JP6333021B2 - Incineration processing equipment and incineration processing method - Google Patents

Incineration processing equipment and incineration processing method Download PDF

Info

Publication number
JP6333021B2
JP6333021B2 JP2014072774A JP2014072774A JP6333021B2 JP 6333021 B2 JP6333021 B2 JP 6333021B2 JP 2014072774 A JP2014072774 A JP 2014072774A JP 2014072774 A JP2014072774 A JP 2014072774A JP 6333021 B2 JP6333021 B2 JP 6333021B2
Authority
JP
Japan
Prior art keywords
compressed air
turbine
temperature
exhaust gas
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014072774A
Other languages
Japanese (ja)
Other versions
JP2015194306A (en
Inventor
野邑 尚史
尚史 野邑
野島 智之
智之 野島
修 横田
修 横田
謙吾 村木
謙吾 村木
孝浩 堀井
孝浩 堀井
古北 克
克 古北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2014072774A priority Critical patent/JP6333021B2/en
Publication of JP2015194306A publication Critical patent/JP2015194306A/en
Application granted granted Critical
Publication of JP6333021B2 publication Critical patent/JP6333021B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Air Supply (AREA)

Description

本発明は、焼却処理設備及び焼却処理方法に関する。   The present invention relates to an incineration processing facility and an incineration processing method.

特許文献1には、燃焼用圧縮空気や白煙防止用圧縮空気を生成し予熱器に供給するためのブロアを必要とせず、エネルギー効率に優れる廃棄物焼却設備及び処理方法を提供することを目的として、流動床式焼却炉と、流動床式焼却炉からの排ガスとの連続的なガス−ガス熱交換により流動床式焼却炉に供給する燃焼用圧縮空気の予熱を行う第1の予熱器と、第1の予熱器で加熱されて流動床式焼却炉に向かう燃焼用圧縮空気によってタービンを回転し、この回転によってコンプレッサで第1の予熱器に供給する圧縮空気の生成及び送風を行う第1の過給機となるタービン装置と、第1の予熱器より上流側に設けられ運転開始時にタービンを回転させる第1の始動用空気供給装置を備えた廃棄物処理設備が提案されている。   Patent Document 1 aims to provide a waste incineration facility and a processing method that are excellent in energy efficiency without requiring a blower for generating compressed air for combustion and compressed air for preventing white smoke and supplying it to a preheater. And a first preheater for preheating combustion compressed air supplied to the fluidized bed incinerator by continuous gas-gas heat exchange with the exhaust gas from the fluidized bed incinerator. The turbine is rotated by compressed air for combustion which is heated by the first preheater and goes to the fluidized bed incinerator, and the compressor generates and blows compressed air to be supplied to the first preheater by this rotation. A waste treatment facility including a turbine device serving as a supercharger and a first start-up air supply device that is provided upstream of the first preheater and rotates the turbine at the start of operation has been proposed.

特許第4831309号公報Japanese Patent No. 4831309

特許文献1に開示された廃棄物処理設備で下水汚泥のようなバイオマスを焼却処理する場合には、地球温暖化の原因物質となる亜酸化窒素の発生量を抑制するために炉内燃焼温度を850℃以上の高温で焼却処理する必要がある。そのため、含水率の高い汚泥等を焼却処理する際には、燃焼バーナに化石燃料を供給して補助的に加熱する場合があった。   When incinerating biomass such as sewage sludge in the waste treatment facility disclosed in Patent Document 1, the in-furnace combustion temperature is set to suppress the generation amount of nitrous oxide that causes global warming. It is necessary to incinerate at a high temperature of 850 ° C. or higher. For this reason, when sludge having a high water content is incinerated, fossil fuel is supplied to the combustion burner for auxiliary heating.

しかし、含水率の低い下水汚泥等の高カロリーのバイオマスを焼却処理する場合には、逆に900℃を超えることもあり、処理対象物が焼結を開始して炉内内壁や煙道にクリンカが付着し、ガスの通流性が損なわれて閉塞に到る虞があった。   However, when high-calorie biomass such as sewage sludge with low moisture content is incinerated, the temperature may exceed 900 ° C., and the object to be treated starts sintering, and the clinker is placed on the inner wall of the furnace and the flue. May adhere to the gas, impairing gas flow, and may cause clogging.

そのために、炉内に水噴霧装置を設けて炉内の異常温度上昇を回避すると、発生蒸気により排ガス総量が増加して後段の排ガス処理設備の大型化を招き、設備の経済性を損ねるという問題があった。   Therefore, if a water spray device is installed in the furnace to avoid an abnormal temperature rise in the furnace, the total amount of exhaust gas increases due to the generated steam, leading to an increase in the size of the exhaust gas treatment facility at the latter stage, and the economic efficiency of the facility is impaired. was there.

また、炉内を負圧に維持するために煙道に大きな電力を消費する誘引送風機を設ける必要があり、エネルギー効率を向上させるという点では、さらなる改良の余地もあった。   Moreover, in order to maintain a negative pressure inside the furnace, it is necessary to provide an induction blower that consumes a large amount of power in the flue, and there is room for further improvement in terms of improving energy efficiency.

さらに、誘引送風機を設置せずに燃焼用圧縮空気の残圧で煙道に排ガスを圧送する場合には、正圧となる炉室や煙道に配置される各排ガス処理設備から高温の排ガスが噴き出すことが無いように確実にシールする必要があり、そのために設備コストが上昇するという問題や、仮にシールが破れると高温の排ガスが噴き出して重大な事故につながる虞があるという問題もあった。   Furthermore, when exhaust gas is pumped to the flue with the residual pressure of the compressed air for combustion without installing an induction blower, high-temperature exhaust gas is discharged from each exhaust gas treatment facility disposed in the furnace chamber or flue that is at positive pressure. There is a problem that it is necessary to securely seal so as not to be blown out, which causes an increase in equipment cost, and there is a problem that if the seal is broken, high-temperature exhaust gas is blown out, leading to a serious accident.

本発明の目的は、上述した問題点に鑑み、タービン装置からの圧縮空気を燃焼用空気として利用しながらも、設備の大型化を招くことなく燃焼温度を調整でき、さらには大きな電力を消費する誘引送風機を設けることなく炉内を負圧に維持可能な焼却処理設備及び焼却処理方法を提供する点にある。   In view of the above-mentioned problems, the object of the present invention is to adjust the combustion temperature without increasing the size of the equipment and to consume a large amount of power while using the compressed air from the turbine device as combustion air. It is the point which provides the incineration processing equipment and the incineration processing method which can maintain the inside of a furnace to a negative pressure, without providing an induction blower.

上述の目的を達成するため、本発明による焼却処理システムの第一特徴構成は、特許請求の範囲の請求項1に記載した通り、燃焼用空気として高温の圧縮空気が供給される焼却炉と、前記焼却炉の煙道に導かれる排ガスの保有熱により圧縮空気を予熱する第1熱交換器と、前記第1熱交換器で予熱された高温の圧縮空気により回転するタービンと、前記タービンの回転により前記第1熱交換器に圧縮空気を供給するコンプレッサとを含むタービン装置と、前記タービンを駆動した後の高温の圧縮空気を燃焼用空気として前記焼却炉に供給する燃焼用空気供給経路と、を備えている焼却処理設備であって、前記焼却炉に配置され、前記第1熱交換器で予熱された高温の圧縮空気を炉内燃焼熱でさらに予熱する抽熱器と、前記コンプレッサで生成され前記第1熱交換器で予熱された圧縮空気と前記コンプレッサで生成され前記第1熱交換器を経ない圧縮空気との混合比率を調整する混合比率調整機構を介して、前記抽熱器の熱交換量を調整することにより、前記焼却炉の炉内燃焼温度を調整する温度調整機構を備えている点にある。 In order to achieve the above object, the first characteristic configuration of the incineration processing system according to the present invention is an incinerator to which high-temperature compressed air is supplied as combustion air, as described in claim 1 of the claims, a first heat exchanger for preheating the compressed air by heat retained in the exhaust gas is guided to the flue of the incinerator, and a turbine rotated by compressed air high temperature preheated by the first heat exchanger, the rotation of the turbine A turbine device including a compressor for supplying compressed air to the first heat exchanger, and a combustion air supply path for supplying high-temperature compressed air after driving the turbine to the incinerator as combustion air; a incineration facility comprises a, is disposed in the incinerator, and抽熱unit for further preheating the preheated hot compressed air in the furnace combustion heat in the first heat exchanger, generated by the compressor Is via a mixing ratio adjusting mechanism for adjusting the mixing ratio of the compressed air generated by said first said compressor and compressed air preheated in the heat exchanger without going through the first heat exchanger, the抽熱unit By adjusting the amount of heat exchange, a temperature adjusting mechanism for adjusting the in-furnace combustion temperature of the incinerator is provided.

コンプレッサで生成された圧縮空気が第1熱交換器を経由してさらに抽熱器に送られ、抽熱器で炉内燃焼熱と熱交換される結果、炉内温度の異常な上昇が抑制される。温度調整機構は、例えば抽熱器に供給される圧縮空気量を調整することにより、炉内温度を850℃から900℃の範囲に保つことで、亜酸化窒素の発生量を低減させながらも排ガス量の増加を招くことなく炉壁や煙道へのクリンカの付着を回避することができるようになる。 Compressed air generated by the compressor is further sent to the extractor via the first heat exchanger, where heat is exchanged with the combustion heat in the furnace. As a result, an abnormal rise in the furnace temperature is suppressed. The The temperature adjustment mechanism adjusts the amount of compressed air supplied to the extractor, for example, to keep the furnace temperature in the range of 850 ° C. to 900 ° C., thereby reducing the amount of nitrous oxide generated while reducing the amount of exhaust gas. an increase in the amount ing to be able to avoid clinker adhering to no furnace wall or flue can lead.

そして、混合比率調整機構によって、第1熱交換器で予熱された圧縮空気よりも第1熱交換器で予熱される前の圧縮空気の混合比率を大きくすれば、それだけ抽熱器での熱交換量が増して炉内燃焼温度を効果的に低下させることができる。 Then, the mixed-rate control mechanism, by increasing the mixing ratio of the compressed air before than compressed air preheated in the first heat exchanger is preheated by the first heat exchanger, heat at much抽熱unit The amount of exchange can be increased and the furnace combustion temperature can be effectively reduced.

同第の特徴構成は、同請求項に記載した通り、上述の第一の特徴構成に加えて、前記温度調整機構は、前記第1熱交換器で予熱された圧縮空気と前記第1熱交換器を経ない圧縮空気とを、炉内に供給する圧縮空気の総量を一定にしながら混合比率を調整して前記抽熱器に供給する混合比率調整機構で構成されている点にある。 In the second characteristic configuration, as described in the second aspect, in addition to the first characteristic configuration described above, the temperature adjustment mechanism includes the compressed air preheated by the first heat exchanger and the first characteristic configuration . Compressed air that does not pass through the heat exchanger is configured by a mixing ratio adjusting mechanism that adjusts the mixing ratio while supplying the total amount of compressed air supplied into the furnace and supplies it to the extractor.

混合比率調整機構によって、第1熱交換器で予熱された圧縮空気よりも第1熱交換器で予熱される前の圧縮空気の混合比率を大きくすれば、それだけ抽熱器での熱交換量が増して炉内燃焼温度を効果的に低下させることができ、しかも炉内に供給される圧縮空気の総量が一定に調整されるので、炉内に供給される圧縮空気で形成される燃焼状態を安定させることができる。   If the mixing ratio of the compressed air before being preheated in the first heat exchanger is made larger than the compressed air preheated in the first heat exchanger by the mixing ratio adjusting mechanism, the heat exchange amount in the extractor is correspondingly increased. In addition, the combustion temperature in the furnace can be effectively reduced, and the total amount of compressed air supplied into the furnace is adjusted to be constant, so that the combustion state formed by the compressed air supplied into the furnace can be reduced. It can be stabilized.

同第の特徴構成は、同請求項に記載した通り、上述の第一または第二の特徴構成に加えて、炉内燃焼熱及び/または排ガスの保有熱を回収して得られた運動エネルギーを用いて前記煙道に導かれた排ガスを誘引する排ガス誘引装置を備えている点にある。 The third feature structure, as described in the claim 3, in addition to the first or second characteristic feature of the above, obtained by collecting the furnace heat of combustion and / or exhaust gas potential heat movement An exhaust gas attracting device for attracting the exhaust gas guided to the flue using energy is provided.

第1熱交換器及び/または抽熱器によって排ガスの保有熱または燃焼熱を回収した高温の圧縮空気によってタービンが駆動され、タービンと連結されるコンプレッサが駆動されて圧縮空気が生成される。排ガス誘引装置は、このとき回収した排ガスの保有熱または燃焼熱から生成される運動エネルギーを用いることによって煙道に導かれた排ガスが誘引されるので、誘引送風機を駆動するための電力のような別途のエネルギーが不要になり、エネルギー効率を一層に向上させることができ、また炉内を負圧に維持できる。   The turbine is driven by the high-temperature compressed air from which the retained heat or combustion heat of the exhaust gas is recovered by the first heat exchanger and / or the extractor, and the compressor connected to the turbine is driven to generate compressed air. Since the exhaust gas induction device attracts the exhaust gas guided to the flue by using the kinetic energy generated from the retained heat or combustion heat of the exhaust gas recovered at this time, the exhaust gas induction device such as the electric power for driving the induction fan Separate energy is not required, energy efficiency can be further improved, and the inside of the furnace can be maintained at a negative pressure.

同第の特徴構成は、同請求項に記載した通り、上述した第の特徴構成に加えて、前記排ガス誘引装置は、前記煙道に導かれた排ガスを、前記タービンから排出される高温の圧縮空気の流れよって誘引するエジェクタで構成されている点にある。 In the fourth feature configuration, as described in claim 4 , in addition to the third feature configuration described above, the exhaust gas attraction device discharges the exhaust gas guided to the flue from the turbine. It is in the point comprised by the ejector attracted by the flow of hot compressed air.

タービンから排出され燃焼用空気として焼却炉に供給される高温の圧縮空気の一部がエジェクタの空気供給ポートに供給され、煙道の排ガスが真空ポートから吸引されてディフューザーに流出するようになるので、電力によって駆動される誘引送風機を備えなくても炉内が負圧に維持される。しかも、排ガスがディフューザーで高温の圧縮空気と混合して加熱されるので、排ガスの昇温及び湿度低下により、白防効果も併せて実現されるようになる。   Part of the high-temperature compressed air that is discharged from the turbine and supplied to the incinerator as combustion air is supplied to the air supply port of the ejector, and flue gas is drawn from the vacuum port and flows out to the diffuser. The interior of the furnace is maintained at a negative pressure without an induction blower driven by electric power. In addition, since the exhaust gas is heated by being mixed with high-temperature compressed air by the diffuser, the anti-whitening effect is also realized by raising the temperature and reducing the humidity of the exhaust gas.

同第の特徴構成は、同請求項に記載した通り、上述した第の特徴構成に加えて、前記排ガス誘引装置は、前記タービン装置の軸動力で回転軸が駆動される誘引送風機を備えて構成されている点にある。 In the fifth feature configuration, as described in claim 5 , in addition to the third feature configuration described above, the exhaust gas attraction device includes an induction fan whose rotational shaft is driven by the shaft power of the turbine device. It is in the point where it is prepared.

第1熱交換器によって排ガスの保有熱を回収した高温の圧縮空気によって駆動されるタービンの軸動力で誘引送風機が回転駆動されて煙道の排ガスが誘引される。つまり、誘引送風機を回転駆動するために別途の電力が不要になる。   The induction blower is rotationally driven by the shaft power of the turbine driven by the high-temperature compressed air that collects the retained heat of the exhaust gas by the first heat exchanger, and the flue exhaust gas is attracted. That is, no separate electric power is required to rotationally drive the induction fan.

同第の特徴構成は、同請求項に記載した通り、上述した第一から第の何れかの特徴構成に加えて、前記コンプレッサで生成された圧縮空気を、前記タービンから排出された高温の圧縮空気で予熱する第2熱交換器を備え、前記第2熱交換器で予熱された圧縮空気を前記第1熱交換機に供給するように構成されている点にある。 In the sixth feature configuration, in addition to any of the first to fifth feature configurations described above, the compressed air generated by the compressor is discharged from the turbine, as described in claim 6 . A second heat exchanger preheated with high-temperature compressed air is provided, and the compressed air preheated by the second heat exchanger is configured to be supplied to the first heat exchanger.

第2熱交換器を設けることによってタービンに供給される圧縮空気の持ち込み熱量を高めることができ、コンプレッサによる圧縮空気の生成量を増すことが可能になる。例えば、タービンに発電機を接続した場合には発電量を一層高めることができるようになる。第2熱交換器は予熱源、予熱対象ともに空気であるため、酸性成分が含まれる排ガスと異なり、低温腐食を招くことが無いので予熱源の持つ熱量を高効率で回収できるようになる。   By providing the second heat exchanger, the amount of heat brought in by the compressed air supplied to the turbine can be increased, and the amount of compressed air generated by the compressor can be increased. For example, when a generator is connected to the turbine, the amount of power generation can be further increased. Since the second heat exchanger is air for both the preheating source and the preheating target, unlike the exhaust gas containing acidic components, it does not cause low-temperature corrosion, so that the amount of heat of the preheating source can be recovered with high efficiency.

同第の特徴構成は、同請求項7に記載した通り、上述した第一から第の何れかの特徴構成に加えて、前記焼却炉で焼却処理される被処理物が高カロリーのバイオマスである点にある。 In addition to any one of the first to sixth feature configurations described above, the seventh feature configuration is biomass having a high calorie content to be treated in the incinerator. In that point.

焼却炉で焼却処理される被処理物が例えば木質系を含む高カロリーのバイオマスであることが好ましく、エネルギー効率よく十分な高温で焼却処理可能になるため、地球温暖化の原因ガスである亜酸化窒素の発生量も極めて効果的に抑制することができるようになる。   It is preferable that the material to be incinerated in the incinerator is high-calorie biomass including, for example, woody, and it is possible to incinerate at a sufficiently high temperature with high energy efficiency, so sub-oxidation that is a cause gas of global warming The amount of nitrogen generated can also be suppressed extremely effectively.

本発明による焼却処理方法の第一の特徴構成は、同請求項に記載した通り、タービンと連動するコンプレッサで圧縮空気を生成し、焼却炉の煙道に導かれる排ガスの保有熱により圧縮空気を予熱し、予熱された高温の圧縮空気でタービンを回転し、タービンを駆動した後の高温の圧縮空気を前記焼却炉へ燃焼用空気として供給する焼却処理方法であって、前記コンプレッサで生成され前記排ガスの保有熱により予熱された圧縮空気と前記コンプレッサで生成され前記排ガスの保有熱により予熱されていない圧縮空気との混合比率を調整した圧縮空気である前記タービンに供給される前の圧縮空気を前記焼却炉の炉内燃焼熱により予熱することにより、前記焼却炉の炉内燃焼温度を調整する点にある。 The first characteristic configuration of the incineration treatment method according to the present invention is that, as described in claim 8 , compressed air is generated by a compressor that operates in conjunction with a turbine, and the compressed air is generated by the retained heat of the exhaust gas guided to the flue of the incinerator. Is an incineration processing method in which the turbine is rotated by preheated high-temperature compressed air, and the high-temperature compressed air after driving the turbine is supplied to the incinerator as combustion air, which is generated by the compressor. Compressed air before being supplied to the turbine, which is compressed air in which the mixing ratio of compressed air preheated by the retained heat of the exhaust gas and compressed air generated by the compressor and not preheated by the retained heat of the exhaust gas is adjusted by preheating the furnace heat of combustion of the incinerator, and lies in adjusting the furnace combustion temperature of the incinerator.

以上説明した通り、本発明によれば、タービン装置からの圧縮空気を燃焼用空気として利用しながらも、設備の大型化を招くことなく燃焼温度を調整でき、さらには大きな電力を消費する誘引送風機を設けることなく炉内を負圧に維持可能な焼却処理設備及び焼却処理方法を提供することができるようになった。   As described above, according to the present invention, an induction blower that can adjust the combustion temperature without increasing the size of the facility and consumes large electric power while using the compressed air from the turbine device as combustion air. It is now possible to provide an incineration treatment facility and an incineration treatment method capable of maintaining the inside of the furnace at a negative pressure without providing a gas.

本発明による焼却処理設備及び焼却処理方法の説明図Explanatory drawing of incineration processing equipment and incineration processing method by the present invention 別実施形態を示す焼却処理設備の説明図Explanatory drawing of incineration processing equipment showing another embodiment 別実施形態を示す焼却処理設備の説明図Explanatory drawing of incineration processing equipment showing another embodiment

以下、本発明による焼却処理設備及び焼却処理方法の実施形態を説明する。
図1には、焼却処理設備1が示されている。焼却処理設備1は、バイオマスが貯留されたサイロ10と、バイオマス投入機構11と、流動用空気として高温の圧縮空気が供給される流動床式焼却炉2を備えている。流動床式焼却炉2の煙道に沿って第1熱交換器20と、セラミックフィルタを備えた耐熱性の高い集塵装置16と、アルカリ剤を噴霧して排ガス中の酸性ガス成分を中和する排煙処理塔17及び煙突18が配置されている。符合12は燃焼バーナである。
Hereinafter, embodiments of the incineration processing equipment and the incineration processing method according to the present invention will be described.
FIG. 1 shows an incineration processing facility 1. The incineration processing facility 1 includes a silo 10 in which biomass is stored, a biomass charging mechanism 11, and a fluidized bed incinerator 2 to which high-temperature compressed air is supplied as flowing air. Along the flue of the fluidized bed incinerator 2, the first heat exchanger 20, a highly heat-resistant dust collector 16 equipped with a ceramic filter, and an alkali agent are sprayed to neutralize acid gas components in the exhaust gas. A flue gas processing tower 17 and a chimney 18 are disposed. Reference numeral 12 denotes a combustion burner.

焼却処理設備1の被処理物であるバイオマスには、例えば下水汚泥を生物処理する活性汚泥法や、生物処理して膜ろ過する膜分離活性汚泥法等の方式を採用した汚水処理設備で発生した余剰汚泥を十分に脱水した乾燥汚泥や、食品工場等で発生した汚水を浄化処理して発生した汚泥等の高カロリーの有機性の汚泥等、様々な動植物由来の高カロリーバイオマスが含まれる。   Biomass, which is an object to be treated by the incineration facility 1, is generated in a sewage treatment facility that employs a method such as an activated sludge method that biologically treats sewage sludge or a membrane separation activated sludge method that performs biological treatment and membrane filtration High-calorie biomass derived from various animals and plants is included, such as dry sludge from which excess sludge has been sufficiently dehydrated and high-calorie organic sludge such as sludge generated by purifying sewage generated at food factories.

焼却処理設備1には、第1熱交換器20で予熱された高温の圧縮空気により回転するタービン31と、タービン31の回転により第1熱交換器20に圧縮空気を供給するコンプレッサ32とを含むタービン装置30を備えている。   The incineration treatment facility 1 includes a turbine 31 that is rotated by high-temperature compressed air preheated by the first heat exchanger 20 and a compressor 32 that supplies compressed air to the first heat exchanger 20 by the rotation of the turbine 31. A turbine device 30 is provided.

タービン31と軸連結されるコンプレッサ32が駆動されて100〜150℃,0.2〜0.3MPaの圧縮空気が生成され、コンプレッサ32で生成された圧縮空気が第1熱交換器20に供給されて、流動床式焼却炉2の煙道に導かれる約900℃の排ガスの保有熱により650〜750℃,0.2〜0.3MPaに予熱される。尚、本明細書で説明する圧力はゲージ圧である。   A compressor 32 connected to the turbine 31 is driven to generate compressed air of 100 to 150 ° C. and 0.2 to 0.3 MPa, and the compressed air generated by the compressor 32 is supplied to the first heat exchanger 20. Thus, it is preheated to 650 to 750 ° C. and 0.2 to 0.3 MPa by the retained heat of the exhaust gas at about 900 ° C. guided to the flue of the fluidized bed incinerator 2. In addition, the pressure demonstrated in this specification is a gauge pressure.

第1熱交換器20で予熱された圧縮空気がタービン31に供給されることによってタービン31が回転駆動され、さらに駆動軸と連結されたコンプレッサ32が駆動されるようになる。タービン31から排出された500〜600℃,0.05〜0.15MPaの圧縮空気の一部が流動用空気つまり燃焼用空気として流動床式焼却炉2に供給されて流動床が形成される。さらに、タービン装置30の出力軸に発電機Gが連結され、タービン31の回転動力によって発電可能に構成されている。   When the compressed air preheated by the first heat exchanger 20 is supplied to the turbine 31, the turbine 31 is rotationally driven, and the compressor 32 connected to the drive shaft is driven. A part of the compressed air of 500 to 600 ° C. and 0.05 to 0.15 MPa discharged from the turbine 31 is supplied to the fluidized bed incinerator 2 as fluidizing air, that is, combustion air, to form a fluidized bed. Further, a generator G is connected to the output shaft of the turbine device 30 so that power can be generated by the rotational power of the turbine 31.

バイオマス投入機構11によって炉内に投入された高カロリーのバイオマスは、燃焼バーナ12を点火しなくても、流動床で加熱されて熱分解し、その熱分解ガスが約850℃から900℃で燃焼して煙道に流出するので、汚泥の燃焼時に地球温暖化ガスである亜酸化窒素の発生は抑制される。   The high-calorie biomass input into the furnace by the biomass input mechanism 11 is heated and pyrolyzed in the fluidized bed without igniting the combustion burner 12, and the pyrolysis gas burns at about 850 ° C to 900 ° C. Since it flows out into the flue, generation of nitrous oxide, which is a global warming gas, during combustion of sludge is suppressed.

さらに、焼却処理設備1には、タービン装置30によって排ガスの保有熱を回収して得られた運動エネルギーを用いて煙道に導かれた排ガスを誘引する排ガス誘引装置40を備えている。   Further, the incineration treatment facility 1 includes an exhaust gas attracting device 40 that attracts the exhaust gas guided to the flue using the kinetic energy obtained by collecting the retained heat of the exhaust gas by the turbine device 30.

タービン31から排出された500〜600℃,0.05〜0.15MPaの圧縮空気の一部は、排ガス誘引装置40に供給される。排ガス誘引装置40は、第1熱交換器20で回収した排ガスの保有熱から生成される運動エネルギーを用いることによって煙道に導かれた排ガスを誘引して煙突18から排出する。   A part of the compressed air of 500 to 600 ° C. and 0.05 to 0.15 MPa discharged from the turbine 31 is supplied to the exhaust gas induction device 40. The exhaust gas attracting device 40 attracts exhaust gas guided to the flue by using kinetic energy generated from the retained heat of the exhaust gas recovered by the first heat exchanger 20 and discharges it from the chimney 18.

排ガス誘引装置40は、煙道に導かれた排ガスを、タービン31から排出される高温の圧縮空気の流れよって誘引するエジェクタで構成されている。   The exhaust gas attracting device 40 is composed of an ejector that attracts the exhaust gas guided to the flue by the flow of high-temperature compressed air discharged from the turbine 31.

タービン31から排出され流動用空気として流動床式焼却炉2に供給される高温の圧縮空気の一部がエジェクタを構成する空気供給ポート40aに供給され、煙道の排ガスが真空ポート40bから吸引されてディフューザー40cに流出するようになるので、電力によって駆動される誘引送風機を備えなくても炉内が負圧に維持される。しかも、排煙処理塔17で40℃程度に低下した排ガスがディフューザー40cで高温の圧縮空気と混合して加熱されるので、排ガスの昇温及び湿度低下により、白防効果も併せて実現されるようになる。尚、高温の圧縮空気の一部を白防用としてエジェクタを経由することなく煙突18側に供給してもよい。   A part of the high-temperature compressed air discharged from the turbine 31 and supplied as fluidized air to the fluidized bed incinerator 2 is supplied to the air supply port 40a constituting the ejector, and the flue gas is sucked from the vacuum port 40b. As a result, it flows out into the diffuser 40c, so that the inside of the furnace is maintained at a negative pressure without an induction blower driven by electric power. Moreover, since the exhaust gas that has been reduced to about 40 ° C. in the flue gas treatment tower 17 is mixed with high-temperature compressed air and heated in the diffuser 40c, the white prevention effect is also realized due to the temperature rise and humidity reduction of the exhaust gas. It becomes like this. A part of the high-temperature compressed air may be supplied to the chimney 18 side without going through the ejector for white protection.

流動床式焼却炉2の燃焼状態を制御するために、流動用空気の投入量または温度を調整する必要がある場合、流量調整バルブV1でコンプレッサ32への給気量を構成すればよい。また、タービン31から出力される圧縮空気の流動床式焼却炉2への供給量と排ガス誘引装置40への供給量を調整するバルブV4を圧縮空気の搬送経路に備えてもよい。以下では流量調整のための機械要素としてバルブを用いた例を説明するが、流量調整のための機械要素としてダンパを用いることも可能である。   In order to control the combustion state of the fluidized bed incinerator 2, when it is necessary to adjust the input amount or temperature of the flowing air, the air supply amount to the compressor 32 may be configured by the flow rate adjusting valve V1. Further, a valve V4 that adjusts the supply amount of the compressed air output from the turbine 31 to the fluidized bed incinerator 2 and the supply amount to the exhaust gas induction device 40 may be provided in the compressed air conveyance path. Hereinafter, an example in which a valve is used as a mechanical element for adjusting the flow rate will be described. However, a damper may be used as a mechanical element for adjusting the flow rate.

このような構成によれば、従来の誘引送風機を駆動するための電力のような別途のエネルギーが不要になり、エネルギー効率を一層に向上させることができ、また炉内を負圧に維持できるので、設備コストを要する特別のシール機構を備える必要もなくなる。   According to such a configuration, no separate energy such as electric power for driving the conventional induction fan is required, energy efficiency can be further improved, and the inside of the furnace can be maintained at a negative pressure. Further, it is not necessary to provide a special sealing mechanism that requires equipment costs.

焼却処理設備1には、第1熱交換器20で予熱された高温の圧縮空気を炉内燃焼熱でさらに予熱する抽熱器50を備え、流動床式焼却炉2の燃焼温度が目標温度範囲に入るように抽熱器50の熱交換量を調整する温度調整機構70を備えている。   The incineration treatment facility 1 includes an extractor 50 that further preheats high-temperature compressed air preheated by the first heat exchanger 20 with in-furnace combustion heat, and the combustion temperature of the fluidized bed incinerator 2 is within a target temperature range. The temperature adjustment mechanism 70 which adjusts the heat exchange amount of the extractor 50 so that it may enter is provided.

温度調整機構70は、コンプレッサ32で生成された圧縮空気を第1熱交換器20に供給する予熱経路L1の途中で分岐し、第1熱交換器20で予熱された圧縮空気を抽熱器50に導く経路と合流する分岐経路L2と、分岐経路L2に備えた流量調整用のバルブV2と、予熱経路L1に備えた流量調整用のバルブV3と、バルブV2,V3の開度を調整する制御部71とで構成されている。   The temperature adjusting mechanism 70 branches in the middle of the preheating path L1 for supplying the compressed air generated by the compressor 32 to the first heat exchanger 20, and the compressed air preheated by the first heat exchanger 20 is extracted by the extractor 50. Control for adjusting the opening degree of the valves V2 and V3, the branch path L2 that joins the path leading to the flow path, the flow rate adjusting valve V2 provided in the branch path L2, the flow rate adjusting valve V3 provided in the preheating path L1 Part 71.

温度調整機構70は、温度センサTSで計測された炉内温度が所定温度範囲に維持されるようにバルブV2,V3の開度を制御して、抽熱器50に供給される圧縮空気量及び/または温度を調整する。具体的に、炉内の燃焼温度が900℃を超えて上昇すると圧縮空気の供給量を増加及び/または温度を低下させて抽熱量を増大させ、850℃を下回ると圧縮空気の供給量を減少及び/または温度を上昇させて抽熱量を減らす。   The temperature adjustment mechanism 70 controls the opening degree of the valves V2 and V3 so that the furnace temperature measured by the temperature sensor TS is maintained within a predetermined temperature range, and the amount of compressed air supplied to the extractor 50 and / Or adjust the temperature. Specifically, when the combustion temperature in the furnace rises above 900 ° C., the supply amount of compressed air is increased and / or the temperature is decreased to increase the extraction heat amount. When the combustion temperature falls below 850 ° C., the supply amount of compressed air is decreased. And / or increase the temperature to reduce the amount of extracted heat.

例えば、温度センサTSで計測された炉内温度が目標温度範囲に入るように、目標温度と炉内温度との差分値、微分値、積分値等に基づいて抽熱量を調整するPID演算が行なわれてバルブV2,V3の開度が制御され、その結果炉内温度が850℃から900℃の範囲に保たれる。これにより、亜酸化窒素の発生量を低減させながらも排ガス量の増加を招くことなく炉壁や煙道へのクリンカの付着を回避することができるようになる。尚、バルブV2のみ設けられ、バルブV3が無い構成であってもよい。   For example, PID calculation is performed to adjust the amount of extracted heat based on a difference value, a differential value, an integral value, etc. between the target temperature and the furnace temperature so that the furnace temperature measured by the temperature sensor TS falls within the target temperature range. Thus, the opening degree of the valves V2 and V3 is controlled, and as a result, the furnace temperature is maintained in the range of 850 ° C to 900 ° C. This makes it possible to avoid the clinker from adhering to the furnace wall and the flue without increasing the amount of exhaust gas while reducing the amount of nitrous oxide generated. Note that only the valve V2 may be provided and the valve V3 may not be provided.

温度調整機構70を、第1熱交換器20で予熱された圧縮空気と第1熱交換器20で予熱される前の圧縮空気との混合比率を調整して抽熱器50に供給する混合比率調整機構で構成することが好ましく、第1熱交換器20で予熱された圧縮空気よりも第1熱交換器20で予熱される前の圧縮空気の混合比率を大きくすれば、それだけ抽熱器50での熱交換量が増して炉内燃焼温度を効果的に低下させることができる。   A mixing ratio for adjusting the mixing ratio of the compressed air preheated by the first heat exchanger 20 and the compressed air before being preheated by the first heat exchanger 20 to the temperature adjusting mechanism 70 to be supplied to the extractor 50 It is preferable that the adjustment mechanism is used, and if the mixing ratio of the compressed air before being preheated by the first heat exchanger 20 is made larger than the compressed air preheated by the first heat exchanger 20, the amount of the extractor 50 is increased accordingly. The amount of heat exchange in the furnace can be increased, and the combustion temperature in the furnace can be effectively reduced.

さらに、温度調整機構70を、第1熱交換器20で予熱された圧縮空気と第1熱交換器20で予熱される前の圧縮空気とを、炉内に供給する圧縮空気の総量を一定にしながら混合比率を調整して抽熱器50に供給する混合比率調整機構で構成することがさらに好ましく、第1熱交換器20で予熱された圧縮空気よりも熱交換器で予熱される前の圧縮空気の混合比率を大きくすれば、それだけ抽熱器50での熱交換量が増して炉内燃焼温度を効果的に低下させることができ、しかも炉内に供給される圧縮空気の総量が一定に調整されるので、炉内に供給される圧縮空気で形成される流動床の状態を安定させることができる。   Further, the temperature adjusting mechanism 70 is configured so that the compressed air preheated by the first heat exchanger 20 and the compressed air before preheated by the first heat exchanger 20 are made constant in the total amount of compressed air supplied into the furnace. However, it is more preferable that the mixing ratio is adjusted and the mixing ratio is adjusted to be supplied to the extractor 50, and compressed before being preheated by the heat exchanger rather than the compressed air preheated by the first heat exchanger 20. If the air mixing ratio is increased, the amount of heat exchange in the extractor 50 can be increased accordingly, and the furnace combustion temperature can be effectively reduced, and the total amount of compressed air supplied into the furnace can be kept constant. Since it is adjusted, the state of the fluidized bed formed by the compressed air supplied into the furnace can be stabilized.

このとき、余剰の圧縮空気は、排ガス誘引装置40に供給するか、または白煙防止用に供給することが好ましく、また専ら発電のためのエネルギーに用いてもよい。   At this time, surplus compressed air is preferably supplied to the exhaust gas induction device 40 or supplied for white smoke prevention, and may be used exclusively for energy generation.

尚、圧縮空気の供給量の調整のみで炉内の燃焼温度の異常な上昇を抑制できない場合に備えて、流動床式焼却炉2の炉天井部に水噴霧機構を備え、または炉壁に水管を設置して、水噴霧または水管への冷却水の供給量の調整によって炉内温度を調整する温度調整補助機構を備えもよい。この場合、温度調整機構70は、温度調整補助機構に優先して圧縮空気の供給量を調整するように構成され、圧縮空気の供給量のみで目標温度範囲に調整できない場合に温度調整補助機構を制御するように構成されていることが好ましい。   In addition, a water spray mechanism is provided on the furnace ceiling of the fluidized bed incinerator 2 or a water pipe is provided on the furnace wall in case the abnormal rise in combustion temperature in the furnace cannot be suppressed only by adjusting the supply amount of compressed air. And a temperature adjustment assisting mechanism for adjusting the furnace temperature by adjusting the amount of cooling water supplied to the water pipe or water spray. In this case, the temperature adjustment mechanism 70 is configured to adjust the supply amount of compressed air in preference to the temperature adjustment auxiliary mechanism, and the temperature adjustment auxiliary mechanism is used when the adjustment cannot be made to the target temperature range only by the supply amount of compressed air. It is preferably configured to control.

流動床式焼却炉2の立上げ時には、発電機Gをモータとして動作させ、外部電力によって駆動されるモータでタービンを回転させるとともに、燃焼バーナ12を点火し、炉が温まると被処理物を投入して焼却処理を開始し、モータとして動作させた発電機Gを停止し、その後発電機として動作させる。尚、発電機Gを備えていない場合には、タービン31に備えた燃焼器に化石燃料を供給して起動することも可能である。   When the fluidized bed incinerator 2 is started up, the generator G is operated as a motor, the turbine is rotated by a motor driven by external power, the combustion burner 12 is ignited, and the object to be processed is charged when the furnace is warmed Then, the incineration process is started, the generator G operated as a motor is stopped, and then operated as a generator. In addition, when the generator G is not provided, it is also possible to start by supplying fossil fuel to the combustor provided in the turbine 31.

上述した実施形態で示した圧力、温度等の数値は例示に過ぎず、本発明が当該数値に限定されるものではなく、また排ガス誘引装置40を含めて、焼却処理設備1を構成する各部の構造、大きさ、素材等の具体的な構成は、本発明の作用効果が奏される範囲で適宜変更して設計することが可能である。以下の説明でも同様である。   The numerical values such as pressure and temperature shown in the above-described embodiments are merely examples, and the present invention is not limited to the numerical values. In addition, the exhaust gas induction device 40 and other parts of the incineration treatment facility 1 are included. The specific configuration such as the structure, size, material, and the like can be changed and designed as appropriate within the range in which the effects of the present invention can be achieved. The same applies to the following description.

図2に示すように、コンプレッサ32で生成された圧縮空気を、タービン31から排出された高温の圧縮空気で予熱する第2熱交換器24を備え、第2熱交換器24で予熱された圧縮空気を第1熱交換機20に供給するように構成されていることが好ましい。   As shown in FIG. 2, the compressed air generated by the compressor 32 is provided with a second heat exchanger 24 for preheating with high-temperature compressed air discharged from the turbine 31, and the compression preheated by the second heat exchanger 24 is provided. It is preferable that air is supplied to the first heat exchanger 20.

第2熱交換器24を設けることによってタービン31に供給される圧縮空気の持ち込み熱量を高めることができ、コンプレッサ32による圧縮空気の生成量を増すことが可能になる。例えば、タービン31に発電機Gを接続した場合には発電量を一層高めることができるようになる。   By providing the second heat exchanger 24, the amount of heat brought in by the compressed air supplied to the turbine 31 can be increased, and the amount of compressed air generated by the compressor 32 can be increased. For example, when the generator G is connected to the turbine 31, the power generation amount can be further increased.

このとき、第2熱交換器24で熱交換する前の圧縮空気が排ガス誘引装置40に供給され、第2熱交換器24で熱交換された圧縮空気が白防用の空気として煙突18側に供給されるように構成することが好ましい。   At this time, the compressed air before heat exchange in the second heat exchanger 24 is supplied to the exhaust gas attraction device 40, and the compressed air heat-exchanged in the second heat exchanger 24 is directed to the chimney 18 side as air for white protection. It is preferable to be configured to be supplied.

また、第3熱交換器24は予熱源、予熱対象ともに空気であるため、硫黄等の酸性成分が含まれる排ガスと異なり、低温腐食を招くことが無いので予熱源の持つ熱量を高効率で回収できるようになる。   In addition, since the third heat exchanger 24 is air for both the preheating source and the preheating target, unlike the exhaust gas containing acidic components such as sulfur, it does not cause low-temperature corrosion, so the heat amount of the preheating source is recovered with high efficiency. become able to.

図3に示すように、排ガス誘引装置40は、タービン装置30の軸動力で回転軸が駆動される誘引送風機Fで構成することも可能である。   As shown in FIG. 3, the exhaust gas attracting device 40 can also be configured by an attracting blower F whose rotating shaft is driven by the shaft power of the turbine device 30.

第1熱交換器20によって排ガスの保有熱を回収した高温の圧縮空気によって駆動されるタービン31の軸動力で誘引送風機Fが回転駆動されて煙道の排ガスが誘引される。つまり、誘引送風機Fを回転駆動するために別途の電力が不要になる。   The induction blower F is rotationally driven by the shaft power of the turbine 31 driven by the high-temperature compressed air that has recovered the retained heat of the exhaust gas by the first heat exchanger 20, and the flue exhaust gas is attracted. That is, no separate electric power is required to rotationally drive the induction fan F.

この場合も、タービン31から出力された高温の圧縮空気を排煙処理塔17より下流側の煙道に案内することによって、別途の白煙防止用ファンを設けることなく白煙防止することができる。   Also in this case, white smoke can be prevented without providing a separate white smoke prevention fan by guiding the high-temperature compressed air output from the turbine 31 to the flue downstream of the smoke treatment tower 17. .

つまり、本発明による排ガス誘引装置40は、タービン装置30によって排ガスの保有熱を回収して得られた運動エネルギー、回転力という機械的な運動エネルギーや流体の流速という運動エネルギーを用いて煙道に導かれた排ガスを誘引する構成であればよい。   That is, the exhaust gas attraction apparatus 40 according to the present invention uses the kinetic energy obtained by recovering the retained heat of the exhaust gas by the turbine device 30, mechanical kinetic energy called rotational force, and kinetic energy called fluid flow velocity to the flue. Any structure that induces the exhaust gas that has been introduced may be used.

上述したように、流動床式焼却炉2で焼却処理される被処理物は下水汚泥を含むバイオマスであることが好ましく、エネルギー効率よく十分な高温で焼却処理可能になるため、地球温暖化の原因ガスである亜酸化窒素の発生量も極めて効果的に抑制することができるようになる。   As described above, the material to be incinerated in the fluidized bed incinerator 2 is preferably biomass containing sewage sludge, and can be incinerated at a sufficiently high temperature with high energy efficiency, thereby causing global warming. The generation amount of nitrous oxide, which is a gas, can be suppressed extremely effectively.

以上説明したように、本発明による焼却処理方法は、タービン31と連動するコンプレッサ32で圧縮空気を生成し、流動床式焼却炉2の煙道に導かれる排ガスの保有熱により圧縮空気を予熱し、予熱された高温の圧縮空気でタービン31を回転し、タービン31を駆動した後の高温の圧縮空気を流動床式焼却炉2へ流動用空気として供給する焼却処理方法であって、タービン32に供給される前の高温の圧縮空気を、流動床式焼却炉2の炉内燃焼熱により予熱して、流動床式焼却炉2の炉内燃焼温度を調整する焼却処理方法である。   As described above, the incineration processing method according to the present invention generates compressed air by the compressor 32 interlocked with the turbine 31 and preheats the compressed air by the retained heat of the exhaust gas guided to the flue of the fluidized bed incinerator 2. The incineration processing method of rotating the turbine 31 with preheated high-temperature compressed air and supplying the high-temperature compressed air after driving the turbine 31 to the fluidized bed incinerator 2 as flow air, This is an incineration processing method in which high-temperature compressed air before being supplied is preheated by the in-furnace combustion heat of the fluidized bed incinerator 2 and the in-furnace combustion temperature of the fluidized bed incinerator 2 is adjusted.

また、タービンと連動するコンプレッサで圧縮空気を生成し、焼却炉の炉内燃焼熱及び/または煙道に導かれる排ガスの保有熱により圧縮空気を予熱し、予熱された高温の圧縮空気でタービンを回転し、タービンより排気した高温の圧縮空気を配管を経由して焼却炉に導入し、及び、煙突に配管を経由して白防用に、或いは排ガス誘引用に導入する焼却処理方法である。   In addition, compressed air is generated by a compressor linked to the turbine, and the compressed air is preheated by the in-furnace combustion heat of the incinerator and / or the retained heat of the exhaust gas introduced into the flue, and the turbine is heated by the preheated high-temperature compressed air. It is an incineration treatment method in which high-temperature compressed air that is rotated and exhausted from a turbine is introduced into an incinerator through a pipe, and is introduced into a chimney through a pipe for anti-white protection or exhaust gas reference.

タービンとコンプレッサが軸連結されたタービン装置として、過給機のみならず、冷熱発電等に用いられる膨張タービンにコンプレッサが軸連結された構成を採用することも可能である。   As a turbine device in which a turbine and a compressor are axially connected, it is possible to adopt a configuration in which a compressor is axially connected to an expansion turbine used for not only a supercharger but also cold power generation.

上述した実施形態は、焼却炉として流動床式焼却炉を採用した場合について説明したが、本発明が適用される焼却炉は流動床式焼却炉に限らず、ストーカ炉、キルン炉、噴流炉、溶融炉等の他の形式の焼却炉にも適用可能である。   The embodiment described above has been described for the case where a fluidized bed incinerator is adopted as an incinerator, but the incinerator to which the present invention is applied is not limited to a fluidized bed incinerator, a stoker furnace, a kiln furnace, a jet flow furnace, It can also be applied to other types of incinerators such as melting furnaces.

上述した実施形態は、何れも本発明の一例であり、当該記載により本発明が限定されるものではなく、各部の具体的構成は本発明の作用効果が奏される範囲で適宜変更設計可能であることはいうまでもない。   Each of the above-described embodiments is an example of the present invention, and the present invention is not limited by the description. The specific configuration of each part can be appropriately changed and designed within the range where the effects of the present invention are exhibited. Needless to say.

1:焼却処理設備
2:流動床式焼却炉
10:サイロ
20:第1熱交換器
24:第2熱交換器
30:タービン装置
31:タービン
32:コンプレッサ
40:排ガス誘引装置
40a:空気供給ポート
40b:真空ポート
40c:ディフューザー
50:抽熱器
70:温度調整機構
1: incineration equipment 2: fluidized bed incinerator 10: silo 20: first heat exchanger 24: second heat exchanger 30: turbine device 31: turbine 32: compressor 40: exhaust gas induction device 40a: air supply port 40b : Vacuum port 40c: Diffuser 50: Extractor 70: Temperature adjustment mechanism

Claims (8)

燃焼用空気として高温の圧縮空気が供給される焼却炉と、
前記焼却炉の煙道に導かれる排ガスの保有熱により圧縮空気を予熱する第1熱交換器と、
前記第1熱交換器で予熱された高温の圧縮空気により回転するタービンと、前記タービンの回転により前記第1熱交換器に圧縮空気を供給するコンプレッサとを含むタービン装置と、
前記タービンを駆動した後の高温の圧縮空気を燃焼用空気として前記焼却炉に供給する燃焼用空気供給経路と、
を備えている焼却処理設備であって、
前記焼却炉に配置され、前記第1熱交換器で予熱された高温の圧縮空気を炉内燃焼熱でさらに予熱する抽熱器と、
前記コンプレッサで生成され前記第1熱交換器で予熱された圧縮空気と前記コンプレッサで生成され前記第1熱交換器を経ない圧縮空気との混合比率を調整する混合比率調整機構を介して、前記抽熱器の熱交換量を調整することにより、前記焼却炉の炉内燃焼温度を調整する温度調整機構を備えている焼却処理設備。
An incinerator supplied with high-temperature compressed air as combustion air;
A first heat exchanger that preheats compressed air with retained heat of exhaust gas guided to the flue of the incinerator;
A turbine which is rotated by compressed air high temperature preheated by the first heat exchanger, a turbine unit including a compressor for supplying compressed air to the first heat exchanger by the rotation of the turbine,
A combustion air supply path for supplying high-temperature compressed air after driving the turbine to the incinerator as combustion air;
An incineration treatment facility comprising:
An extractor that is disposed in the incinerator and further preheats high-temperature compressed air preheated by the first heat exchanger with in-furnace combustion heat;
Through a mixing ratio adjusting mechanism that adjusts a mixing ratio of compressed air generated by the compressor and preheated by the first heat exchanger and compressed air generated by the compressor and not passing through the first heat exchanger, An incineration treatment facility provided with a temperature adjustment mechanism for adjusting the in-furnace combustion temperature of the incinerator by adjusting the heat exchange amount of the extractor.
前記温度調整機構は、前記第1熱交換器で予熱された圧縮空気と前記第1熱交換器を経ない圧縮空気とを、炉内に供給する圧縮空気の総量を一定にしながら混合比率を調整して前記抽熱器に供給する混合比率調整機構で構成されている請求項1記載の焼却処理設備。 The temperature adjustment mechanism adjusts the mixing ratio of the compressed air preheated in the first heat exchanger and the compressed air that does not pass through the first heat exchanger while keeping the total amount of compressed air supplied into the furnace. The incineration processing facility according to claim 1, wherein the incineration processing facility is configured by a mixing ratio adjusting mechanism that supplies the heat extracting device. 炉内燃焼熱及び/または排ガスの保有熱を回収して得られた運動エネルギーを用いて前記煙道に導かれた排ガスを誘引する排ガス誘引装置を備えている請求項1または2記載の焼却処理設備。 The incineration process according to claim 1 or 2, further comprising an exhaust gas induction device that induces the exhaust gas led to the flue using kinetic energy obtained by recovering the combustion heat in the furnace and / or the retained heat of the exhaust gas. Facility. 前記排ガス誘引装置は、前記煙道に導かれた排ガスを、前記タービンから排出された高温の圧縮空気の流れによって誘引するエジェクタで構成されている請求項記載の焼却処理設備。 4. The incineration processing equipment according to claim 3 , wherein the exhaust gas attraction device is configured by an ejector that attracts the exhaust gas guided to the flue by a flow of high-temperature compressed air discharged from the turbine. 前記排ガス誘引装置は、前記タービン装置の軸動力で回転軸が駆動される誘引送風機を備えて構成されている請求項記載の焼却処理設備。 The incineration processing facility according to claim 3 , wherein the exhaust gas induction device includes an induction blower in which a rotating shaft is driven by shaft power of the turbine device. 前記コンプレッサから出力された圧縮空気を、前記タービンから排出された高温の圧縮空気で予熱する第2熱交換器を備え、前記第2熱交換器で予熱された圧縮空気を前記第1熱交換機に供給するように構成されている請求項1からの何れかに記載の焼却処理設備。 A second heat exchanger for preheating the compressed air output from the compressor with high-temperature compressed air discharged from the turbine; and supplying the compressed air preheated by the second heat exchanger to the first heat exchanger The incineration processing facility according to any one of claims 1 to 5 , wherein the incineration processing facility is configured to be supplied. 前記焼却炉で焼却処理される被処理物が高カロリーのバイオマスである請求項1からの何れかに記載の焼却処理設備。 The incineration processing equipment according to any one of claims 1 to 6 , wherein an object to be incinerated in the incinerator is high-calorie biomass. タービンと連動するコンプレッサで圧縮空気を生成し、焼却炉の煙道に導かれる排ガスの保有熱により圧縮空気を予熱し、予熱された高温の圧縮空気でタービンを回転し、タービンを駆動した後の高温の圧縮空気を前記焼却炉へ燃焼用空気として供給する焼却処理方法であって、
前記コンプレッサで生成され前記排ガスの保有熱により予熱された圧縮空気と前記コンプレッサで生成され前記排ガスの保有熱により予熱されていない圧縮空気との混合比率を調整した圧縮空気である前記タービンに供給される前の圧縮空気を前記焼却炉の炉内燃焼熱により予熱することにより、前記焼却炉の炉内燃焼温度を調整する焼却処理方法。
Compressed air is generated by a compressor that works with the turbine, and the compressed air is preheated by the retained heat of the exhaust gas that is led to the flue of the incinerator, and the turbine is rotated by the preheated high-temperature compressed air and the turbine is driven. An incineration processing method for supplying high-temperature compressed air as combustion air to the incinerator,
The compressed air generated by the compressor and preheated by the retained heat of the exhaust gas and the compressed air generated by the compressor and adjusted by the mixing ratio of the compressed air not preheated by the retained heat of the exhaust gas are supplied to the turbine. An incineration processing method for adjusting the in-furnace combustion temperature of the incinerator by preheating the compressed air before being heated with the in-furnace combustion heat of the incinerator.
JP2014072774A 2014-03-31 2014-03-31 Incineration processing equipment and incineration processing method Active JP6333021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014072774A JP6333021B2 (en) 2014-03-31 2014-03-31 Incineration processing equipment and incineration processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014072774A JP6333021B2 (en) 2014-03-31 2014-03-31 Incineration processing equipment and incineration processing method

Publications (2)

Publication Number Publication Date
JP2015194306A JP2015194306A (en) 2015-11-05
JP6333021B2 true JP6333021B2 (en) 2018-05-30

Family

ID=54433488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014072774A Active JP6333021B2 (en) 2014-03-31 2014-03-31 Incineration processing equipment and incineration processing method

Country Status (1)

Country Link
JP (1) JP6333021B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6655467B2 (en) * 2016-05-12 2020-02-26 株式会社クボタ Furnace operation method of waste treatment equipment and waste treatment equipment
US10267517B2 (en) * 2016-07-08 2019-04-23 Arvos Ljungstrom Llc Method and system for improving boiler effectiveness
JP6280596B2 (en) * 2016-08-09 2018-02-14 株式会社神鋼環境ソリューション Waste treatment system and activation method thereof
JP6411682B1 (en) * 2018-01-23 2018-10-24 株式会社神鋼環境ソリューション Waste treatment facility
JP6363310B1 (en) * 2018-01-30 2018-07-25 株式会社神鋼環境ソリューション Waste treatment facility
JP6363311B1 (en) * 2018-01-31 2018-07-25 株式会社神鋼環境ソリューション Waste treatment facility
CN109126364B (en) * 2018-10-31 2021-04-06 南京圣卡孚科技有限公司 Treatment process for deep heat collection and purification of flue gas

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE842876C (en) * 1942-03-19 1952-07-03 Oerlikon Maschf Steam-air thermal power plant
DE839290C (en) * 1944-01-05 1952-05-19 Oerlikon Maschf Steam-gas thermal power plant
JPS53145136A (en) * 1977-05-23 1978-12-18 Mitsubishi Heavy Ind Ltd Forced exhaust type heat recovery device
US4116005A (en) * 1977-06-06 1978-09-26 General Electric Company Combined cycle power plant with atmospheric fluidized bed combustor
US4253300A (en) * 1979-08-03 1981-03-03 General Electric Company Supplementary fired combined cycle power plants
US4223529A (en) * 1979-08-03 1980-09-23 General Electric Company Combined cycle power plant with pressurized fluidized bed combustor
US4326373A (en) * 1980-05-29 1982-04-27 General Electric Company Integrated gas turbine power generation system and process
JPH0692810B2 (en) * 1986-05-31 1994-11-16 三菱重工業株式会社 Fluidized bed type sludge combustion furnace
US5121600A (en) * 1990-06-21 1992-06-16 Energeo, Inc. Transportable electrical power generating system fueled by organic waste
JP2001004129A (en) * 1999-06-25 2001-01-12 Kawasaki Heavy Ind Ltd Smoke discharging method and multi-tubular chimney employed therefor
JP2004020071A (en) * 2002-06-18 2004-01-22 Jfe Engineering Kk Waste incinerator and its operation method
JP2006266259A (en) * 2005-02-22 2006-10-05 Toshiba Corp Fluidized bed combined power generation system
JP4831309B2 (en) * 2005-12-20 2011-12-07 独立行政法人土木研究所 Waste treatment facility and waste treatment method
JP4343931B2 (en) * 2006-07-31 2009-10-14 株式会社日立製作所 Combustion melting furnace and operation method of combustion melting furnace
JP2013083384A (en) * 2011-10-07 2013-05-09 Alstom Technology Ltd Operation method and device of multitubular heat exchanger in fluidized incinerator system

Also Published As

Publication number Publication date
JP2015194306A (en) 2015-11-05

Similar Documents

Publication Publication Date Title
JP6333021B2 (en) Incineration processing equipment and incineration processing method
JP6490466B2 (en) Waste treatment facility and method of operating waste treatment facility
JP2015194308A (en) Incineration equipment and incineration method
US20200095899A1 (en) Apparatus for extracting energy from waste heat
JP6655467B2 (en) Furnace operation method of waste treatment equipment and waste treatment equipment
JP2015194307A (en) Incineration equipment and incineration method
JP6580398B2 (en) Waste treatment facility and operation method of waste treatment facility
JP6800594B2 (en) Waste treatment equipment and how to operate the waste treatment equipment
CN106678830A (en) Waste incineration flue gas and air system and incineration control method
JP4771309B2 (en) Pressurized fluidized incineration equipment and its startup method
JP2004084981A (en) Waste incinerator
JP4714912B2 (en) Pressurized fluidized incineration equipment and its startup method
JP2009121778A (en) Pressurized fluidized incineration facility and operation method for pressurized fluidized incineration facility
JP2009121779A (en) Pressurized fluidized incineration equipment
JP6947608B2 (en) How to operate waste treatment equipment and waste treatment equipment
JP4561807B2 (en) Heating method and apparatus for carbonization furnace
CN206347578U (en) A kind of waste incineration air and gas system
JP2022097537A (en) Incinerator with supercharger
JP7156922B2 (en) Waste treatment equipment and operation method of waste treatment equipment
JP7316925B2 (en) Waste treatment equipment and operation method of waste treatment equipment
JP2002371860A (en) Power generating method by use of pressurizing combustion furnace for burning waste
JP7254438B2 (en) Operation method of waste disposal facility and waste disposal facility
JP5956211B2 (en) Operating method of pressurized fluidized furnace system
JP5243840B2 (en) Combustion method of stoker type incinerator
JP7156923B2 (en) Waste treatment equipment and operation method of waste treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180424

R150 Certificate of patent or registration of utility model

Ref document number: 6333021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150