JP2009121778A - Pressurized fluidized incineration facility and operation method for pressurized fluidized incineration facility - Google Patents

Pressurized fluidized incineration facility and operation method for pressurized fluidized incineration facility Download PDF

Info

Publication number
JP2009121778A
JP2009121778A JP2007297884A JP2007297884A JP2009121778A JP 2009121778 A JP2009121778 A JP 2009121778A JP 2007297884 A JP2007297884 A JP 2007297884A JP 2007297884 A JP2007297884 A JP 2007297884A JP 2009121778 A JP2009121778 A JP 2009121778A
Authority
JP
Japan
Prior art keywords
air
white smoke
exhaust gas
turbine
pressurized fluidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007297884A
Other languages
Japanese (ja)
Other versions
JP5187732B2 (en
Inventor
Shuichi Ochi
修一 落
Masaaki Ozaki
正明 尾崎
Zenzo Suzuki
善三 鈴木
Tagami Koseki
多賀美 小関
Hitoshi Kihara
均 木原
Yoshihiro Iwai
良博 岩井
Takafumi Yamamoto
隆文 山本
Hidekazu Nagasawa
英和 長沢
Kazuyoshi Terakoshi
和由 寺腰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Tsukishima Kikai Co Ltd
National Research and Development Agency Public Works Research Institute
Original Assignee
Sanki Engineering Co Ltd
Public Works Research Institute
National Institute of Advanced Industrial Science and Technology AIST
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd, Public Works Research Institute, National Institute of Advanced Industrial Science and Technology AIST, Tsukishima Kikai Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP2007297884A priority Critical patent/JP5187732B2/en
Publication of JP2009121778A publication Critical patent/JP2009121778A/en
Application granted granted Critical
Publication of JP5187732B2 publication Critical patent/JP5187732B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2900/00Special arrangements for conducting or purifying combustion fumes; Treatment of fumes or ashes
    • F23J2900/15004Preventing plume emission at chimney outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2900/00Special arrangements for conducting or purifying combustion fumes; Treatment of fumes or ashes
    • F23J2900/15081Reheating of flue gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Chimneys And Flues (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To effectively utilize surplus air compressed by the drive of a compressor in a pressurized fluidized incineration facility system and simultaneously reduce the equipment cost and the running cost. <P>SOLUTION: This pressurized fluidized incineration facility includes: a pressurized fluidized furnace 10 for burning waste S; a supercharger 40 having a turbine 41 driven by exhaust gas generated by this burning and the compressor 42 driven by the turbine 41 to compress the air supplied into the pressurized fluidized furnace 10; a white smoke preventing pre-heater 50, which recovers heat from exhaust gas to thereby preheat the air for preventing white smoke; and an exhaust smoke processing power 60 for cleaning the exhaust gas. In addition, the facility includes a passage 77 for supplying the air compressed by the compressor 42 into the pressurized fluidized furnace 10, and a branch passage 52 branching off the passage 77 to be connected to the white smoke preventing pre-heater 50, wherein the compressed air is guided as the white smoke preventing air through the branch passage 52 to the white smoke preventing pre-heater 50. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、加圧流動焼却設備及び加圧流動焼却設備の運転方法に関するものである。より詳しくは、高含水率の被処理物を加圧下で流動燃焼し、この燃焼により発生した排ガスによってタービンを駆動し、このタービンの駆動によってコンプレッサーを駆動し、このコンプレッサーの駆動によって圧縮された空気を加圧流動炉内に供給する構成とされた加圧流動焼却設備及び加圧流動焼却設備の運転方法に関するものである。   The present invention relates to a pressurized fluidized incineration facility and a method for operating the pressurized fluidized incineration facility. More specifically, a high moisture content workpiece is fluidly combusted under pressure, a turbine is driven by exhaust gas generated by the combustion, a compressor is driven by the driving of the turbine, and the compressed air is driven by the driving of the compressor. The present invention relates to a pressurized fluidized incineration facility and a method for operating the pressurized fluidized incineration facility.

現在、石炭を燃料とする加圧流動床複合発電プラントが実用化されており、通常、プラントの立上げ時においては、タービンの過給機を電動機として使用して所定の圧力、温度まで起動している。もっとも、このように過給機を電動機として使用するシステムにおいては、過給機を起動用ブロワとして利用することができないため、大容量の起動用ブロワを別途備える場合が多い。   At present, a pressurized fluidized bed combined power plant using coal as fuel is put into practical use. Normally, when a plant is started up, a turbocharger of a turbine is used as an electric motor to start up to a predetermined pressure and temperature. ing. However, in such a system that uses a supercharger as an electric motor, since the supercharger cannot be used as a starter blower, a large-capacity starter blower is often separately provided.

ところで、タービンの排気を有効利用する方法として、本出願人は、特許文献1を開示した。しかしながら、特許文献1は、タービンの駆動によってコンプレッサーを駆動し、このコンプレッサーの駆動によって圧縮空気を生成し、この圧縮空気を有効利用することについては開示していない。   By the way, as a method of effectively using the exhaust of the turbine, the present applicant has disclosed Patent Document 1. However, Patent Document 1 does not disclose that a compressor is driven by driving a turbine, compressed air is generated by driving the compressor, and the compressed air is effectively used.

もっとも、コンプレッサーの駆動によって圧縮された空気の利用に関して、本出願人は、当該圧縮空気を加圧流動炉内に供給する特許文献2を開示した。しかしながら、被処理物が下水汚泥等の高含水率である場合は、加圧流動炉で発生した排ガスに水蒸気が含まれるため、加圧流動炉で必要な空気量以上に圧縮空気が発生することとなる。下水汚泥のような高含水率物(78〜85質量%)を燃焼する場合に、可燃分だけを燃焼させるために空気を100供給したとすると、排ガス中に水分が40〜50質量%程度含まれるので、タービンに導入される排ガスは160〜180となる。過給機効率等を考慮してもコンプレッサーで圧縮される空気は130〜150となる。したがって、加圧流動炉で必要となる燃焼空気100を差し引いても30〜50の余剰が生じる。以下、この余剰となる加圧空気を、単に「余剰空気」ともいう。   However, regarding use of air compressed by driving the compressor, the present applicant has disclosed Patent Document 2 that supplies the compressed air into a pressurized fluidized furnace. However, when the material to be treated has a high water content such as sewage sludge, the exhaust gas generated in the pressurized fluidized furnace contains water vapor, so that compressed air is generated in excess of the amount of air required in the pressurized fluidized furnace. It becomes. When burning high moisture content (78-85% by mass) such as sewage sludge, assuming that 100 air is supplied to burn only the combustible component, the exhaust gas contains about 40-50% by mass of water. Therefore, the exhaust gas introduced into the turbine is 160 to 180. Even if the supercharger efficiency is taken into consideration, the air compressed by the compressor is 130 to 150. Therefore, even if the combustion air 100 required in the pressurized fluidized furnace is subtracted, a surplus of 30 to 50 is generated. Hereinafter, this excess pressurized air is also simply referred to as “surplus air”.

この点、当業者の通常の発想によれば、当該余剰空気は、下水処理設備に通常備わる曝気槽などにおいて利用することになる。しかしながら、曝気槽などは、通常、加圧流動焼却設備から離れた場所に存在するため、余剰空気を送るための流路が長くなり、その分、圧力損失が増える。したがって、エネルギーの有効利用という観点からは、余剰空気を加圧流動焼却設備系内で利用することが望まれる。
特開平9−89232号公報 特開2007−170705号公報
In this regard, according to the ordinary idea of those skilled in the art, the surplus air is used in an aeration tank or the like normally provided in a sewage treatment facility. However, since an aeration tank or the like is usually present at a location away from the pressurized fluidized incineration facility, the flow path for sending surplus air becomes longer, and the pressure loss increases accordingly. Therefore, from the viewpoint of effective use of energy, it is desired to use surplus air in the pressurized fluidized incineration equipment system.
JP-A-9-89232 JP 2007-170705 A

本発明が解決しようとする主たる課題は、コンプレッサーの駆動によって圧縮された余剰空気を加圧流動焼却設備系内で有効利用すること、好ましくは同時に設備コストやランニングコストを低減させることにある。   The main problem to be solved by the present invention is to effectively utilize surplus air compressed by the drive of the compressor in the pressurized flow incineration equipment system, and preferably to reduce equipment costs and running costs at the same time.

この課題を解決した本発明は、次のとおりである。
<請求項1記載の発明>
高含水率の被処理物を加圧下で流動燃焼させる加圧流動炉と、この燃焼により発生した排ガスによって駆動されるタービン及びこのタービンによって駆動され前記加圧流動炉内に供給する空気を圧縮するコンプレッサーを有する過給機と、前記タービンで膨張した排ガスから熱回収して大気中に放出する前の排ガスに混入する白煙防止用空気を予熱する白煙防止用予熱器と、この白煙防止用予熱器を通った前記大気中に放出する前の排ガスの清浄化を行う排煙処理塔と、を備えた加圧流動焼却設備であって、
前記コンプレッサーで圧縮された空気を前記加圧流動炉内に供給する経路と、この経路から分岐して前記白煙防止用予熱器に連なる分岐経路と、を有し、
この分岐経路を通して前記圧縮空気が前記白煙防止用空気として前記白煙防止用予熱器に導かれる構成とした、
ことを特徴とする加圧流動焼却設備。
The present invention that has solved this problem is as follows.
<Invention of Claim 1>
A pressurized fluidizing furnace that fluidizes and burns an object to be treated having a high water content under pressure, a turbine that is driven by exhaust gas generated by the combustion, and air that is driven by the turbine and that is supplied to the pressurized fluidizing furnace is compressed. A supercharger having a compressor, a white smoke prevention preheater for preheating white smoke prevention air mixed in the exhaust gas before being recovered from the exhaust gas expanded by the turbine and released into the atmosphere, and the white smoke prevention A flue gas treatment tower that purifies the exhaust gas before being discharged into the atmosphere through the preheater, and a pressurized fluidized incineration facility comprising:
A path for supplying air compressed by the compressor into the pressurized fluidized furnace, and a branch path branched from this path and connected to the white smoke prevention preheater,
The compressed air is led to the white smoke prevention preheater as the white smoke prevention air through this branch path,
A pressurized fluidized incineration facility characterized by that.

<請求項2記載の発明>
別途、前記白煙防止用予熱器の白煙防止用空気送気用ブロワを備えていない、請求項1記載の加圧流動焼却設備。
<Invention of Claim 2>
2. The pressurized fluidized incineration facility according to claim 1, wherein the white smoke prevention preheater is not provided with a white smoke prevention air supply blower.

<請求項3記載の発明>
前記タービンで膨張した排ガスから熱回収して蒸気を生成する蒸気ボイラと、この蒸気ボイラで生成された蒸気を前記タービン上流の排ガス処理系に導く経路と、を有する請求項1又は請求項2記載の加圧流動焼却設備。
<Invention of Claim 3>
The steam boiler which recovers heat from the exhaust gas expanded by the turbine to generate steam, and a path for guiding the steam generated by the steam boiler to an exhaust gas treatment system upstream of the turbine. Pressure fluidized incineration equipment.

<請求項4記載の発明>
高含水率の被処理物を加圧下で流動燃焼させる加圧流動炉と、この燃焼により発生した排ガスによって駆動されるタービン及びこのタービンによって駆動され前記加圧流動炉内に供給する空気を圧縮するコンプレッサーを有する過給機と、前記タービンで膨張した排ガスから熱回収して大気中に放出する前の排ガスに混入する白煙防止用空気を予熱する白煙防止用予熱器と、この白煙防止用予熱器を通った前記大気中に放出する前の排ガスの清浄化を行う排煙処理塔と、を備えた加圧流動焼却設備の運転方法であって、
前記コンプレッサーで圧縮された空気を、前記加圧流動炉内に供給するとともに、前記白煙防止用予熱器に前記白煙防止用空気として導く、
ことを特徴とする加圧流動焼却設備の運転方法。
<Invention of Claim 4>
A pressurized fluidizing furnace that fluidizes and burns an object to be treated having a high water content under pressure, a turbine that is driven by exhaust gas generated by the combustion, and air that is driven by the turbine and that is supplied to the pressurized fluidizing furnace is compressed. A supercharger having a compressor, a white smoke prevention preheater for preheating white smoke prevention air mixed in the exhaust gas before being recovered from the exhaust gas expanded by the turbine and released into the atmosphere, and the white smoke prevention A flue gas treatment tower that purifies the exhaust gas before being released into the atmosphere through the preheater for operation,
The air compressed by the compressor is supplied into the pressurized fluidized furnace and guided to the white smoke prevention preheater as the white smoke prevention air.
A method for operating a pressurized fluidized incinerator.

<請求項5記載の発明>
前記タービンで膨張した排ガスから熱回収して蒸気を生成し、この蒸気を前記タービン上流の排ガス処理系に導く、請求項4記載の加圧流動焼却設備の運転方法。
<Invention of Claim 5>
The operating method of the pressurized fluidized incineration equipment of Claim 4 which heat-recovers from the waste gas expanded with the said turbine, produces | generates a vapor | steam, and guide | induces this vapor | steam to the waste gas treatment system upstream of the said turbine.

本発明によれば、コンプレッサーの駆動によって圧縮された余剰空気を加圧流動焼却設備系内で有効利用すること、同時に設備コストやランニングコストを低減させることができる。   According to the present invention, surplus air compressed by driving the compressor can be effectively used in the pressurized flow incineration equipment system, and at the same time, equipment cost and running cost can be reduced.

以下、本発明の実施の形態を説明する。
本実施の形態の加圧流動焼却設備は、図1に示すように、高含水率の被処理物Sを燃焼させる加圧流動炉10と、この燃焼により発生した排ガスによって駆動されるタービン41及びこのタービン41によって駆動され、加圧流動炉10内に供給する空気を圧縮するコンプレッサー42を有する過給機40と、を備えている。
Embodiments of the present invention will be described below.
As shown in FIG. 1, the pressurized fluidized incineration facility of the present embodiment includes a pressurized fluidized furnace 10 that combusts a high water content workpiece S, a turbine 41 driven by exhaust gas generated by the combustion, and And a supercharger 40 having a compressor 42 that is driven by the turbine 41 and compresses the air supplied into the pressurized fluidized furnace 10.

加圧流動炉10には、バイオマスや都市ゴミ、下水汚泥の脱水ケーキ等の高含水率の、例えば、含水率78〜85質量%の被処理物Sが供給口から供給されるとともに、始動時において下部の始動用バーナー12から燃焼のための燃料及び燃焼用空気が供給されるようになっている。加圧流動炉10の下部からは、後述するように、圧縮空気が吹き込まれ、その流動化エネルギーによって被処理物Sが流動されながら、燃焼焼却されるようになっている。   The pressurized fluidized furnace 10 is supplied with an object to be treated S having a high water content such as biomass, municipal waste, and dewatered cake of sewage sludge, for example, having a water content of 78 to 85% by mass from the supply port. In FIG. 3, fuel for combustion and combustion air are supplied from the lower start burner 12. As will be described later, compressed air is blown from the lower part of the pressurized fluidized furnace 10, and the workpiece S is fluidized by the fluidizing energy, and is combusted and incinerated.

この燃焼焼却により発生した排ガスは、流路71を通して空気予熱器20に送られ、その後に流路72を通してバグフィルタやセラミックフィルタなどの集塵機30を通った後に、流路73を通して過給機40のタービン41に導かれる。
この過給機40では、排ガスによってタービン41が駆動され、これに連結されたコンプレッサー42も駆動される。タービン41で膨張した排ガスは、流路74を通して白煙防止用予熱器50に導かれた後、流路75を通して排煙処理塔60に導かれ、この排煙処理塔60で清浄化された後に煙突62から大気中に放出される。
The exhaust gas generated by the combustion incineration is sent to the air preheater 20 through the flow path 71, and then passes through the dust collector 30 such as a bag filter or a ceramic filter through the flow path 72 and then through the flow path 73 of the supercharger 40. Guided to turbine 41.
In the supercharger 40, the turbine 41 is driven by the exhaust gas, and the compressor 42 connected to the turbine 41 is also driven. After the exhaust gas expanded in the turbine 41 is guided to the white smoke prevention preheater 50 through the flow path 74, the exhaust gas is guided to the smoke treatment tower 60 through the flow path 75, and after being purified by the smoke treatment tower 60. It is emitted from the chimney 62 into the atmosphere.

ただし、タービン41で膨張した排ガスは、白煙防止用予熱器50に導くに先立って、図2に示すように、流路74Aを通して蒸気ボイラ65に導くのが好ましい。この蒸気ボイラ65に導かれる排ガスは、例えば、400〜450℃、0.02〜0.05MPaの高温・高圧であり、したがって、熱回収して蒸気を生成することができる。この蒸気ボイラ65で生成された蒸気は、流路74Bを通して、タービン41上流の排ガス処理系に、図示例では加圧流動炉10からの排ガスを集塵機30からタービン41に導く流路73に導き、もって当該蒸気を流路73内の排ガスに混入する。これにより、タービン41に導かれる排ガスの量が増えるため、コンプレッサー42で圧縮される空気の量も増え、本加圧流動焼却設備全体の熱効率向上となる。
タービン41上流の排ガス処理系としては、図示例のように排ガスを集塵機30からタービン41に導く流路73のほか、例えば、排ガスを加圧流動炉10から空気予熱器20に導く流路71、排ガスを空気予熱器20から集塵機30に導く流路72、加圧流動炉10、空気予熱器20、集塵機30などを例示することができる。なお、空気予熱器20は、排ガスのもっている熱により、加圧流動炉10内に供給する圧縮空気を予熱するためのものである。
However, it is preferable that the exhaust gas expanded by the turbine 41 is led to the steam boiler 65 through the flow path 74A as shown in FIG. 2 before being led to the white smoke prevention preheater 50. The exhaust gas guided to the steam boiler 65 has a high temperature and a high pressure of, for example, 400 to 450 ° C. and 0.02 to 0.05 MPa, and thus can recover heat and generate steam. The steam generated in the steam boiler 65 is led to the exhaust gas treatment system upstream of the turbine 41 through the flow path 74B, and in the illustrated example to the flow path 73 that leads the exhaust gas from the pressurized fluidized furnace 10 from the dust collector 30 to the turbine 41. Accordingly, the steam is mixed into the exhaust gas in the flow path 73. As a result, the amount of exhaust gas guided to the turbine 41 increases, so the amount of air compressed by the compressor 42 also increases, improving the thermal efficiency of the entire pressurized fluidized incineration facility.
As the exhaust gas treatment system upstream of the turbine 41, in addition to the flow path 73 for guiding the exhaust gas from the dust collector 30 to the turbine 41 as shown in the figure, for example, the flow path 71 for guiding the exhaust gas from the pressurized fluidized furnace 10 to the air preheater 20, Examples include a flow path 72 that guides exhaust gas from the air preheater 20 to the dust collector 30, the pressurized fluidized furnace 10, the air preheater 20, and the dust collector 30. The air preheater 20 is for preheating the compressed air supplied into the pressurized fluidized furnace 10 with the heat of the exhaust gas.

ところで、本形態においては、図1に示すように、コンプレッサー42に対して起動用ブロワ43が設けられている。この起動用ブロワ43からの空気は、切替え弁44を有する流路76を通してコンプレッサー42に送り、このコンプレッサー42で圧縮して、圧縮空気とする。この圧縮空気は、流路77及び流路78を通して空気予熱器20に導き、更に流路79を通して加圧流動炉10内に供給する。また、流路77からは、加圧流動炉10の始動用バーナー12に連なる分岐経路80が分岐している。当該圧縮空気は、加圧流動炉10のほか、この分岐経路80を通して始動用バーナー12に燃焼用空気として供給される。ここで、分岐経路80を設ける利点について、説明する。
すなわち、1年当たり1〜2回程度(多くとも数回)の立上げ運転だけのために、始動用バーナー12に燃焼用空気を送るための専用ブロワを設けることは、不経済であり、設備の高騰を招くだけである。特に、加圧流動炉10が所定の加圧状態の安定運転に達するまで容量的に大きい加圧流動炉に対して燃焼用空気を送り込むためには、専用ブロワを大型化するほかない。加圧流動炉10の圧力は、立上げ当初は低圧であるが、時間の経過とともに高圧にする必要がある。したがって、専用ブロワは、立上げ当初の低吐出圧力・低送風量から時間経過後の高吐出圧力・高送風量まで対応可能な容量を備えている必要があり、専用ブロワが大型化するのである。しかるに、本形態の加圧流動焼却設備は、コンプレッサー42に対して設けられた起動用ブロワ43からの空気を、コンプレッサー43を通して圧縮して加圧流動炉10に供給する経路(流路77〜79)のほか、この経路から分岐して加圧流動炉10の始動用バーナー12に連なる分岐経路(流路80)を有し、加圧流動炉10の立上げの際に、圧縮空気を、(加圧流動炉10のほか)分岐経路を通して始動用バーナー12に燃焼用空気として供給するものである。その結果、時間の経過に伴う燃焼の進行によって昇温し、加圧流動炉10内の圧力が上昇すると、コンプレッサー42の圧縮比が高くなり、コンプレッサー42で圧縮された空気の圧力は加圧流動炉10内の圧力よりも常に高くなる(加圧流動炉10内の流動部での圧力損失分を超える圧力分だけ高くなる)。そして、加圧流動炉10内の圧力上昇に伴って、コンプレッサー42出口側の風量も増加する。その結果、容量の小さい起動用ブロワ43であっても、時間経過後において高吐出圧力・高送風量を確保することができる。したがって、図1に符号43Aとして仮定的に図示した始動用バーナー12についての燃焼用空気を送るために専用ブロワを使用しないか、きわめて小型のもので足りるものとなり、設備コストやランニングコストを低減させることができる。また、加圧流動炉10内の圧力と、加圧流動炉10内へ燃焼用空気として吹き込む圧縮空気の圧力が連動しているので、始動用バーナー12における燃焼用空気量制御が容易になる利点もある。
By the way, in this embodiment, as shown in FIG. 1, a starter blower 43 is provided for the compressor 42. The air from the starter blower 43 is sent to the compressor 42 through the flow path 76 having the switching valve 44 and is compressed by the compressor 42 to be compressed air. The compressed air is guided to the air preheater 20 through the flow path 77 and the flow path 78, and further supplied into the pressurized fluidized furnace 10 through the flow path 79. Further, a branch path 80 that leads to the starter burner 12 of the pressurized flow furnace 10 branches off from the flow path 77. The compressed air is supplied as combustion air to the starter burner 12 through the branch path 80 in addition to the pressurized fluidized furnace 10. Here, the advantage of providing the branch path 80 will be described.
That is, it is uneconomical to provide a dedicated blower for sending combustion air to the starter burner 12 only for start-up operation about once or twice (at most several times) per year. It will only lead to soaring. In particular, in order to send combustion air to the pressurized fluidized furnace having a large capacity until the pressurized fluidized furnace 10 reaches a stable operation in a predetermined pressurized state, the dedicated blower must be enlarged. The pressure of the pressurized fluidized furnace 10 is a low pressure at the start-up, but needs to be increased with the passage of time. Therefore, it is necessary for the dedicated blower to have a capacity that can handle the low discharge pressure and low air flow rate at the start-up and the high discharge pressure and high air flow rate after the passage of time. . However, the pressurized fluidized incineration facility of the present embodiment compresses the air from the starter blower 43 provided for the compressor 42 through the compressor 43 and supplies it to the pressurized fluidized furnace 10 (channels 77 to 79). ), And a branch path (flow path 80) branched from this path and continuing to the starter burner 12 of the pressurized fluidized furnace 10, and when the pressurized fluidized furnace 10 is started up, In addition to the pressurized fluidized furnace 10, the combustion air is supplied to the starter burner 12 through a branch path. As a result, when the temperature rises with the progress of combustion over time and the pressure in the pressurized fluidized furnace 10 increases, the compression ratio of the compressor 42 increases, and the pressure of the air compressed by the compressor 42 is pressurized and flowed. The pressure is always higher than the pressure in the furnace 10 (higher than the pressure loss in the fluidized part in the pressurized flow furnace 10). As the pressure in the pressurized fluidized furnace 10 increases, the air volume at the outlet side of the compressor 42 also increases. As a result, even with the startup blower 43 having a small capacity, it is possible to ensure a high discharge pressure and a high blowing rate after the passage of time. Accordingly, a dedicated blower is not used to send the combustion air for the starter burner 12 hypothetically shown as reference numeral 43A in FIG. 1, or an extremely small one is sufficient, and the equipment cost and running cost are reduced. be able to. Further, since the pressure in the pressurized fluidized furnace 10 and the pressure of the compressed air blown into the pressurized fluidized furnace 10 as combustion air are linked, the advantage of facilitating the control of the combustion air amount in the starter burner 12 is achieved. There is also.

一方、白煙防止用予熱器50は、従来の形態においては、符号52Aとして仮定的に図示した白煙防止ファンから送り込まれ大気中に放出する前の排ガスに混入する白煙防止用空気を、タービン41で膨張した排ガスから熱回収して予熱するものである。この予熱された白煙防止用空気によって、排煙処理塔60からの清浄空気が煙突62において加熱され、白煙が発生しないようになる。排煙処理塔60は、白煙防止用予熱器50を通った大気中に放出する前の排ガスの最終的な清浄化を図るものであり、湿式集塵方式などが採用される。   On the other hand, the white smoke prevention preheater 50 is, in the conventional form, white smoke prevention air mixed in the exhaust gas before being sent from the white smoke prevention fan hypothetically illustrated as reference numeral 52A and released into the atmosphere. Heat is recovered from the exhaust gas expanded by the turbine 41 and preheated. The preheated white smoke prevention air heats the clean air from the flue gas processing tower 60 in the chimney 62 so that white smoke is not generated. The flue gas treatment tower 60 is intended to finally clean the exhaust gas before being released into the atmosphere through the white smoke prevention preheater 50, and employs a wet dust collection system or the like.

ここで、本実施の形態においては、白煙防止ファン52Aが備えられておらず、コンプレッサー42で圧縮された空気を加圧流動炉10内に供給する流路77から分岐して白煙防止用予熱器50に連なる分岐経路たる流路52が備えられている。そして、この流路52を通して圧縮空気が白煙防止用空気として白煙防止用予熱器50に導かれる。前述したように被処理物Sが高含水率である場合は、高圧流動炉10からの排ガスに水蒸気が含まれるため、コンプレッサー42の駆動によって圧縮される空気の量も増え、この圧縮空気を加圧流動炉10内に供給するのみでは余剰が生じる。なお、始動用バーナー12の燃焼用空気としての使用は、立上げ運転時におけるものである。しかしながら、本形態においては、当該余剰空気が白煙防止用空気として有効利用される。この白煙防止用空気としての利用は、加圧流動焼却設備系内での利用であり、また、白煙防止ファン52Aを使用しないか、きわめて小型のものとすることができるため、設備コストやランニングコストを低減させることができる。この余剰空気の利用に関しては、圧縮空気が通る流路77に圧力計77Aを設け、この圧力計77Aで測定された圧力によって流路52に備わる調節弁47の開度を調節し、もって加圧流動炉10に導く圧縮空気と白煙防止用予熱器50に導く圧縮空気との割合を調節することができる。   Here, in the present embodiment, the white smoke prevention fan 52A is not provided, and the air compressed by the compressor 42 is branched from the flow path 77 that supplies the compressed flow furnace 10 to prevent white smoke. A flow path 52 is provided as a branch path connected to the preheater 50. Then, the compressed air is guided to the white smoke prevention preheater 50 through the flow path 52 as white smoke prevention air. As described above, when the workpiece S has a high water content, since the exhaust gas from the high-pressure fluidized furnace 10 contains water vapor, the amount of air compressed by driving the compressor 42 also increases, and this compressed air is added. A surplus occurs only by supplying the fluid into the pressure fluidized furnace 10. The start burner 12 is used as combustion air during start-up operation. However, in this embodiment, the surplus air is effectively used as white smoke prevention air. The use as the air for preventing white smoke is used in the pressurized flow incineration equipment system, and the white smoke prevention fan 52A is not used or can be made extremely small. Running cost can be reduced. Regarding the use of the surplus air, a pressure gauge 77A is provided in the flow path 77 through which the compressed air passes, and the opening of the control valve 47 provided in the flow path 52 is adjusted by the pressure measured by the pressure gauge 77A. The ratio of the compressed air led to the fluidized furnace 10 and the compressed air led to the white smoke prevention preheater 50 can be adjusted.

一方、本形態においては、本設備周りの外部空気Aをコンプレッサー42に導く切替え弁45を有する供給流路81が設けられている。立上げ運転時においては、起動用ブロワ43からコンプレッサー42に空気を送り込み、所定の温度・圧力、例えば、タービン41の入口温度が350℃以上、圧力が0.11〜0.15MPaの条件を指標とした安定運転になった時点で、切替え弁44を閉じ、その代わりに切替え弁45を開として供給流路81を通して外部空気Aをコンプレッサー42に送り込む。以後、この条件が続行される。   On the other hand, in this embodiment, a supply flow path 81 having a switching valve 45 that guides the external air A around the equipment to the compressor 42 is provided. During start-up operation, air is sent from the starter blower 43 to the compressor 42, and a predetermined temperature and pressure, for example, the inlet temperature of the turbine 41 is 350 ° C. or higher and the pressure is 0.11 to 0.15 MPa as an index. When the stable operation is reached, the switching valve 44 is closed, and instead, the switching valve 45 is opened and the external air A is sent to the compressor 42 through the supply flow path 81. Thereafter, this condition continues.

従来、焼却に用いられている加圧を行わない気泡流動炉では、常時流動用ブロワを運転し続け、また、煙突62から強制的に排気するための誘引ファンの設置が必要であるのに対し、本形態に係る加圧流動焼却設備では、起動時に起動用ブロワ43を使用するのみで足りるのでランニングコストが低減し、誘引ファンの設置が不要となる利点がある。
加圧流動炉10の運転条件に限定はないが、0.1〜0.3MPa程度に加圧し、ダイオキシン発生防止の観点から800〜850℃程度の温度条件にすることが望ましい。
Conventionally, in a bubbling flow furnace that does not perform pressurization that is used for incineration, it is necessary to continuously operate a flow blower and to install an induction fan for forcibly exhausting from the chimney 62 In the pressurized fluidized incineration facility according to the present embodiment, it is only necessary to use the starter blower 43 at the time of start-up, so that there is an advantage that running cost is reduced and installation of an induction fan becomes unnecessary.
Although there is no limitation on the operating conditions of the pressurized fluidized furnace 10, it is desirable to pressurize to about 0.1 to 0.3 MPa and to set the temperature to about 800 to 850 ° C. from the viewpoint of preventing dioxin generation.

加圧流動焼却設備の構成例の説明図である。It is explanatory drawing of the structural example of a pressurization fluidization incineration equipment. 加圧流動焼却設備の変形構成例の説明図である。It is explanatory drawing of the example of a deformation | transformation structure of a pressurized flow incinerator.

符号の説明Explanation of symbols

10…加圧流動炉、12…始動用バーナー、20…空気予熱器、30…集塵機、40…過給機、41…タービン、42…コンプレッサー、43…起動用ブロワ、50…白煙防止用予熱器、60…排煙処理塔、65…蒸気ボイラ、S…被処理物。   DESCRIPTION OF SYMBOLS 10 ... Pressurized flow furnace, 12 ... Start-up burner, 20 ... Air preheater, 30 ... Dust collector, 40 ... Supercharger, 41 ... Turbine, 42 ... Compressor, 43 ... Start blower, 50 ... Preheat for white smoke prevention 60: Smoke treatment tower, 65: Steam boiler, S: Object to be treated.

Claims (5)

高含水率の被処理物を加圧下で流動燃焼させる加圧流動炉と、この燃焼により発生した排ガスによって駆動されるタービン及びこのタービンによって駆動され前記加圧流動炉内に供給する空気を圧縮するコンプレッサーを有する過給機と、前記タービンで膨張した排ガスから熱回収して大気中に放出する前の排ガスに混入する白煙防止用空気を予熱する白煙防止用予熱器と、この白煙防止用予熱器を通った前記大気中に放出する前の排ガスの清浄化を行う排煙処理塔と、を備えた加圧流動焼却設備であって、
前記コンプレッサーで圧縮された空気を前記加圧流動炉内に供給する経路と、この経路から分岐して前記白煙防止用予熱器に連なる分岐経路と、を有し、
この分岐経路を通して前記圧縮空気が前記白煙防止用空気として前記白煙防止用予熱器に導かれる構成とした、
ことを特徴とする加圧流動焼却設備。
A pressurized fluidizing furnace that fluidizes and burns an object to be treated having a high water content under pressure, a turbine that is driven by exhaust gas generated by the combustion, and air that is driven by the turbine and that is supplied to the pressurized fluidizing furnace is compressed. A supercharger having a compressor, a white smoke prevention preheater for preheating white smoke prevention air mixed in the exhaust gas before being recovered from the exhaust gas expanded by the turbine and released into the atmosphere, and the white smoke prevention A flue gas treatment tower that purifies the exhaust gas before being discharged into the atmosphere through the preheater, and a pressurized fluidized incineration facility comprising:
A path for supplying air compressed by the compressor into the pressurized fluidized furnace, and a branch path branched from this path and connected to the white smoke prevention preheater,
The compressed air is led to the white smoke prevention preheater as the white smoke prevention air through this branch path,
A pressurized fluidized incineration facility characterized by that.
別途、前記白煙防止用予熱器の白煙防止用空気送気用ブロワを備えていない、請求項1記載の加圧流動焼却設備。   2. The pressurized fluidized incineration facility according to claim 1, wherein the white smoke prevention preheater is not provided with a white smoke prevention air supply blower. 前記タービンで膨張した排ガスから熱回収して蒸気を生成する蒸気ボイラと、この蒸気ボイラで生成された蒸気を前記タービン上流の排ガス処理系に導く経路と、を有する請求項1又は請求項2記載の加圧流動焼却設備。   The steam boiler which recovers heat from the exhaust gas expanded by the turbine to generate steam, and a path for guiding the steam generated by the steam boiler to an exhaust gas treatment system upstream of the turbine. Pressure fluidized incineration equipment. 高含水率の被処理物を加圧下で流動燃焼させる加圧流動炉と、この燃焼により発生した排ガスによって駆動されるタービン及びこのタービンによって駆動され前記加圧流動炉内に供給する空気を圧縮するコンプレッサーを有する過給機と、前記タービンで膨張した排ガスから熱回収して大気中に放出する前の排ガスに混入する白煙防止用空気を予熱する白煙防止用予熱器と、この白煙防止用予熱器を通った前記大気中に放出する前の排ガスの清浄化を行う排煙処理塔と、を備えた加圧流動焼却設備の運転方法であって、
前記コンプレッサーで圧縮された空気を、前記加圧流動炉内に供給するとともに、前記白煙防止用予熱器に前記白煙防止用空気として導く、
ことを特徴とする加圧流動焼却設備の運転方法。
A pressurized fluidizing furnace that fluidizes and burns an object to be treated having a high water content under pressure, a turbine that is driven by exhaust gas generated by the combustion, and air that is driven by the turbine and that is supplied to the pressurized fluidizing furnace is compressed. A supercharger having a compressor, a white smoke prevention preheater for preheating white smoke prevention air mixed in the exhaust gas before being recovered from the exhaust gas expanded by the turbine and released into the atmosphere, and the white smoke prevention A flue gas treatment tower that purifies the exhaust gas before being released into the atmosphere through the preheater for operation,
The air compressed by the compressor is supplied into the pressurized fluidized furnace and guided to the white smoke prevention preheater as the white smoke prevention air.
A method for operating a pressurized fluidized incinerator.
前記タービンで膨張した排ガスから熱回収して蒸気を生成し、この蒸気を前記タービン上流の排ガス処理系に導く、請求項4記載の加圧流動焼却設備の運転方法。   The operating method of the pressurized fluidized incineration equipment of Claim 4 which heat-recovers from the waste gas expanded with the said turbine, produces | generates a vapor | steam, and guide | induces this vapor | steam to the waste gas treatment system upstream of the said turbine.
JP2007297884A 2007-11-16 2007-11-16 Operation method of pressurized fluidized incineration equipment and pressurized fluidized incineration equipment Active JP5187732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007297884A JP5187732B2 (en) 2007-11-16 2007-11-16 Operation method of pressurized fluidized incineration equipment and pressurized fluidized incineration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007297884A JP5187732B2 (en) 2007-11-16 2007-11-16 Operation method of pressurized fluidized incineration equipment and pressurized fluidized incineration equipment

Publications (2)

Publication Number Publication Date
JP2009121778A true JP2009121778A (en) 2009-06-04
JP5187732B2 JP5187732B2 (en) 2013-04-24

Family

ID=40814111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007297884A Active JP5187732B2 (en) 2007-11-16 2007-11-16 Operation method of pressurized fluidized incineration equipment and pressurized fluidized incineration equipment

Country Status (1)

Country Link
JP (1) JP5187732B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137576A (en) * 2009-12-28 2011-07-14 Sanki Eng Co Ltd Method of operating pressurized-fluidized incinerator and pressurized-fluidized incinerator facility
JP2011137575A (en) * 2009-12-28 2011-07-14 Sanki Eng Co Ltd Method of operating pressurized-fluidized incinerator and pressurized-fluidized incinerator facility
JP2014167382A (en) * 2013-01-31 2014-09-11 Metawater Co Ltd Waste treatment facility
WO2014156356A1 (en) * 2013-03-26 2014-10-02 月島機械株式会社 Pressurized fluidized furnace equipment
JP2015145738A (en) * 2014-01-31 2015-08-13 メタウォーター株式会社 Waste treatment plant and waste treatment plant control method
CN112585402A (en) * 2019-02-28 2021-03-30 月岛机械株式会社 Combustion exhaust gas treatment device and treatment method

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147927A (en) * 1983-02-12 1984-08-24 Ebara Corp Corrosion prevention of incineration facilities
JPS6179820A (en) * 1984-09-26 1986-04-23 Mitsubishi Electric Corp Starting method of turbo-compressor system
JPH041428A (en) * 1990-04-18 1992-01-06 Mitsubishi Heavy Ind Ltd Power generation facilities
JPH07127840A (en) * 1993-06-28 1995-05-16 Kawasaki Giken:Kk White smoke-preventing method in incineration
JPH07301126A (en) * 1994-04-28 1995-11-14 Mitsubishi Heavy Ind Ltd Gas turbine power generating plant
JPH08291291A (en) * 1995-04-21 1996-11-05 Hitachi Ltd Gasifying plant and gasification power plant
JPH0960853A (en) * 1995-08-25 1997-03-04 Kawasaki Giken:Kk Waste incinerating system and white smoke preventing method upon incinerating waste
JPH1026335A (en) * 1996-07-12 1998-01-27 Hitachi Zosen Corp White fuming preventing apparatus for refuse incinerator facility
JPH1073238A (en) * 1996-09-02 1998-03-17 Takuma Co Ltd Method and device for heating air for combustion system
JP2000074359A (en) * 1998-06-16 2000-03-14 Abb Kk Method and apparatus for processing dust incinerator waste gas
JP2002371860A (en) * 2001-06-15 2002-12-26 Kubota Corp Power generating method by use of pressurizing combustion furnace for burning waste
JP2005321131A (en) * 2004-05-07 2005-11-17 Sanki Eng Co Ltd Sludge incinerating system
JP2007032872A (en) * 2005-07-22 2007-02-08 Kubota Corp Dust discharging device and operation method of dust discharging device
JP2007154213A (en) * 2003-10-28 2007-06-21 Ebara Corp DEVICE USING Ni-BASED HEAT RESISTANT ALLOY FOR INCINERATION OR GASIFICATION
JP2007163048A (en) * 2005-12-14 2007-06-28 Sumiju Kankyo Engineering Kk Gas cooling tower and incineration system
JP2007170703A (en) * 2005-12-20 2007-07-05 Public Works Research Institute Facility and method for treating waste
JP2007170702A (en) * 2005-12-20 2007-07-05 Public Works Research Institute Facility and method for treating sludge

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147927A (en) * 1983-02-12 1984-08-24 Ebara Corp Corrosion prevention of incineration facilities
JPS6179820A (en) * 1984-09-26 1986-04-23 Mitsubishi Electric Corp Starting method of turbo-compressor system
JPH041428A (en) * 1990-04-18 1992-01-06 Mitsubishi Heavy Ind Ltd Power generation facilities
JPH07127840A (en) * 1993-06-28 1995-05-16 Kawasaki Giken:Kk White smoke-preventing method in incineration
JPH07301126A (en) * 1994-04-28 1995-11-14 Mitsubishi Heavy Ind Ltd Gas turbine power generating plant
JPH08291291A (en) * 1995-04-21 1996-11-05 Hitachi Ltd Gasifying plant and gasification power plant
JPH0960853A (en) * 1995-08-25 1997-03-04 Kawasaki Giken:Kk Waste incinerating system and white smoke preventing method upon incinerating waste
JPH1026335A (en) * 1996-07-12 1998-01-27 Hitachi Zosen Corp White fuming preventing apparatus for refuse incinerator facility
JPH1073238A (en) * 1996-09-02 1998-03-17 Takuma Co Ltd Method and device for heating air for combustion system
JP2000074359A (en) * 1998-06-16 2000-03-14 Abb Kk Method and apparatus for processing dust incinerator waste gas
JP2002371860A (en) * 2001-06-15 2002-12-26 Kubota Corp Power generating method by use of pressurizing combustion furnace for burning waste
JP2007154213A (en) * 2003-10-28 2007-06-21 Ebara Corp DEVICE USING Ni-BASED HEAT RESISTANT ALLOY FOR INCINERATION OR GASIFICATION
JP2005321131A (en) * 2004-05-07 2005-11-17 Sanki Eng Co Ltd Sludge incinerating system
JP2007032872A (en) * 2005-07-22 2007-02-08 Kubota Corp Dust discharging device and operation method of dust discharging device
JP2007163048A (en) * 2005-12-14 2007-06-28 Sumiju Kankyo Engineering Kk Gas cooling tower and incineration system
JP2007170703A (en) * 2005-12-20 2007-07-05 Public Works Research Institute Facility and method for treating waste
JP2007170702A (en) * 2005-12-20 2007-07-05 Public Works Research Institute Facility and method for treating sludge

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137576A (en) * 2009-12-28 2011-07-14 Sanki Eng Co Ltd Method of operating pressurized-fluidized incinerator and pressurized-fluidized incinerator facility
JP2011137575A (en) * 2009-12-28 2011-07-14 Sanki Eng Co Ltd Method of operating pressurized-fluidized incinerator and pressurized-fluidized incinerator facility
JP2014167382A (en) * 2013-01-31 2014-09-11 Metawater Co Ltd Waste treatment facility
KR20150133718A (en) * 2013-03-26 2015-11-30 츠키시마기카이가부시키가이샤 Pressurized fluidized furnace equipment
JP2014190572A (en) * 2013-03-26 2014-10-06 Tsukishima Kikai Co Ltd Pressurized fluidized bed furnace equipment
WO2014156356A1 (en) * 2013-03-26 2014-10-02 月島機械株式会社 Pressurized fluidized furnace equipment
CN105190175A (en) * 2013-03-26 2015-12-23 月岛机械株式会社 Pressurized fluidized furnace equipment
CN105190175B (en) * 2013-03-26 2017-03-22 月岛机械株式会社 Pressurized fluidized furnace equipment
US9933156B2 (en) 2013-03-26 2018-04-03 Tsukishima Kikai Co., Ltd. Pressurized fluidized furnace equipment
KR102085125B1 (en) * 2013-03-26 2020-03-05 츠키시마기카이가부시키가이샤 Pressurized fluidized furnace equipment
JP2015145738A (en) * 2014-01-31 2015-08-13 メタウォーター株式会社 Waste treatment plant and waste treatment plant control method
CN112585402A (en) * 2019-02-28 2021-03-30 月岛机械株式会社 Combustion exhaust gas treatment device and treatment method
EP3933266A4 (en) * 2019-02-28 2022-11-30 Tsukishima Kikai Co., Ltd. Apparatus and method for treating combustion exhaust gas

Also Published As

Publication number Publication date
JP5187732B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
JP5067653B2 (en) Pressurized incinerator equipment and operating method thereof
JP5187732B2 (en) Operation method of pressurized fluidized incineration equipment and pressurized fluidized incineration equipment
JP6490466B2 (en) Waste treatment facility and method of operating waste treatment facility
JP4771309B2 (en) Pressurized fluidized incineration equipment and its startup method
JP2015194308A (en) Incineration equipment and incineration method
JP2008025966A (en) Pressure incinerator equipment and its start-up method
JP5187731B2 (en) Pressurized fluidized incineration equipment and startup operation method of pressurized fluidized incineration equipment
JP4714912B2 (en) Pressurized fluidized incineration equipment and its startup method
JP2009121779A (en) Pressurized fluidized incineration equipment
CN112062435B (en) Oil sludge pyrolysis treatment device and process thereof
WO2013146384A1 (en) Waste treatment facility
KR101880382B1 (en) Gasifier equipment, integrated gasification combined cycle facility, and method for starting gasifier equipment
KR20020027611A (en) Method and device for increasing the pressure of a gas
JP2002371860A (en) Power generating method by use of pressurizing combustion furnace for burning waste
JP5392739B2 (en) Pressurized fluidized incineration equipment and startup operation method of pressurized fluidized incineration equipment
JP5491550B2 (en) Pressurized flow furnace system and control method thereof
JPH11200882A (en) Sludge power generation equipment
JP4449704B2 (en) Combustion method and apparatus
JP3952287B2 (en) Method and facility for recovering energy from combustible materials
JPH0989232A (en) Sewage sludge incinerator with gas turbine
CN203309914U (en) Tail gas treatment equipment for biomass synthesis gas
JP5509243B2 (en) Pressurized fluid furnace system and odor treatment method for pressurized fluid furnace system
JPH11197627A (en) Waste processing system
JPH10213317A (en) Refuse incinerator operation method
JP3934948B2 (en) Combustion treatment apparatus and combustion treatment method for high moisture content treated product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130116

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5187732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250