JP2009121779A - Pressurized fluidized incineration equipment - Google Patents

Pressurized fluidized incineration equipment Download PDF

Info

Publication number
JP2009121779A
JP2009121779A JP2007297885A JP2007297885A JP2009121779A JP 2009121779 A JP2009121779 A JP 2009121779A JP 2007297885 A JP2007297885 A JP 2007297885A JP 2007297885 A JP2007297885 A JP 2007297885A JP 2009121779 A JP2009121779 A JP 2009121779A
Authority
JP
Japan
Prior art keywords
lubricating oil
path
pressurized fluidized
turbine
oil tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007297885A
Other languages
Japanese (ja)
Inventor
Shuichi Ochi
修一 落
Masaaki Ozaki
正明 尾崎
Zenzo Suzuki
善三 鈴木
Tagami Koseki
多賀美 小関
Hitoshi Kihara
均 木原
Yoshihiro Iwai
良博 岩井
Takafumi Yamamoto
隆文 山本
Hidekazu Nagasawa
英和 長沢
Kazuyoshi Terakoshi
和由 寺腰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Tsukishima Kikai Co Ltd
National Research and Development Agency Public Works Research Institute
Original Assignee
Sanki Engineering Co Ltd
Public Works Research Institute
National Institute of Advanced Industrial Science and Technology AIST
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd, Public Works Research Institute, National Institute of Advanced Industrial Science and Technology AIST, Tsukishima Kikai Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP2007297885A priority Critical patent/JP2009121779A/en
Publication of JP2009121779A publication Critical patent/JP2009121779A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pressurized fluidized incineration equipment free from a risk of flowing-out of a lubricant from a turbine outlet side. <P>SOLUTION: This pressurized fluidized incineration equipment includes a pressurized fluidized furnace 10 for a treated object S, a supercharger 40 having a turbine 41 driven by an exhaust gas, and a compressor 42 driven by a driving shaft 46 of the turbine 41 and pressurizing the air supplied into the pressurized fluidized furnace 10, a lubricant circulation mechanism 90 having a partitioning material surrounding a shaft part including the driving shaft 46, a tank 91 storing the supplied lubricant, an upstream passage 92 for guiding the lubricant in the tank 91 into a sealed container, a liquid feed pump 93 for forcibly feeding the lubricant in the lubricant tank 91 into the partitioning material through the upstream passage 92, and a downstream passage 94 for guiding the lubricant in the partitioning material to the lubricant tank 91, and an inner pressure of the downstream passage 94 is lower than that of the upstream passage 92. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、加圧流動焼却設備に関するものである。より詳しくは、被処理物を加圧下で流動燃焼し、この燃焼により発生した排ガスによってタービンを駆動し、このタービンの駆動軸の回転力によってコンプレッサーを駆動し、このコンプレッサーの駆動によって加圧された空気を加圧流動炉内に供給する構成とされた加圧流動焼却設備に関するものである。   The present invention relates to a pressurized fluidized incineration facility. More specifically, the object to be treated is fluidized and combusted under pressure, the turbine is driven by the exhaust gas generated by the combustion, the compressor is driven by the rotational force of the drive shaft of the turbine, and the pressure is increased by driving the compressor. The present invention relates to a pressurized fluidized incineration facility configured to supply air into a pressurized fluidized furnace.

現在、石炭を燃料とする加圧流動床複合発電プラントが実用化されており、通常、プラントの立上げ時においては、タービンの過給機を電動機として使用して所定の圧力、温度まで起動している。もっとも、このように過給機を電動機として使用するシステムにおいては、過給機を起動用ブロワとして利用することができないため、大容量の起動用ブロワを別途備える場合が多い。   At present, a pressurized fluidized bed combined power plant using coal as fuel is put into practical use. Normally, when a plant is started up, a turbocharger of a turbine is used as an electric motor to start up to a predetermined pressure and temperature. ing. However, in such a system that uses a supercharger as an electric motor, since the supercharger cannot be used as a starter blower, a large-capacity starter blower is often separately provided.

ところで、タービンの排気を有効利用する方法として、本出願人は、特許文献1を開示した。しかしながら、特許文献1は、タービンの駆動軸の回転力によってコンプレッサーを駆動し、このコンプレッサーの駆動によって空気を加圧し、この加圧空気を有効利用することについては開示していない。
この点、このタービンの駆動によってコンプレッサーを駆動し、このコンプレッサーの駆動によって加圧された空気を利用する方法として、本出願人は、当該加圧空気を加圧流動炉内に供給する特許文献2を開示した。しかしながら、特許文献2は、タービンの駆動軸を含む軸部分にどのように潤滑油を供給(注油)するかについては開示していない。
この点、当業者の通常の発想によれば、駆動軸を含む軸部分を囲う仕切り材や、この仕切り材内に供給される潤滑油のタンク、この潤滑油タンク内の潤滑油を前記仕切り材内に導く上流経路、この上流経路を通して前記潤滑油タンク内の潤滑油を前記仕切り材内に強制的に送る送液ポンプ、前記仕切り材内に供給された潤滑油を前記潤滑油タンクに導く下流経路、などが備わる潤滑油の循環機構を設けることになる。
しかしながら、被処理物を加圧下で流動燃焼する加圧流動焼却設備においては、タービンを駆動する排ガスが高圧であり、タービン入口側が高圧となり、またコンプレッサー内の空気も高圧となることから、仕切り材内も高圧となり、送液ポンプによって送られてくる潤滑油の循環が滞るおそれがある。そして、潤滑油の循環が滞ると、循環機構内の圧力は上昇し、低圧であるタービン出口側から潤滑油が流出するおそれがある。流出した潤滑油は、排ガスに同伴されて、大気中に放出されてしまう可能性もある。
By the way, as a method of effectively using the exhaust of the turbine, the present applicant has disclosed Patent Document 1. However, Patent Document 1 does not disclose that the compressor is driven by the rotational force of the drive shaft of the turbine, the air is pressurized by driving the compressor, and the pressurized air is effectively used.
In this regard, as a method of driving the compressor by driving the turbine and using the air pressurized by the driving of the compressor, the present applicant supplies the pressurized air into the pressurized fluidized furnace. Disclosed. However, Patent Document 2 does not disclose how to supply (lubricate) the lubricating oil to the shaft portion including the turbine drive shaft.
In this regard, according to a normal idea of those skilled in the art, a partition material that surrounds the shaft portion including the drive shaft, a tank of lubricating oil supplied into the partition material, and the lubricating oil in the lubricating oil tank is used as the partition material. An upstream path leading into the interior, a liquid feed pump that forcibly sends the lubricating oil in the lubricating oil tank into the partition material through the upstream path, and a downstream that guides the lubricating oil supplied into the partition material to the lubricating oil tank A lubricating oil circulation mechanism with a route, etc. will be provided.
However, in a pressurized fluidized incineration facility that fluidizes and burns an object to be treated, the exhaust gas that drives the turbine is high pressure, the turbine inlet side is high pressure, and the air in the compressor is also high pressure. There is a possibility that the circulation of the lubricating oil sent by the liquid feed pump will be delayed. When the circulation of the lubricating oil is delayed, the pressure in the circulation mechanism increases, and the lubricating oil may flow out from the low pressure turbine outlet side. The spilled lubricating oil may be entrained in the exhaust gas and released into the atmosphere.

なお、仕切り材が軸部分を完全に密閉化(気密化)するように囲っており、仕切り材内とタービン入口側や出口側とが完全に遮断されていれば、以上のような問題は生じない。しかしながら、仕切り材は、回転駆動する駆動軸などを囲うものである以上、完全な密閉化は難しい。
特開平9−89232号公報 特開2007−170705号公報
In addition, if the partition material surrounds the shaft portion so as to completely seal (air-tighten) and the partition material and the turbine inlet side and outlet side are completely shut off, the above problems occur. Absent. However, it is difficult to completely seal the partition material as long as it surrounds the drive shaft that is rotationally driven.
JP-A-9-89232 JP 2007-170705 A

本発明が解決しようとする主たる課題は、タービン出口側から潤滑油が流出するおそれのない加圧流動焼却設備を提供することにある。   SUMMARY OF THE INVENTION The main problem to be solved by the present invention is to provide a pressurized fluidized incineration facility in which there is no risk of lubricant flowing out from the turbine outlet side.

この課題を解決した本発明は、次のとおりである。
<請求項1記載の発明>
被処理物を加圧下で流動燃焼させる加圧流動炉と、
この燃焼により発生した排ガスによって駆動されるタービン、及び、このタービンの駆動軸と連結されこの駆動軸の回転力によって駆動され前記加圧流動炉内に供給する空気を加圧するコンプレッサー、を有する過給機と、
前記駆動軸を含む軸部分を囲う仕切り材、この仕切り材内に供給される潤滑油を貯留する潤滑油タンク、この潤滑油タンク内の潤滑油を前記仕切り材内に導く上流経路、この上流経路を通して前記潤滑油タンク内の潤滑油を前記仕切り材内に強制的に送る送液ポンプ、及び、前記仕切り材内に供給された潤滑油を前記潤滑油タンクに導く下流経路、を有する前記潤滑油の循環機構と、
を備えた加圧流動焼却設備であって、
前記下流経路の内圧が前記上流経路の内圧よりも低くなるように構成した、
ことを特徴とする加圧流動焼却設備。
The present invention that has solved this problem is as follows.
<Invention of Claim 1>
A pressurized fluidizing furnace for fluidizing and burning a workpiece under pressure;
A turbocharger having a turbine driven by exhaust gas generated by the combustion, and a compressor connected to a drive shaft of the turbine and driven by the rotational force of the drive shaft to pressurize the air supplied into the pressurized fluidized furnace. Machine,
A partition material surrounding the shaft portion including the drive shaft, a lubricating oil tank for storing lubricating oil supplied in the partition material, an upstream path for guiding the lubricating oil in the lubricating oil tank into the partition material, and this upstream path The lubricating oil having a liquid feed pump for forcibly sending the lubricating oil in the lubricating oil tank into the partition material through, and a downstream path for guiding the lubricating oil supplied in the partition material to the lubricating oil tank The circulation mechanism of
A pressurized fluidized incineration facility comprising:
The internal pressure of the downstream path is configured to be lower than the internal pressure of the upstream path.
A pressurized fluidized incineration facility characterized by that.

<請求項2記載の発明>
被処理物を加圧下で流動燃焼させる加圧流動炉と、
この燃焼により発生した排ガスによって駆動されるタービン、及び、このタービンの駆動軸と連結されこの駆動軸の回転力によって駆動され前記加圧流動炉内に供給する空気を加圧するコンプレッサー、を有する過給機と、
前記駆動軸を含む軸部分を囲う仕切り材、この仕切り材内に供給される潤滑油を貯留する潤滑油タンク、この潤滑油タンク内の潤滑油を前記仕切り材内に導く上流経路、この上流経路を通して前記潤滑油タンク内の潤滑油を前記仕切り材内に強制的に送る送液ポンプ、及び、前記仕切り材内に供給された潤滑油を前記潤滑油タンクに導く下流経路、を有する前記潤滑油の循環機構と、
を備えた加圧流動焼却設備であって、
前記潤滑油タンク及び前記タービン下流の排ガス経路を連通する経路を設けて、前記下流経路の内圧が前記上流経路の内圧よりも低くなるように構成した、
ことを特徴とする加圧流動焼却設備。
<Invention of Claim 2>
A pressurized fluidizing furnace for fluidizing and burning a workpiece under pressure;
A turbocharger having a turbine driven by exhaust gas generated by the combustion, and a compressor connected to a drive shaft of the turbine and driven by the rotational force of the drive shaft to pressurize the air supplied into the pressurized fluidized furnace. Machine,
A partition material surrounding the shaft portion including the drive shaft, a lubricating oil tank for storing lubricating oil supplied in the partition material, an upstream path for guiding the lubricating oil in the lubricating oil tank into the partition material, and this upstream path The lubricating oil having a liquid feed pump for forcibly sending the lubricating oil in the lubricating oil tank into the partition material through, and a downstream path for guiding the lubricating oil supplied in the partition material to the lubricating oil tank The circulation mechanism of
A pressurized fluidized incineration facility comprising:
A path that communicates the lubricating oil tank and the exhaust gas path downstream of the turbine is provided, and the internal pressure of the downstream path is configured to be lower than the internal pressure of the upstream path.
A pressurized fluidized incineration facility characterized by that.

<請求項3記載の発明>
前記潤滑油タンクを前記仕切り材よりも高所に配置して、前記潤滑油ポンプの稼働が停止した後に、前記潤滑油タンク内の潤滑油が前記上流経路を通して前記仕切り材内に自然流下するように構成した、請求項1又は請求項2記載の加圧流動焼却設備。
<Invention of Claim 3>
The lubricating oil tank is arranged at a higher position than the partition material, and after the operation of the lubricating oil pump is stopped, the lubricating oil in the lubricating oil tank naturally flows into the partition material through the upstream path. The pressurized fluidized incineration equipment according to claim 1 or 2 constituted to.

以下、本発明の実施の形態を説明する。
本実施の形態の加圧流動焼却設備は、図1に示すように、被処理物Sを燃焼させる加圧流動炉10と、この燃焼により発生した排ガスによって駆動されるタービン41及びこのタービン41の駆動軸46と連結されこの駆動軸46の回転力によって駆動され、加圧流動炉10内に供給する空気を加圧するコンプレッサー42を有する過給機40と、を備えている。
Embodiments of the present invention will be described below.
As shown in FIG. 1, the pressurized fluidized incineration facility of the present embodiment includes a pressurized fluidized furnace 10 that combusts the workpiece S, a turbine 41 that is driven by the exhaust gas generated by the combustion, and the turbine 41. And a supercharger 40 that is connected to the drive shaft 46 and is driven by the rotational force of the drive shaft 46 and has a compressor 42 that pressurizes the air supplied into the pressurized flow furnace 10.

加圧流動炉10には、バイオマスや都市ゴミ、下水汚泥の脱水ケーキ等の被処理物Sが供給口から供給されるとともに、始動時において下部の始動用バーナー12から燃焼のための燃料及び燃焼用空気が供給されるようになっている。加圧流動炉10の下部からは、後述するように、加圧空気が吹き込まれ、その流動化エネルギーによって被処理物Sが流動されながら、燃焼焼却されるようになっている。   The pressurized fluidized furnace 10 is supplied with workpieces S such as biomass, municipal waste, and dewatered cake of sewage sludge from the supply port, and at the time of startup, fuel and combustion for combustion from the lower starter burner 12 Service air is supplied. As will be described later, pressurized air is blown from the lower part of the pressurized fluidized furnace 10, and the object to be processed S is fluidized and burned by the fluidization energy.

この燃焼焼却により発生した排ガスは、流路71を通して空気予熱器20に送られ、その後に流路72を通してバグフィルタやセラミックフィルタなどの集塵機30を通った後に、流路73を通して過給機40のタービン41に導かれる。   The exhaust gas generated by the combustion incineration is sent to the air preheater 20 through the flow path 71, and then passes through the dust collector 30 such as a bag filter or a ceramic filter through the flow path 72 and then through the flow path 73 of the supercharger 40. Guided to turbine 41.

この過給機40では、排ガスによってタービン41が駆動され、このタービン41と駆動軸46を介して連結されたコンプレッサー42も駆動される。タービン41で膨張した排ガスは、流路74を通して白煙防止用予熱器50に導かれた後、流路75を通して排煙処理塔60に導かれ、この排煙処理塔60で清浄化された後に煙突62から大気中に放出される。   In the supercharger 40, the turbine 41 is driven by the exhaust gas, and the compressor 42 connected to the turbine 41 via the drive shaft 46 is also driven. After the exhaust gas expanded in the turbine 41 is guided to the white smoke prevention preheater 50 through the flow path 74, the exhaust gas is guided to the smoke treatment tower 60 through the flow path 75, and after being purified by the smoke treatment tower 60. It is emitted from the chimney 62 into the atmosphere.

ただし、タービン41で膨張した排ガスは、白煙防止用予熱器50に導くに先立って、例えば、図示しない蒸気ボイラなどに導くと好ましいものとなる。タービン41で膨張した排ガスは、例えば、400〜450℃、0.02〜0.05MPaの高温・高圧であり、したがって、熱回収して蒸気を生成することができる。そこで、蒸気ボイラで生成された蒸気を、タービン41上流の排ガス処理系に導き、当該蒸気を排ガスに混入する。これにより、タービン41に導かれる排ガスの量が増えるため、コンプレッサー42で加圧される空気の量も増え、本加圧流動焼却設備全体の熱効率向上となる。   However, it is preferable that the exhaust gas expanded by the turbine 41 is led to a steam boiler (not shown), for example, before being led to the white smoke prevention preheater 50. The exhaust gas expanded by the turbine 41 has a high temperature and a high pressure of, for example, 400 to 450 ° C. and 0.02 to 0.05 MPa, and thus can recover heat and generate steam. Therefore, the steam generated by the steam boiler is guided to the exhaust gas treatment system upstream of the turbine 41, and the steam is mixed into the exhaust gas. As a result, the amount of exhaust gas guided to the turbine 41 increases, so the amount of air pressurized by the compressor 42 also increases, improving the thermal efficiency of the entire pressurized fluidized incineration facility.

タービン41上流の排ガス処理系としては、排ガスを集塵機30からタービン41に導く流路73や、排ガスを加圧流動炉10から空気予熱器20に導く流路71、排ガスを空気予熱器20から集塵機30に導く流路72、加圧流動炉10、空気予熱器20、集塵機30などを例示することができる。なお、空気予熱器20は、排ガスのもっている熱により、加圧流動炉10内に供給する加圧空気を予熱するためのものである。   The exhaust gas treatment system upstream of the turbine 41 includes a flow path 73 that leads the exhaust gas from the dust collector 30 to the turbine 41, a flow path 71 that leads the exhaust gas from the pressurized fluidized furnace 10 to the air preheater 20, and exhaust gas from the air preheater 20 to the dust collector. The flow path 72 leading to 30, the pressurized fluidized furnace 10, the air preheater 20, the dust collector 30, and the like can be exemplified. The air preheater 20 is for preheating the pressurized air supplied into the pressurized fluidized furnace 10 by the heat of the exhaust gas.

ところで、本形態においては、図1に示すように、コンプレッサー42に対して起動用ブロワ43が設けられている。この起動用ブロワ43からの空気は、切替え弁44を有する流路76を通してコンプレッサー42に送り、このコンプレッサー42で加圧して、加圧空気とする。この加圧空気は、流路77及び流路78を通して空気予熱器20に導き、更に流路79を通して加圧流動炉10内に供給する。また、流路77からは、加圧流動炉10の始動用バーナー12に連なる分岐経路80が分岐している。当該加圧空気は、加圧流動炉10のほか、この分岐経路80を通して始動用バーナー12に燃焼用空気として供給される。ここで、分岐経路80を設ける利点について、説明する。
すなわち、1年当たり1〜2回程度(多くとも数回)の立上げ運転だけのために、始動用バーナー12に燃焼用空気を送るための専用ブロワを設けることは、不経済であり、設備の高騰を招くだけである。特に、加圧流動炉10が所定の加圧状態の安定運転に達するまで容量的に大きい加圧流動炉10に対して燃焼用空気を送り込むためには、専用ブロワを大型化するほかない。加圧流動炉10の圧力は、立上げ当初は低圧であるが、時間の経過とともに高圧にする必要がある。したがって、専用ブロワは、立上げ当初の低吐出圧力・低送風量から時間経過後の高吐出圧力・高送風量まで対応可能な容量を備えている必要があり、専用ブロワが大型化するのである。しかるに、本形態の加圧流動焼却設備は、コンプレッサー42に対して設けられた起動用ブロワ43からの空気を、コンプレッサー43を通して加圧して加圧流動炉10に供給する経路(流路77〜79)のほか、この経路から分岐して加圧流動炉10の始動用バーナー12に連なる分岐経路(流路80)を有し、加圧流動炉10の立上げの際に、加圧空気を、加圧流動炉10のほか分岐経路を通して始動用バーナー12に燃焼用空気として供給するものである。その結果、時間の経過に伴う燃焼の進行によって昇温し、加圧流動炉10内の圧力が上昇すると、コンプレッサー42の圧縮比が高くなり、コンプレッサー42で加圧された空気の圧力は加圧流動炉10内の圧力よりも常に高くなる(加圧流動炉10内の流動部での圧力損失分を超える圧力分だけ高くなる)。そして、加圧流動炉10内の圧力上昇に伴って、コンプレッサー42出口側の風量も増加する。その結果、容量の小さい起動用ブロワ43であっても、時間経過後において高吐出圧力・高送風量を確保することができる。したがって、図1に符号43Aとして仮定的に図示した始動用バーナー12についての燃焼用空気を送るために専用ブロワを使用しないか、きわめて小型のもので足りるものとなり、設備コストやランニングコストを低減させることができる。また、加圧流動炉10内の圧力と、加圧流動炉10内へ燃焼用空気として吹き込む加圧空気の圧力が連動しているので、始動用バーナー12における燃焼用空気量制御が容易になる利点もある。
By the way, in this embodiment, as shown in FIG. 1, a starter blower 43 is provided for the compressor 42. The air from the starter blower 43 is sent to the compressor 42 through the flow path 76 having the switching valve 44 and is pressurized by the compressor 42 to be pressurized air. This pressurized air is guided to the air preheater 20 through the flow path 77 and the flow path 78 and further supplied into the pressurized fluidized furnace 10 through the flow path 79. Further, a branch path 80 that leads to the starter burner 12 of the pressurized flow furnace 10 branches off from the flow path 77. The compressed air is supplied as combustion air to the starter burner 12 through the branch path 80 in addition to the pressurized fluidized furnace 10. Here, the advantage of providing the branch path 80 will be described.
That is, it is uneconomical to provide a dedicated blower for sending combustion air to the starter burner 12 only for start-up operation about once or twice (at most several times) per year. It will only lead to soaring. In particular, in order to send combustion air to the pressurized fluidized furnace 10 having a large capacity until the pressurized fluidized furnace 10 reaches a stable operation in a predetermined pressurized state, the dedicated blower must be enlarged. The pressure of the pressurized fluidized furnace 10 is a low pressure at the start-up, but needs to be increased with the passage of time. Therefore, it is necessary for the dedicated blower to have a capacity that can handle the low discharge pressure and low air flow rate at the start-up and the high discharge pressure and high air flow rate after the passage of time. . However, the pressurized fluidized incineration facility of the present embodiment is configured to supply air to the pressurized fluidized furnace 10 by supplying air from the starter blower 43 provided for the compressor 42 through the compressor 43 (channels 77 to 79). ), And a branch path (flow path 80) branched from this path and continuing to the start burner 12 of the pressurized fluidized furnace 10, and when the pressurized fluidized furnace 10 is started up, In addition to the pressurized fluidized furnace 10, the starting burner 12 is supplied as combustion air through a branch path. As a result, when the temperature rises due to the progress of combustion over time and the pressure in the pressurized fluidized furnace 10 increases, the compression ratio of the compressor 42 increases, and the pressure of the air pressurized by the compressor 42 is increased. The pressure is always higher than the pressure in the fluidized-furnace 10 (increased by the pressure exceeding the pressure loss in the fluidized part in the pressurized fluidized furnace 10). As the pressure in the pressurized fluidized furnace 10 increases, the air volume at the outlet side of the compressor 42 also increases. As a result, even with the startup blower 43 having a small capacity, it is possible to ensure a high discharge pressure and a high air flow rate after a lapse of time. Accordingly, a dedicated blower is not used to send the combustion air for the starter burner 12 hypothetically shown as reference numeral 43A in FIG. 1, or an extremely small one is sufficient, and the equipment cost and running cost are reduced. be able to. Further, since the pressure in the pressurized fluidized furnace 10 and the pressure of the pressurized air blown into the pressurized fluidized furnace 10 as combustion air are linked, it is easy to control the combustion air amount in the starter burner 12. There are also advantages.

一方、白煙防止用予熱器50は、従来の形態においては、符号52Aとして仮定的に図示した白煙防止ファンから送り込まれ大気中に放出する前の排ガスに混入する白煙防止用空気を、タービン41で膨張した排ガスから熱回収して予熱するものである。この予熱された白煙防止用空気によって、排煙処理塔60からの清浄空気が煙突62において加熱され、白煙が発生しないようになる。排煙処理塔60は、白煙防止用予熱器50を通った大気中に放出する前の排ガスの最終的な清浄化を図るものであり、湿式集塵方式などが採用される。   On the other hand, the white smoke prevention preheater 50 is, in the conventional form, white smoke prevention air mixed in the exhaust gas before being sent from the white smoke prevention fan hypothetically illustrated as reference numeral 52A and released into the atmosphere. Heat is recovered from the exhaust gas expanded by the turbine 41 and preheated. The preheated white smoke prevention air heats the clean air from the flue gas treatment tower 60 in the chimney 62 so that white smoke is not generated. The flue gas treatment tower 60 is intended to finally clean the exhaust gas before being released into the atmosphere through the white smoke prevention preheater 50, and employs a wet dust collection system or the like.

ここで、本実施の形態においては、白煙防止ファン52Aが備えられておらず、コンプレッサー42で加圧された空気を加圧流動炉10内に供給する流路77から分岐して白煙防止用予熱器50に連なる分岐経路たる流路52が備えられている。そして、この流路52を通して加圧空気が白煙防止用空気として白煙防止用予熱器50に導かれる。被処理物Sが、例えば高含水率である場合は、高圧流動炉10からの排ガスに水蒸気が含まれるため、コンプレッサー42の駆動によって加圧される空気の量も増え、この加圧空気を加圧流動炉10内に供給するのみでは余剰が生じる。なお、始動用バーナー12の燃焼用空気としての使用は、立上げ運転時におけるものである。しかしながら、以上の形態においては、当該余剰空気が白煙防止用空気として有効利用される。この白煙防止用空気としての利用は、加圧流動焼却設備系内での利用であり、また、白煙防止ファン52Aを使用しないか、きわめて小型のものとすることができるため、設備コストやランニングコストを低減させることができる。この余剰空気の利用に関しては、加圧空気が通る流路77に圧力計77Aを設け、この圧力計77Aで測定された圧力によって流路52に備わる調節弁47の開度を調節し、もって加圧流動炉10に導く加圧空気と白煙防止用予熱器50に導く加圧空気との割合を調節することができる。   Here, in the present embodiment, the white smoke prevention fan 52A is not provided, and the white air is prevented by branching from the flow path 77 for supplying the air pressurized by the compressor 42 into the pressurized flow furnace 10. A flow path 52 serving as a branch path that is connected to the preheater 50 is provided. Then, the pressurized air is guided to the white smoke prevention preheater 50 through the flow path 52 as white smoke prevention air. When the workpiece S has a high water content, for example, the exhaust gas from the high-pressure fluidized furnace 10 contains water vapor, so that the amount of air pressurized by driving the compressor 42 increases, and this pressurized air is added. A surplus occurs only by supplying the fluid into the pressure fluidized furnace 10. The start burner 12 is used as combustion air during start-up operation. However, in the above embodiment, the excess air is effectively used as white smoke prevention air. The use as the air for preventing white smoke is used in the pressurized flow incineration equipment system, and the white smoke prevention fan 52A is not used or can be made extremely small. Running cost can be reduced. Regarding the use of this surplus air, a pressure gauge 77A is provided in the flow path 77 through which the pressurized air passes, and the opening of the control valve 47 provided in the flow path 52 is adjusted by the pressure measured by the pressure gauge 77A. It is possible to adjust the ratio between the pressurized air led to the pressure fluidized furnace 10 and the pressurized air led to the white smoke prevention preheater 50.

一方、本形態においては、本設備周りの外部空気Aをコンプレッサー42に導く切替え弁45を有する供給流路81が設けられている。立上げ運転時においては、起動用ブロワ43からコンプレッサー42に空気を送り込み、所定の温度・圧力、例えば、タービン41の入口温度が350℃以上、圧力が0.11〜0.15MPaの条件を指標とした安定運転になった時点で、切替え弁44を閉じ、その代わりに切替え弁45を開として供給流路81を通して外部空気Aをコンプレッサー42に送り込む。以後、この条件が続行される。   On the other hand, in this embodiment, a supply flow path 81 having a switching valve 45 that guides the external air A around the equipment to the compressor 42 is provided. During start-up operation, air is sent from the starter blower 43 to the compressor 42, and a predetermined temperature and pressure, for example, the inlet temperature of the turbine 41 is 350 ° C. or higher and the pressure is 0.11 to 0.15 MPa as an index. When the stable operation is reached, the switching valve 44 is closed, and instead, the switching valve 45 is opened and the external air A is sent to the compressor 42 through the supply flow path 81. Thereafter, this condition continues.

従来、焼却に用いられている加圧を行わない気泡流動炉では、常時流動用ブロワを運転し続け、また、煙突62から強制的に排気するための誘引ファンの設置が必要であるのに対し、本形態に係る加圧流動焼却設備では、起動時に起動用ブロワ43を使用するのみで足りるのでランニングコストが低減し、誘引ファンの設置が不要となる利点がある。
加圧流動炉10の運転条件に限定はないが、0.1〜0.3MPa程度に加圧し、ダイオキシン発生防止の観点から800〜850℃程度の温度条件にすることが望ましい。
Conventionally, in a bubbling flow furnace that does not perform pressurization that is used for incineration, it is necessary to continuously operate a flow blower and to install an induction fan for forcibly exhausting from the chimney 62 In the pressurized fluidized incineration facility according to the present embodiment, it is only necessary to use the starter blower 43 at the time of start-up, so that there is an advantage that running cost is reduced and installation of an induction fan becomes unnecessary.
Although there is no limitation on the operating conditions of the pressurized fluidized furnace 10, it is desirable to pressurize to about 0.1 to 0.3 MPa and to set the temperature to about 800 to 850 ° C. from the viewpoint of preventing dioxin generation.

ところで、本形態の加圧流動焼却設備においては、図2に示すように、タービン41の駆動軸46やこの駆動軸46の図示しない軸受けなどを含む軸部分を囲う図示しない仕切り材と、この仕切り材内に供給される潤滑油を貯留する潤滑油タンク91と、この潤滑油タンク91内の潤滑油を仕切り材内に導く上流経路92と、この上流経路92を通して潤滑油タンク91内の潤滑油を仕切り材内に強制的に送る送液ポンプ93と、仕切り材内に供給された潤滑油を潤滑油タンク91に導く下流経路94と、を有する潤滑油の循環機構90が備えられている。これにより、潤滑油タンク91内の潤滑油は、上流経路92、仕切り材内及び下流経路94を通り、潤滑油タンク91内に戻る循環を繰り返す。   By the way, in the pressurized flow incinerator of this embodiment, as shown in FIG. 2, a partition material (not shown) surrounding a shaft portion including a drive shaft 46 of the turbine 41 and a bearing (not shown) of the drive shaft 46, and the partition Lubricating oil tank 91 for storing lubricating oil supplied into the material, an upstream path 92 for guiding the lubricating oil in the lubricating oil tank 91 into the partition material, and a lubricating oil in the lubricating oil tank 91 through the upstream path 92 A lubricating oil circulation mechanism 90 having a liquid feed pump 93 that forcibly feeds the lubricating oil into the partition material and a downstream path 94 that guides the lubricating oil supplied into the partition material to the lubricating oil tank 91 is provided. As a result, the lubricating oil in the lubricating oil tank 91 repeats circulation through the upstream path 92, the partition material, and the downstream path 94 and back into the lubricating oil tank 91.

ここで、単に以上の循環機構90が備えられているのみであると、前述したように、タービン41の入口側が高圧となるため、仕切り材内も高圧となり、送液ポンプ93によって送られてくる潤滑油の循環が滞るおそれがある。そして、潤滑油の循環が滞ると、循環機構90内の圧力は上昇し、低圧であるタービン41の出口側から潤滑油が流出するおそれがある。   Here, if only the above circulation mechanism 90 is provided, the inlet side of the turbine 41 becomes a high pressure as described above, so that the partition material also becomes a high pressure and is sent by the liquid feed pump 93. Lubrication oil circulation may be delayed. When the circulation of the lubricating oil is delayed, the pressure in the circulation mechanism 90 increases, and the lubricating oil may flow out from the outlet side of the turbine 41 that is at a low pressure.

しかしながら、本形態の加圧流動焼却設備においては、潤滑油タンク91及びタービン41の下流の排ガス経路たる流路74を連通する圧調節経路95を設けている。この圧調節経路95を設けると、流路74などのタービン41の下流の排ガス経路は内圧が低いことから、潤滑油タンク91の内圧も低下する。結果、下流経路94の内圧も低下し、上流経路92の内圧よりも低くなる。そして、このような圧力差が生じると、仕切り材内の潤滑油は下流経路94内に吸引される状態になるため、仕切り材内での滞りが防止され、タービン41出口側からの流出が防止される。
下流経路94の内圧と上流経路92の内圧との(圧力)差は、例えば、圧調節経路95に仕切弁などを設け、この仕切弁の開度を調節するなどして、調節することができる。
However, in the pressurized fluidized incineration facility of this embodiment, a pressure adjusting path 95 that communicates the lubricating oil tank 91 and the flow path 74 that is an exhaust gas path downstream of the turbine 41 is provided. When this pressure adjustment path 95 is provided, the internal pressure of the exhaust oil path downstream of the turbine 41 such as the flow path 74 is low, so the internal pressure of the lubricating oil tank 91 is also reduced. As a result, the internal pressure of the downstream path 94 also decreases and becomes lower than the internal pressure of the upstream path 92. And when such a pressure difference arises, since the lubricating oil in a partition material will be in the state attracted | sucked in the downstream path 94, the stagnation in a partition material is prevented and the outflow from the turbine 41 exit side is prevented. Is done.
The (pressure) difference between the internal pressure of the downstream path 94 and the internal pressure of the upstream path 92 can be adjusted, for example, by providing a gate valve or the like in the pressure control path 95 and adjusting the opening of the gate valve. .

一方、以上のような潤滑油の循環機構90が備えられた加圧流動焼却設備においては、次のような問題が想定される。
すなわち、何らかの原因によって設備が緊急停止すると、循環機構90を構成する送液ポンプ93の稼動も停止し、結果、潤滑油タンク91内から仕切り材内への潤滑油の供給も止まる。しかしながら、設備が緊急停止しても、しばらくの間は排ガスが発生し続けるため、タービン41は駆動され、駆動軸46は回転駆動する。したがって、設備が緊急停止するのと同時に送液ポンプ93が停止し、潤滑油の供給が止まると、回転駆動し続ける駆動軸46を含む駆動部が故障するおそれがある。
そこで、図3に示すように、潤滑油タンク91は、仕切り材よりも高所に配置するのが好ましい。この形態によると、潤滑油ポンプ93の稼働が停止した後においても、潤滑油タンク91内の潤滑油が上流経路92を通して仕切り材内に自然流下するため、駆動軸46を含む駆動部の故障が防止される。
On the other hand, in the pressurized fluidized incineration facility provided with the lubricating oil circulation mechanism 90 as described above, the following problems are assumed.
That is, when the equipment is stopped urgently for some reason, the operation of the liquid feed pump 93 constituting the circulation mechanism 90 is also stopped, and as a result, the supply of the lubricating oil from the lubricating oil tank 91 to the partition material is also stopped. However, even if the equipment is urgently stopped, exhaust gas continues to be generated for a while, so that the turbine 41 is driven and the drive shaft 46 is driven to rotate. Therefore, if the liquid supply pump 93 stops simultaneously with the emergency stop of the equipment and the supply of the lubricating oil stops, the drive unit including the drive shaft 46 that continues to rotate may be broken.
Therefore, as shown in FIG. 3, the lubricating oil tank 91 is preferably arranged at a higher position than the partition material. According to this embodiment, even after the operation of the lubricating oil pump 93 is stopped, the lubricating oil in the lubricating oil tank 91 naturally flows down into the partition material through the upstream path 92, so that a failure of the driving unit including the driving shaft 46 occurs. Is prevented.

加圧流動焼却設備の構成例の説明図である。It is explanatory drawing of the structural example of a pressurization fluidization incineration equipment. 潤滑油の循環機構の構成例の説明図である。It is explanatory drawing of the structural example of the circulation mechanism of lubricating oil. 潤滑油の循環機構の変形構成例の説明図である。It is explanatory drawing of the modified structural example of the circulation mechanism of lubricating oil.

符号の説明Explanation of symbols

10…加圧流動炉、12…始動用バーナー、20…空気予熱器、30…集塵機、40…過給機、41…タービン、42…コンプレッサー、43…起動用ブロワ、50…白煙防止用予熱器、60…排煙処理塔、90…循環機構、91…潤滑油タンク、92…上流経路、93…送液ポンプ、94…下流経路、95…圧調節経路、S…被処理物   DESCRIPTION OF SYMBOLS 10 ... Pressurized flow furnace, 12 ... Start-up burner, 20 ... Air preheater, 30 ... Dust collector, 40 ... Supercharger, 41 ... Turbine, 42 ... Compressor, 43 ... Start blower, 50 ... Preheat for white smoke prevention , 60 ... Flue gas treatment tower, 90 ... Circulation mechanism, 91 ... Lubricating oil tank, 92 ... Upstream path, 93 ... Liquid feed pump, 94 ... Downstream path, 95 ... Pressure regulation path, S ... Processed object

Claims (3)

被処理物を加圧下で流動燃焼させる加圧流動炉と、
この燃焼により発生した排ガスによって駆動されるタービン、及び、このタービンの駆動軸と連結されこの駆動軸の回転力によって駆動され前記加圧流動炉内に供給する空気を加圧するコンプレッサー、を有する過給機と、
前記駆動軸を含む軸部分を囲う仕切り材、この仕切り材内に供給される潤滑油を貯留する潤滑油タンク、この潤滑油タンク内の潤滑油を前記仕切り材内に導く上流経路、この上流経路を通して前記潤滑油タンク内の潤滑油を前記仕切り材内に強制的に送る送液ポンプ、及び、前記仕切り材内に供給された潤滑油を前記潤滑油タンクに導く下流経路、を有する前記潤滑油の循環機構と、
を備えた加圧流動焼却設備であって、
前記下流経路の内圧が前記上流経路の内圧よりも低くなるように構成した、
ことを特徴とする加圧流動焼却設備。
A pressurized fluidizing furnace for fluidizing and burning a workpiece under pressure;
A turbocharger having a turbine driven by exhaust gas generated by the combustion, and a compressor connected to a drive shaft of the turbine and driven by the rotational force of the drive shaft to pressurize the air supplied into the pressurized fluidized furnace. Machine,
A partition material surrounding the shaft portion including the drive shaft, a lubricating oil tank for storing lubricating oil supplied in the partition material, an upstream path for guiding the lubricating oil in the lubricating oil tank into the partition material, and this upstream path A liquid feed pump for forcibly sending the lubricating oil in the lubricating oil tank into the partition through the downstream, and a downstream path for guiding the lubricating oil supplied in the partition to the lubricating oil tank The circulation mechanism of
A pressurized fluidized incineration facility comprising:
The internal pressure of the downstream path is configured to be lower than the internal pressure of the upstream path.
A pressurized fluidized incineration facility characterized by that.
被処理物を加圧下で流動燃焼させる加圧流動炉と、
この燃焼により発生した排ガスによって駆動されるタービン、及び、このタービンの駆動軸と連結されこの駆動軸の回転力によって駆動され前記加圧流動炉内に供給する空気を加圧するコンプレッサー、を有する過給機と、
前記駆動軸を含む軸部分を囲う仕切り材、この仕切り材内に供給される潤滑油を貯留する潤滑油タンク、この潤滑油タンク内の潤滑油を前記仕切り材内に導く上流経路、この上流経路を通して前記潤滑油タンク内の潤滑油を前記仕切り材内に強制的に送る送液ポンプ、及び、前記仕切り材内に供給された潤滑油を前記潤滑油タンクに導く下流経路、を有する前記潤滑油の循環機構と、
を備えた加圧流動焼却設備であって、
前記潤滑油タンク及び前記タービン下流の排ガス経路を連通する経路を設けて、前記下流経路の内圧が前記上流経路の内圧よりも低くなるように構成した、
ことを特徴とする加圧流動焼却設備。
A pressurized fluidizing furnace for fluidizing and burning a workpiece under pressure;
A turbocharger having a turbine driven by exhaust gas generated by the combustion, and a compressor connected to a drive shaft of the turbine and driven by the rotational force of the drive shaft to pressurize the air supplied into the pressurized fluidized furnace. Machine,
A partition material surrounding the shaft portion including the drive shaft, a lubricating oil tank for storing lubricating oil supplied in the partition material, an upstream path for guiding the lubricating oil in the lubricating oil tank into the partition material, and this upstream path The lubricating oil having a liquid feed pump for forcibly sending the lubricating oil in the lubricating oil tank into the partition material through, and a downstream path for guiding the lubricating oil supplied in the partition material to the lubricating oil tank The circulation mechanism of
A pressurized fluidized incineration facility comprising:
A path that communicates the lubricating oil tank and the exhaust gas path downstream of the turbine is provided, and the internal pressure of the downstream path is configured to be lower than the internal pressure of the upstream path.
A pressurized fluidized incineration facility characterized by that.
前記潤滑油タンクを前記仕切り材よりも高所に配置して、前記潤滑油ポンプの稼働が停止した後に、前記潤滑油タンク内の潤滑油が前記上流経路を通して前記仕切り材内に自然流下するように構成した、請求項1又は請求項2記載の加圧流動焼却設備。   The lubricating oil tank is arranged at a higher position than the partition material, and after the operation of the lubricating oil pump is stopped, the lubricating oil in the lubricating oil tank naturally flows into the partition material through the upstream path. The pressurized fluidized incineration equipment according to claim 1 or 2 constituted to.
JP2007297885A 2007-11-16 2007-11-16 Pressurized fluidized incineration equipment Pending JP2009121779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007297885A JP2009121779A (en) 2007-11-16 2007-11-16 Pressurized fluidized incineration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007297885A JP2009121779A (en) 2007-11-16 2007-11-16 Pressurized fluidized incineration equipment

Publications (1)

Publication Number Publication Date
JP2009121779A true JP2009121779A (en) 2009-06-04

Family

ID=40814112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007297885A Pending JP2009121779A (en) 2007-11-16 2007-11-16 Pressurized fluidized incineration equipment

Country Status (1)

Country Link
JP (1) JP2009121779A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137576A (en) * 2009-12-28 2011-07-14 Sanki Eng Co Ltd Method of operating pressurized-fluidized incinerator and pressurized-fluidized incinerator facility
JP2011137575A (en) * 2009-12-28 2011-07-14 Sanki Eng Co Ltd Method of operating pressurized-fluidized incinerator and pressurized-fluidized incinerator facility
JP2013204898A (en) * 2012-03-28 2013-10-07 Tsukishima Kikai Co Ltd Pressurizing fluidized furnace system and method of treating odor of the pressurizing fluidized furnace system
CN103375806A (en) * 2012-04-26 2013-10-30 月岛机械株式会社 Processed object moving method for pressurizing flowing furnace system
JP2015175316A (en) * 2014-03-17 2015-10-05 東京都 Lubricating oil supply equipment and supply method

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57191403A (en) * 1981-05-19 1982-11-25 Hitachi Ltd Method and device for lubricating turbine
JPS5842304U (en) * 1981-09-18 1983-03-22 株式会社日立製作所 Turbine shaft seal system
JPS63143338A (en) * 1986-12-05 1988-06-15 Yanmar Diesel Engine Co Ltd Hydraulic governor unit
JPH04279730A (en) * 1991-03-07 1992-10-05 Mitsubishi Heavy Ind Ltd Emergency oil feeding device of gas turbine
JPH10252499A (en) * 1997-03-14 1998-09-22 Ishikawajima Harima Heavy Ind Co Ltd Lubrication structure of gas turbine
JP2004340014A (en) * 2003-05-15 2004-12-02 Ebara Corp Turbine generator
JP2005030224A (en) * 2003-07-08 2005-02-03 Hitachi Ltd Micro turbine power generation system
JP2005054779A (en) * 2003-07-24 2005-03-03 Hitachi Ltd Gas turbine power generation facility, and method for operation for the same
JP2007170702A (en) * 2005-12-20 2007-07-05 Public Works Research Institute Facility and method for treating sludge
JP2007170705A (en) * 2005-12-20 2007-07-05 Public Works Research Institute Pressurized fluidized incineration facility and its starting method
JP2007170703A (en) * 2005-12-20 2007-07-05 Public Works Research Institute Facility and method for treating waste
JP2007170704A (en) * 2005-12-20 2007-07-05 Public Works Research Institute Pressurized fluidized incineration facility and its starting method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57191403A (en) * 1981-05-19 1982-11-25 Hitachi Ltd Method and device for lubricating turbine
JPS5842304U (en) * 1981-09-18 1983-03-22 株式会社日立製作所 Turbine shaft seal system
JPS63143338A (en) * 1986-12-05 1988-06-15 Yanmar Diesel Engine Co Ltd Hydraulic governor unit
JPH04279730A (en) * 1991-03-07 1992-10-05 Mitsubishi Heavy Ind Ltd Emergency oil feeding device of gas turbine
JPH10252499A (en) * 1997-03-14 1998-09-22 Ishikawajima Harima Heavy Ind Co Ltd Lubrication structure of gas turbine
JP2004340014A (en) * 2003-05-15 2004-12-02 Ebara Corp Turbine generator
JP2005030224A (en) * 2003-07-08 2005-02-03 Hitachi Ltd Micro turbine power generation system
JP2005054779A (en) * 2003-07-24 2005-03-03 Hitachi Ltd Gas turbine power generation facility, and method for operation for the same
JP2007170702A (en) * 2005-12-20 2007-07-05 Public Works Research Institute Facility and method for treating sludge
JP2007170705A (en) * 2005-12-20 2007-07-05 Public Works Research Institute Pressurized fluidized incineration facility and its starting method
JP2007170703A (en) * 2005-12-20 2007-07-05 Public Works Research Institute Facility and method for treating waste
JP2007170704A (en) * 2005-12-20 2007-07-05 Public Works Research Institute Pressurized fluidized incineration facility and its starting method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137576A (en) * 2009-12-28 2011-07-14 Sanki Eng Co Ltd Method of operating pressurized-fluidized incinerator and pressurized-fluidized incinerator facility
JP2011137575A (en) * 2009-12-28 2011-07-14 Sanki Eng Co Ltd Method of operating pressurized-fluidized incinerator and pressurized-fluidized incinerator facility
JP2013204898A (en) * 2012-03-28 2013-10-07 Tsukishima Kikai Co Ltd Pressurizing fluidized furnace system and method of treating odor of the pressurizing fluidized furnace system
CN103375806A (en) * 2012-04-26 2013-10-30 月岛机械株式会社 Processed object moving method for pressurizing flowing furnace system
CN103375806B (en) * 2012-04-26 2015-10-14 月岛机械株式会社 The treated object transport method of pressurized flow furnace system
JP2015175316A (en) * 2014-03-17 2015-10-05 東京都 Lubricating oil supply equipment and supply method

Similar Documents

Publication Publication Date Title
JP5067653B2 (en) Pressurized incinerator equipment and operating method thereof
CA2130676A1 (en) A system for burning biomass to fuel a gas turbine
JP4991986B2 (en) Pressure incinerator equipment and its startup method
JP4771309B2 (en) Pressurized fluidized incineration equipment and its startup method
JP6333021B2 (en) Incineration processing equipment and incineration processing method
JP2009121779A (en) Pressurized fluidized incineration equipment
JP4745812B2 (en) Combined power generation system and method of operating combined power generation system
JP5187732B2 (en) Operation method of pressurized fluidized incineration equipment and pressurized fluidized incineration equipment
JP3783024B2 (en) Sludge treatment system and method
JP5187731B2 (en) Pressurized fluidized incineration equipment and startup operation method of pressurized fluidized incineration equipment
JP4714912B2 (en) Pressurized fluidized incineration equipment and its startup method
JP5438146B2 (en) Pressurized flow furnace system
JP7418491B2 (en) Incinerator with supercharger
KR102086185B1 (en) Operating method for pressurized fluidized furnace system
JP5491550B2 (en) Pressurized flow furnace system and control method thereof
JP2015194307A (en) Incineration equipment and incineration method
JP2015175316A (en) Lubricating oil supply equipment and supply method
EP4017942A1 (en) A gasification apparatus and method
JP2006152081A (en) Coal gasification plant and method for operating the same
JP5392739B2 (en) Pressurized fluidized incineration equipment and startup operation method of pressurized fluidized incineration equipment
JP2009144937A (en) Operating method of boiler
EP2833061A1 (en) Activation method for pressurized fluidized furnace system
JP3952287B2 (en) Method and facility for recovering energy from combustible materials
JP2013200087A5 (en)
JP2013200086A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101025

A131 Notification of reasons for refusal

Effective date: 20120608

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20121102

Free format text: JAPANESE INTERMEDIATE CODE: A02