送風機を備えなくても炉内が負圧に維持される。しかも、排煙処理塔17で40℃程度に低下した排ガスがディフューザー40cで高温の圧縮空気と混合して加熱されるので、排ガスの昇温及び湿度低下により、白防効果も併せて実現されるようになる。尚、高温の圧縮空気の一部を、分岐管を介して煙突18に導入してもよい。   A part of the high-temperature compressed air discharged from the turbine 31 and supplied to the fluidized bed incinerator 2 as combustion air is supplied to the air supply port 40a constituting the ejector, and the flue gas is sucked from the vacuum port 40b. As a result, it flows out into the diffuser 40c, so that the inside of the furnace is maintained at a negative pressure without an induction blower driven by electric power. Moreover, since the exhaust gas that has been reduced to about 40 ° C. in the flue gas treatment tower 17 is mixed with high-temperature compressed air and heated in the diffuser 40c, the white prevention effect is also realized due to the temperature rise and humidity reduction of the exhaust gas. It becomes like this. A part of the high-temperature compressed air may be introduced into the chimney 18 through the branch pipe.

流動床式焼却炉2の燃焼状態を制御するために、燃焼用空気の投入量または温度を調整する必要がある場合、流量調整用のバルブVでコンプレッサ32への給気量を構成すればよい。また、図1に破線で示すように、タービン31から出力される圧縮空気の流動床式焼却炉2への供給量と排ガス誘引装置40への供給量を調整するバルブ機構を圧縮空気の搬送経路に備えてもよい。以下では流量調整のための機械要素としてバルブを用いた例を説明するが、流量調整のための機械要素としてダンパを用いることも可能である。   In order to control the combustion state of the fluidized bed incinerator 2, when it is necessary to adjust the input amount or temperature of the combustion air, the air supply amount to the compressor 32 may be configured by the flow rate adjusting valve V. . Further, as shown by a broken line in FIG. 1, a valve mechanism for adjusting the supply amount of the compressed air output from the turbine 31 to the fluidized bed incinerator 2 and the supply amount to the exhaust gas induction device 40 is provided with a compressed air conveyance path. You may prepare for. Hereinafter, an example in which a valve is used as a mechanical element for adjusting the flow rate will be described. However, a damper may be used as a mechanical element for adjusting the flow rate.

このような構成によれば、従来の誘引送風機を駆動するための電力のような別途のエネルギーが不要になり、エネルギー効率を一層に向上させることができ、また炉内を負圧に維持できるので、設備コストを要する特別のシール機構を備える必要もなくなる。   According to such a configuration, no separate energy such as electric power for driving the conventional induction fan is required, energy efficiency can be further improved, and the inside of the furnace can be maintained at a negative pressure. Further, it is not necessary to provide a special sealing mechanism that requires equipment costs.

流動床式焼却炉2の立上げ時には、発電機Gをモータとして動作させ、外部電力によって駆動されるモータでタービン31を回転させるとともに、燃焼バーナ12を点火し、炉が温まると被処理物を投入して焼却処理を開始し、モータとして動作させた発電機Gを停止し、その後発電機として動作させる。尚、発電機Gを備えていない場合には、タービン31に備えた燃焼器33に化石燃料を供給して生成した燃焼ガスで起動することも可能である。   When the fluidized bed incinerator 2 is started up, the generator G is operated as a motor, the turbine 31 is rotated by a motor driven by external power, and the combustion burner 12 is ignited. Then, the incineration process is started, the generator G operated as a motor is stopped, and then operated as a generator. In addition, when the generator G is not provided, it is also possible to start with the combustion gas generated by supplying fossil fuel to the combustor 33 provided in the turbine 31.

上述した実施形態で示した圧力、温度等の数値は例示に過ぎず、本発明が当該数値に限定されるものではなく、また排ガス誘引装置40を含めて、焼却処理設備1を構成する各部の構造、大きさ、素材等の具体的な構成は、本発明の作用効果が奏される範囲で適宜変更して設計することが可能である。以下の説明でも同様である。   The numerical values such as pressure and temperature shown in the above-described embodiments are merely examples, and the present invention is not limited to the numerical values. The specific configuration such as the structure, size, material, and the like can be changed and designed as appropriate within the range in which the effects of the present invention can be achieved. The same applies to the following description.

図2に示すように、流動床式焼却炉2に投入される被処理物を、タービン31から排出される高温の圧縮空気によって乾燥する乾燥機50を備えていることが好ましい。例えば、脱水汚泥等のように含水量がある程度多い被処理物を焼却する場合には、燃焼バーナ12に化石燃料を供給して加熱する必要があるが、乾燥機50に第1熱交換器20で加熱された高温の圧縮空気を供給して被処理物をある程度予備的に乾燥処理しておけば、化石燃料の消費量も低減させることができるようになり、自燃によって炉内温度を850℃以上に維持して亜酸化窒素の発生を抑制することができる。   As shown in FIG. 2, it is preferable to include a dryer 50 that dries a workpiece to be put into the fluidized bed incinerator 2 with high-temperature compressed air discharged from a turbine 31. For example, when an object to be treated having a high water content, such as dehydrated sludge, is incinerated, it is necessary to supply fossil fuel to the combustion burner 12 and heat it, but the first heat exchanger 20 is supplied to the dryer 50. If the object to be treated is dried to some extent by supplying high-temperature compressed air heated in step 1, the consumption of fossil fuel can be reduced, and the furnace temperature is reduced to 850 ° C. by self-combustion. Maintaining the above, the generation of nitrous oxide can be suppressed.

図3または図4に示すように、煙道に第1熱交換器20と並列または直列に第2熱交換器22を配置して、タービン31から排出された高温の圧縮空気を第2熱交換器22でさらに予熱した後に流動床式焼却炉2へ燃焼用空気として供給することが好ましい。   As shown in FIG. 3 or FIG. 4, the second heat exchanger 22 is arranged in the flue in parallel or in series with the first heat exchanger 20, and the high-temperature compressed air discharged from the turbine 31 is subjected to the second heat exchange. It is preferable to supply it as combustion air to the fluidized bed incinerator 2 after further preheating in the vessel 22.

タービン31から排出された高温の圧縮空気を第2熱交換器22でさらに予熱することによって、被処理物が含水率の高い汚泥等であっても、燃焼バーナ12に化石燃料を供給して加熱することなく炉内の燃焼温度を十分な値に維持することができるようになり、化石燃料の消費量を低減させることができるようになる。尚、炉内に供給する圧縮空気の温度を調整すべく、第2熱交換器22をバイパスするバイパス管を設けて、第2熱交換器22で加熱された圧縮空気との混合量を調整可能に構成してもよい。   The high-temperature compressed air discharged from the turbine 31 is further preheated by the second heat exchanger 22, so that fossil fuel is supplied to the combustion burner 12 and heated even if the object to be treated is sludge having a high water content. Without this, the combustion temperature in the furnace can be maintained at a sufficient value, and the consumption of fossil fuel can be reduced. In addition, in order to adjust the temperature of the compressed air supplied into the furnace, a bypass pipe that bypasses the second heat exchanger 22 is provided, and the mixing amount with the compressed air heated by the second heat exchanger 22 can be adjusted. You may comprise.

図5に示すように、コンプレッサ32で生成された圧縮空気を、タービン31から排出された高温の圧縮空気で予熱する第3熱交換器24を備え、第3熱交換器24で予熱された圧縮空気を第1熱交換機20に供給するように構成されていることが好ましい。   As shown in FIG. 5, the compressed air generated by the compressor 32 is provided with a third heat exchanger 24 for preheating with high-temperature compressed air discharged from the turbine 31, and the compression preheated by the third heat exchanger 24 is provided. It is preferable that air is supplied to the first heat exchanger 20.

第3熱交換器24を設けることによってタービン31に供給される圧縮空気の持ち込み熱量を高めることができ、コンプレッサ32による圧縮空気の生成量を増すことが可能になる。例えば、タービン31に発電機Gを接続した場合には発電量を一層高めることができるようになる。   By providing the third heat exchanger 24, the amount of heat brought in by the compressed air supplied to the turbine 31 can be increased, and the amount of compressed air generated by the compressor 32 can be increased. For example, when the generator G is connected to the turbine 31, the power generation amount can be further increased.

また、第3熱交換器24は予熱源、予熱対象ともに空気であるため、硫黄等の酸性成分が含まれる排ガスと異なり、低温腐食を招くことが無いので予熱源の持つ熱量を高効率で回収できるようになる。   In addition, since the third heat exchanger 24 is air for both the preheating source and the preheating target, unlike the exhaust gas containing acidic components such as sulfur, it does not cause low-temperature corrosion, so the heat amount of the preheating source is recovered with high efficiency. become able to.

図6に示すように、排ガス誘引装置40は、タービン装置30の軸動力で回転軸が駆動される誘引送風機Fで構成することも可能である。   As shown in FIG. 6, the exhaust gas attracting device 40 can also be configured by an attracting blower F whose rotating shaft is driven by the shaft power of the turbine device 30.

第1熱交換器20によって排ガスの保有熱を回収した高温の圧縮空気によって駆動されるタービン31の軸動力で誘引送風機Fが回転駆動されて煙道の排ガスが誘引される。つまり、誘引送風機Fを回転駆動するために別途の電力が不要になる。   The induction blower F is rotationally driven by the shaft power of the turbine 31 driven by the high-temperature compressed air that has recovered the retained heat of the exhaust gas by the first heat exchanger 20, and the flue exhaust gas is attracted. That is, no separate electric power is required to rotationally drive the induction fan F.

この場合も、タービン31から出力された高温の圧縮空気を排煙処理塔17より下流側の煙道に案内することによって、別途の白煙防止用ファンを設けることなく白煙防止することができる。   Also in this case, white smoke can be prevented without providing a separate white smoke prevention fan by guiding the high-temperature compressed air output from the turbine 31 to the flue downstream of the smoke treatment tower 17. .

つまり、本発明による排ガス誘引装置40は、タービン装置30によって排ガスの保有熱を回収して得られた運動エネルギー、回転力という機械的な運動エネルギーや流体の流速という運動エネルギーを用いて煙道に導かれた排ガスを誘引する構成であればよい。   That is, the exhaust gas attraction apparatus 40 according to the present invention uses the kinetic energy obtained by recovering the retained heat of the exhaust gas by the turbine device 30, mechanical kinetic energy called rotational force, and kinetic energy called fluid flow velocity to the flue. Any structure that induces the exhaust gas that has been introduced may be used.

図7に示すように、煙道に第1熱交換器20と直列に第4熱交換器26を配置して、第4熱交換器26で予熱された高温の圧縮空気により回転する第2タービン61と、第2タービン61の回転により第4熱交換器26に圧縮空気を供給する第2コンプレッサ62とを含む第2タービン装置60を備えてもよい。尚、符号63は始動用の燃焼器である。   As shown in FIG. 7, the second heat turbine 26 is arranged in the flue in series with the first heat exchanger 20 and is rotated by the high-temperature compressed air preheated by the fourth heat exchanger 26. A second turbine device 60 including a first compressor 61 and a second compressor 62 that supplies compressed air to the fourth heat exchanger 26 by the rotation of the second turbine 61 may be provided. Reference numeral 63 denotes a starting combustor.

そして、タービン装置30から出力された高温の圧縮空気をエジェクタで構成される排ガス誘引装置40に供給し、第2タービン装置60から出力された高温の圧縮空気を焼却炉2に燃焼用空気として供給してもよい。また、タービン装置30から出力された高温の圧縮空気の一部を焼却炉2に燃焼用空気として供給してもよく、第2タービン装置60から出力された高温の圧縮空気の一部をエジェクタで構成される排ガス誘引装置40に供給してもよい。   Then, the high-temperature compressed air output from the turbine device 30 is supplied to the exhaust gas induction device 40 configured by an ejector, and the high-temperature compressed air output from the second turbine device 60 is supplied to the incinerator 2 as combustion air. May be. Further, a part of the high-temperature compressed air output from the turbine device 30 may be supplied to the incinerator 2 as combustion air, and a part of the high-temperature compressed air output from the second turbine device 60 may be supplied by an ejector. You may supply to the waste gas attraction apparatus 40 comprised.

2系統のタービン装置によって高温の圧縮空気が得られるようになり、それぞれの高温の圧縮空気を焼却炉の各プロセスに高い自由度で供給できるようになり、より安定した操炉が可能になる。   High-temperature compressed air can be obtained by the two systems of turbine devices, and the respective high-temperature compressed air can be supplied to each process of the incinerator with a high degree of freedom, thereby enabling more stable operation.

上述した実施形態では、何れも第1熱交換器20が煙道に導かれる排ガスの保有熱により圧縮空気を予熱するように構成された例を説明したが、第1熱交換器20は煙道に設置される態様に限るものではなく、例えば焼却炉2の燃焼空間に設置され、炉内燃焼熱により圧縮空気を予熱するように構成されていてもよい。   In the above-described embodiments, the first heat exchanger 20 is configured to preheat the compressed air by the retained heat of the exhaust gas guided to the flue. However, the first heat exchanger 20 is configured to preheat the flue. For example, it may be installed in the combustion space of the incinerator 2 and may be configured to preheat the compressed air with the combustion heat in the furnace.

上述したように、流動床式焼却炉2で焼却処理される被処理物は下水汚泥を含むバイオマスであることが好ましく、エネルギー効率よく十分な高温で焼却処理可能になるため、地球温暖化の原因ガスである亜酸化窒素の発生量も極めて効果的に抑制することができるようになる。   As described above, the material to be incinerated in the fluidized bed incinerator 2 is preferably biomass containing sewage sludge, and can be incinerated at a sufficiently high temperature with high energy efficiency, thereby causing global warming. The generation amount of nitrous oxide, which is a gas, can be suppressed extremely effectively.

上述した複数の実施形態を適宜組み合わせることも可能である。例えば、乾燥機50、第2熱交換器22、第3熱交換器24、第4熱交換器26、第2タービン装置60等を適宜組み合わせて焼却処理設備を構成することができる。   It is also possible to appropriately combine the plurality of embodiments described above. For example, the incineration equipment can be configured by appropriately combining the dryer 50, the second heat exchanger 22, the third heat exchanger 24, the fourth heat exchanger 26, the second turbine device 60, and the like.

以上説明したように、本発明による焼却処理方法は、タービン31と連動するコンプレッサ32で圧縮空気を生成し、焼却炉2の炉内燃焼熱及び/または煙道に導かれる排ガスの保有熱により圧縮空気を予熱し、予熱された高温の圧縮空気でタービン32を回転し、炉内燃焼熱及び/または排ガスの保有熱を回収して得られた運動エネルギーを用いて煙道に導かれた排ガスを誘引する焼却処理方法である。   As described above, the incineration processing method according to the present invention generates compressed air by the compressor 32 interlocked with the turbine 31 and compresses it by the combustion heat in the incinerator 2 and / or the retained heat of the exhaust gas guided to the flue. Preheat the air, rotate the turbine 32 with preheated high-temperature compressed air, recover the combustion heat in the furnace and / or the stored heat of the exhaust gas, and use the kinetic energy obtained from the exhaust gas led to the flue It is an incineration process method to attract.

また、タービンと連動するコンプレッサで圧縮空気を生成し、焼却炉の炉内燃焼熱及び/または煙道に導かれる排ガスの保有熱により圧縮空気を予熱し、予熱された高温の圧縮空気でタービンを回転し、タービンより排気した高温の圧縮空気を配管を経由して焼却炉に導入し、及び、煙突に配管を経由して白防用に、或いは排ガス誘引用に導入する焼却処理方法である。   In addition, compressed air is generated by a compressor linked to the turbine, and the compressed air is preheated by the in-furnace combustion heat of the incinerator and / or the retained heat of the exhaust gas introduced into the flue, and the turbine is heated by the preheated high-temperature compressed air. It is an incineration treatment method in which high-temperature compressed air that is rotated and exhausted from a turbine is introduced into an incinerator through a pipe, and is introduced into a chimney through a pipe for anti-white protection or exhaust gas reference.

タービンとコンプレッサが軸連結されたタービン装置として、過給機のみならず、冷熱発電等に用いられる膨張タービンにコンプレッサが軸連結された構成を採用することも可能である。   As a turbine device in which a turbine and a compressor are axially connected, it is possible to adopt a configuration in which a compressor is axially connected to an expansion turbine used for not only a supercharger but also cold power generation.

上述した実施形態は、焼却炉として流動床式焼却炉を採用した場合について説明したが、本発明が適用される焼却炉は流動床式焼却炉に限らず、ストーカ炉、キルン炉、噴流炉、溶融炉等の他の形式の焼却炉にも適用可能である。   The embodiment described above has been described for the case where a fluidized bed incinerator is adopted as an incinerator, but the incinerator to which the present invention is applied is not limited to a fluidized bed incinerator, a stoker furnace, a kiln furnace, a jet flow furnace, It can also be applied to other types of incinerators such as melting furnaces.

上述した実施形態は、何れも本発明の一例であり、当該記載により本発明が限定されるものではなく、各部の具体的構成は本発明の作用効果が奏される範囲で適宜変更設計可能であることはいうまでもない。   Each of the above-described embodiments is an example of the present invention, and the present invention is not limited by the description. The specific configuration of each part can be appropriately changed and designed within the range where the effects of the present invention are exhibited. Needless to say.

1:焼却処理設備
2:流動床式焼却炉
10:サイロ
20:第1熱交換器
22:第2熱交換器
24:第3熱交換器
26:第4熱交換器
30:タービン装置
31:タービン
32:コンプレッサ
40:排ガス誘引装置
40a:空気供給ポート
40b:真空ポート
40c:ディフューザー
60:第2タービン装置
61:第2タービン
62:第2コンプレッサ
1: incineration equipment 2: fluidized bed incinerator 10: silo 20: first heat exchanger 22: second heat exchanger 24: third heat exchanger 26: fourth heat exchanger 30: turbine device 31: turbine 32: Compressor 40: Exhaust gas induction device 40a: Air supply port 40b: Vacuum port 40c: Diffuser 60: Second turbine device 61: Second turbine 62: Second compressor

Claims (10)

焼却炉の炉内燃焼熱及び/または煙道に導かれる排ガスの保有熱により圧縮空気を予熱する第1熱交換器と、
前記第1熱交換器で予熱された高温の圧縮空気により回転するタービンと、前記タービンの回転により前記第1熱交換器に圧縮空気を供給するコンプレッサとを含むタービン装置と、
を備え、
前記タービン装置によって炉内燃焼熱及び/または排ガスの保有熱を回収して得られた運動エネルギーを用いて前記煙道に導かれた排ガスを誘引する排ガス誘引装置を備えている焼却処理設備。
A first heat exchanger that preheats compressed air by in-furnace combustion heat of an incinerator and / or retained heat of exhaust gas guided to a flue;
A turbine device including a turbine rotating by high-temperature compressed air preheated by the first heat exchanger, and a compressor supplying compressed air to the first heat exchanger by rotation of the turbine;
With
An incineration treatment facility comprising an exhaust gas induction device for attracting exhaust gas guided to the flue using kinetic energy obtained by recovering combustion heat in the furnace and / or retained heat of the exhaust gas by the turbine device.
前記排ガス誘引装置は、前記煙道に導かれた排ガスを、前記タービンから排出される高温の圧縮空気の流れよって誘引するエジェクタで構成されている請求項1記載の焼却処理設備。   2. The incineration processing equipment according to claim 1, wherein the exhaust gas attraction apparatus is configured by an ejector that attracts the exhaust gas led to the flue by a flow of high-temperature compressed air discharged from the turbine. 前記排ガス誘引装置は、前記タービン装置の軸動力で回転軸が駆動される誘引送風機を備えて構成されている請求項1記載の焼却処理設備。   The incineration processing equipment according to claim 1, wherein the exhaust gas induction device includes an induction blower in which a rotation shaft is driven by shaft power of the turbine device. 前記焼却炉が、燃焼用空気として高温の圧縮空気が供給される焼却炉である請求項1記載の焼却処理設備。   The incineration processing facility according to claim 1, wherein the incinerator is an incinerator to which high-temperature compressed air is supplied as combustion air. 前記焼却炉に投入される被処理物を、前記タービンから排出される高温の圧縮空気によって乾燥する乾燥機を備えている請求項1から4の何れかに記載の焼却処理設備。   The incineration processing equipment according to any one of claims 1 to 4, further comprising a drier that dries an object to be processed put into the incinerator with high-temperature compressed air discharged from the turbine. 前記第1熱交換器が前記煙道に導かれる排ガスの保有熱により圧縮空気を予熱するように構成され、前記煙道に前記第1熱交換器と並列または直列に第2熱交換器を配置して、前記タービンから排出された高温の圧縮空気を前記第2熱交換器でさらに予熱した後に前記焼却炉へ燃焼用空気として供給する請求項1から5の何れかに記載の焼却処理設備。   The first heat exchanger is configured to preheat compressed air by the retained heat of the exhaust gas guided to the flue, and the second heat exchanger is disposed in the flue in parallel or in series with the first heat exchanger. The incineration equipment according to any one of claims 1 to 5, wherein the high-temperature compressed air discharged from the turbine is further preheated by the second heat exchanger and then supplied as combustion air to the incinerator. 前記コンプレッサで生成された圧縮空気を、前記タービンから排出された高温の圧縮空気で予熱する第3熱交換器を備え、前記第3熱交換器で予熱された圧縮空気を前記第1熱交換機に供給するように構成されている請求項1から6の何れかに記載の焼却処理設備。   A third heat exchanger for preheating the compressed air generated by the compressor with high-temperature compressed air discharged from the turbine; and supplying the compressed air preheated by the third heat exchanger to the first heat exchanger The incineration processing facility according to any one of claims 1 to 6, wherein the incineration processing facility is configured to be supplied. 前記第1熱交換器が前記煙道に導かれる排ガスの保有熱により圧縮空気を予熱するように構成され、前記煙道に前記第1熱交換器と直列に第4熱交換器を配置して、前記第4熱交換器で予熱された高温の圧縮空気により回転する第2タービンと、前記第2タービンの回転により前記第4熱交換器に圧縮空気を供給する第2コンプレッサとを含む第2タービン装置を備えている請求項1から7の何れかに記載の焼却処理設備。   The first heat exchanger is configured to preheat compressed air by the retained heat of the exhaust gas guided to the flue, and a fourth heat exchanger is arranged in the flue in series with the first heat exchanger. A second turbine that is rotated by high-temperature compressed air preheated by the fourth heat exchanger, and a second compressor that supplies compressed air to the fourth heat exchanger by the rotation of the second turbine. The incineration processing facility according to any one of claims 1 to 7, comprising a turbine device. 前記焼却炉で焼却処理される被処理物が下水汚泥を含むバイオマスである請求項1から8の何れかに記載の焼却処理設備。   The incineration equipment according to any one of claims 1 to 8, wherein an object to be incinerated in the incinerator is biomass containing sewage sludge. タービンと連動するコンプレッサで圧縮空気を生成し、焼却炉の炉内燃焼熱及び/または煙道に導かれる排ガスの保有熱により圧縮空気を予熱し、予熱された高温の圧縮空気でタービンを回転し、炉内燃焼熱及び/または排ガスの保有熱を回収して得られた運動エネルギーを用いて前記煙道に導かれた排ガスを誘引する焼却処理方法。   Compressed air is generated by a compressor that is linked to the turbine, and the compressed air is preheated by the in-furnace combustion heat of the incinerator and / or the retained heat of the exhaust gas introduced into the flue, and the turbine is rotated by the preheated high-temperature compressed air. An incineration treatment method for attracting exhaust gas led to the flue using kinetic energy obtained by recovering combustion heat in the furnace and / or retained heat of the exhaust gas.
JP2014072776A 2014-03-31 2014-03-31 Incineration equipment and incineration method Pending JP2015194308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014072776A JP2015194308A (en) 2014-03-31 2014-03-31 Incineration equipment and incineration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014072776A JP2015194308A (en) 2014-03-31 2014-03-31 Incineration equipment and incineration method

Publications (1)

Publication Number Publication Date
JP2015194308A true JP2015194308A (en) 2015-11-05

Family

ID=54433490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014072776A Pending JP2015194308A (en) 2014-03-31 2014-03-31 Incineration equipment and incineration method

Country Status (1)

Country Link
JP (1) JP2015194308A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016180528A (en) * 2015-03-24 2016-10-13 株式会社クボタ Waste treatment facility, and operating method of waste treatment facility
JP2017170351A (en) * 2016-03-24 2017-09-28 株式会社クボタ Waste treatment equipment and furnace operation method for waste treatment equipment
JP6280668B1 (en) * 2017-09-15 2018-02-14 株式会社神鋼環境ソリューション Waste treatment facility
JP2018025325A (en) * 2016-08-09 2018-02-15 株式会社神鋼環境ソリューション Waste treatment system and method for starting the same
JP2020169740A (en) * 2019-04-01 2020-10-15 王子ホールディングス株式会社 Device of combusting phosphorous-containing solid biomass, method of combusting the same, and method of recovering energy from phosphorous-containing biomass
JP7142750B1 (en) 2021-06-30 2022-09-27 中外炉工業株式会社 Combustion equipment and its control method
JP7311451B2 (en) 2020-03-25 2023-07-19 メタウォーター株式会社 Attraction system, Incineration system
JP7316925B2 (en) 2019-12-25 2023-07-28 株式会社クボタ Waste treatment equipment and operation method of waste treatment equipment

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2471755A (en) * 1944-01-05 1949-05-31 Oerlikon Maschf Steam-air-thermal power plant
US2486291A (en) * 1942-03-19 1949-10-25 Oerlikon Maschf Steam-air thermal power plant
US4116005A (en) * 1977-06-06 1978-09-26 General Electric Company Combined cycle power plant with atmospheric fluidized bed combustor
JPS53145136A (en) * 1977-05-23 1978-12-18 Mitsubishi Heavy Ind Ltd Forced exhaust type heat recovery device
JPS55123628U (en) * 1979-02-23 1980-09-02
US4223529A (en) * 1979-08-03 1980-09-23 General Electric Company Combined cycle power plant with pressurized fluidized bed combustor
US4253300A (en) * 1979-08-03 1981-03-03 General Electric Company Supplementary fired combined cycle power plants
US4326373A (en) * 1980-05-29 1982-04-27 General Electric Company Integrated gas turbine power generation system and process
JPS62284116A (en) * 1986-05-31 1987-12-10 Mitsubishi Heavy Ind Ltd Fluidized bed type sludge combustion furnace
US5121600A (en) * 1990-06-21 1992-06-16 Energeo, Inc. Transportable electrical power generating system fueled by organic waste
JP3004715U (en) * 1994-05-27 1994-11-22 サニー工業株式会社 Incinerator equipment
JP2001004129A (en) * 1999-06-25 2001-01-12 Kawasaki Heavy Ind Ltd Smoke discharging method and multi-tubular chimney employed therefor
JP2006266259A (en) * 2005-02-22 2006-10-05 Toshiba Corp Fluidized bed combined power generation system
JP2007170703A (en) * 2005-12-20 2007-07-05 Public Works Research Institute Facility and method for treating waste
JP2008025965A (en) * 2006-07-25 2008-02-07 Public Works Research Institute Pressure incinerator equipment and its operation method
JP2009285612A (en) * 2008-05-30 2009-12-10 Kobelco Eco-Solutions Co Ltd Waste disposal facility and waste treatment method
JP2010261616A (en) * 2009-04-30 2010-11-18 Volcano Co Ltd Incinerator equipped with ejector for sucking exhaust gas
JP2013155973A (en) * 2012-01-31 2013-08-15 Tsukishima Kikai Co Ltd Pressurized fluidized bed reactor system
JP2013184147A (en) * 2012-03-09 2013-09-19 Metawater Co Ltd Drying system of sludge

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2486291A (en) * 1942-03-19 1949-10-25 Oerlikon Maschf Steam-air thermal power plant
US2471755A (en) * 1944-01-05 1949-05-31 Oerlikon Maschf Steam-air-thermal power plant
JPS53145136A (en) * 1977-05-23 1978-12-18 Mitsubishi Heavy Ind Ltd Forced exhaust type heat recovery device
US4116005A (en) * 1977-06-06 1978-09-26 General Electric Company Combined cycle power plant with atmospheric fluidized bed combustor
JPS55123628U (en) * 1979-02-23 1980-09-02
US4223529A (en) * 1979-08-03 1980-09-23 General Electric Company Combined cycle power plant with pressurized fluidized bed combustor
US4253300A (en) * 1979-08-03 1981-03-03 General Electric Company Supplementary fired combined cycle power plants
US4326373A (en) * 1980-05-29 1982-04-27 General Electric Company Integrated gas turbine power generation system and process
JPS62284116A (en) * 1986-05-31 1987-12-10 Mitsubishi Heavy Ind Ltd Fluidized bed type sludge combustion furnace
US5121600A (en) * 1990-06-21 1992-06-16 Energeo, Inc. Transportable electrical power generating system fueled by organic waste
JP3004715U (en) * 1994-05-27 1994-11-22 サニー工業株式会社 Incinerator equipment
JP2001004129A (en) * 1999-06-25 2001-01-12 Kawasaki Heavy Ind Ltd Smoke discharging method and multi-tubular chimney employed therefor
JP2006266259A (en) * 2005-02-22 2006-10-05 Toshiba Corp Fluidized bed combined power generation system
JP2007170703A (en) * 2005-12-20 2007-07-05 Public Works Research Institute Facility and method for treating waste
JP2008025965A (en) * 2006-07-25 2008-02-07 Public Works Research Institute Pressure incinerator equipment and its operation method
JP2009285612A (en) * 2008-05-30 2009-12-10 Kobelco Eco-Solutions Co Ltd Waste disposal facility and waste treatment method
JP2010261616A (en) * 2009-04-30 2010-11-18 Volcano Co Ltd Incinerator equipped with ejector for sucking exhaust gas
JP2013155973A (en) * 2012-01-31 2013-08-15 Tsukishima Kikai Co Ltd Pressurized fluidized bed reactor system
JP2013184147A (en) * 2012-03-09 2013-09-19 Metawater Co Ltd Drying system of sludge

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016180528A (en) * 2015-03-24 2016-10-13 株式会社クボタ Waste treatment facility, and operating method of waste treatment facility
JP2017170351A (en) * 2016-03-24 2017-09-28 株式会社クボタ Waste treatment equipment and furnace operation method for waste treatment equipment
JP2018025325A (en) * 2016-08-09 2018-02-15 株式会社神鋼環境ソリューション Waste treatment system and method for starting the same
JP6280668B1 (en) * 2017-09-15 2018-02-14 株式会社神鋼環境ソリューション Waste treatment facility
JP2019052804A (en) * 2017-09-15 2019-04-04 株式会社神鋼環境ソリューション Waste treatment facility
JP2020169740A (en) * 2019-04-01 2020-10-15 王子ホールディングス株式会社 Device of combusting phosphorous-containing solid biomass, method of combusting the same, and method of recovering energy from phosphorous-containing biomass
JP7316925B2 (en) 2019-12-25 2023-07-28 株式会社クボタ Waste treatment equipment and operation method of waste treatment equipment
JP7311451B2 (en) 2020-03-25 2023-07-19 メタウォーター株式会社 Attraction system, Incineration system
JP7142750B1 (en) 2021-06-30 2022-09-27 中外炉工業株式会社 Combustion equipment and its control method
JP2023006603A (en) * 2021-06-30 2023-01-18 中外炉工業株式会社 Combustion facility and control method for the same

Similar Documents

Publication Publication Date Title
JP2015194308A (en) Incineration equipment and incineration method
JP6333021B2 (en) Incineration processing equipment and incineration processing method
JP4831309B2 (en) Waste treatment facility and waste treatment method
JP6490466B2 (en) Waste treatment facility and method of operating waste treatment facility
JP2008025965A (en) Pressure incinerator equipment and its operation method
CN204254649U (en) A kind of zero-emission no chimney coal-burning boiler system
JP6800594B2 (en) Waste treatment equipment and how to operate the waste treatment equipment
JP4771309B2 (en) Pressurized fluidized incineration equipment and its startup method
JP4714912B2 (en) Pressurized fluidized incineration equipment and its startup method
JP4920388B2 (en) Heat treatment system equipped with a dryer and its operating method
JP2015194307A (en) Incineration equipment and incineration method
JP2009121778A (en) Pressurized fluidized incineration facility and operation method for pressurized fluidized incineration facility
JP7061053B2 (en) Waste treatment equipment
WO2020174730A1 (en) Apparatus and method for treating combustion exhaust gas
KR101613968B1 (en) steam generating system having ultra high temperature sludge drying apparatus
JP2002371860A (en) Power generating method by use of pressurizing combustion furnace for burning waste
JP6947608B2 (en) How to operate waste treatment equipment and waste treatment equipment
KR101312726B1 (en) Ventilating device for generating system
JP7075574B2 (en) Combustion furnace of organic waste and treatment system of organic waste using the combustion furnace
JP5243840B2 (en) Combustion method of stoker type incinerator
WO2013146598A1 (en) Operating method for pressurized fluidized furnace system
JP7254438B2 (en) Operation method of waste disposal facility and waste disposal facility
JP2020085386A (en) Waste treatment facility and operating method for waste treatment facility
JP6523007B2 (en) Fluidized bed incinerator
JP2013200087A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180327