JP6947608B2 - How to operate waste treatment equipment and waste treatment equipment - Google Patents

How to operate waste treatment equipment and waste treatment equipment Download PDF

Info

Publication number
JP6947608B2
JP6947608B2 JP2017214322A JP2017214322A JP6947608B2 JP 6947608 B2 JP6947608 B2 JP 6947608B2 JP 2017214322 A JP2017214322 A JP 2017214322A JP 2017214322 A JP2017214322 A JP 2017214322A JP 6947608 B2 JP6947608 B2 JP 6947608B2
Authority
JP
Japan
Prior art keywords
blower
amount
air
push
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017214322A
Other languages
Japanese (ja)
Other versions
JP2019086207A (en
Inventor
晃治 坂田
晃治 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2017214322A priority Critical patent/JP6947608B2/en
Publication of JP2019086207A publication Critical patent/JP2019086207A/en
Application granted granted Critical
Publication of JP6947608B2 publication Critical patent/JP6947608B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Air Supply (AREA)

Description

本発明は、汚泥等の廃棄物を焼却処理する熱処理炉を備えている廃棄物処理設備及び廃棄物処理設備の運転方法に関する。 The present invention relates to a waste treatment facility equipped with a heat treatment furnace for incinerating waste such as sludge, and a method for operating the waste treatment facility.

様々な汚水が微生物を用いた生物処理により浄化された後に河川等に放流され、或いは再利用されている。このような生物処理によって発生する大量の汚泥は脱水処理された後に最終処分場に埋め立てられ、または流動床炉及びシャフト炉を含む熱処理炉で焼却処理されている。 Various sewage is purified by biological treatment using microorganisms and then discharged into rivers or reused. A large amount of sludge generated by such biological treatment is dehydrated and then buried in a final disposal site, or incinerated in a heat treatment furnace including a fluidized bed furnace and a shaft furnace.

このような熱処理炉では、押込み送風機を用いて十分な量の燃焼用空気を炉内に供給するとともに、誘引送風機を用いて排ガスを誘引して炉内を負圧に維持する必要があり、押込み送風機及び誘引送風機に要する動力コストつまり電力費が非常に高額になっている。 In such a heat treatment furnace, it is necessary to supply a sufficient amount of combustion air to the inside of the furnace by using a push-in blower, and to attract exhaust gas by using an induction blower to maintain the inside of the furnace at a negative pressure. The power cost, that is, the electric power cost, required for the blower and the attracting blower is very high.

特許文献1には、押込み送風機に要する動力コストを抑制した操炉が可能な廃棄物処理設備が提案されている。当該廃棄物処理設備は、汚泥等の廃棄物を焼却処理する流動床炉及びシャフト炉を含む熱処理炉を備えている廃棄物処理設備であって、熱処理炉の炉内燃焼熱及び/または煙道に導かれる排ガスの保有熱により燃焼用空気を予熱する熱交換器と、熱交換器で予熱された燃焼用空気により回転するタービンと、タービンの回転により熱交換器に燃焼用空気を供給するコンプレッサとを含む過給機と、コンプレッサへ燃焼用空気を予備圧縮して供給する押込み送風機と、を備えている。 Patent Document 1 proposes a waste treatment facility capable of operating a furnace while suppressing the power cost required for a push-in blower. The waste treatment facility is a waste treatment facility equipped with a heat treatment furnace including a fluidized bed furnace and a shaft furnace for incinerating waste such as sludge, and the combustion heat and / or flue in the heat treatment furnace. A heat exchanger that preheats the combustion air by the retained heat of the exhaust gas guided to, a turbine that rotates by the combustion air preheated by the heat exchanger, and a compressor that supplies the combustion air to the heat exchanger by the rotation of the turbine. It is equipped with a supercharger including the above and a push-in blower that precompresses and supplies combustion air to the compressor.

このような廃棄物処理設備では、コンプレッサによる圧縮仕事に押込み送風機による圧縮仕事が嵩上げされるので、熱処理炉に燃焼用空気を供給する際に生じる通気圧損等の損失分を差し引いても、十分に燃焼用空気を供給することができ、そのために要する押込み送風機の動力も、過給機と第1熱交換器を備えることにより十分に抑制でき、全体として動力コストを下げることができるようになる。 In such a waste treatment facility, the compression work by the indentation blower is increased to the compression work by the compressor, so even if the loss such as the ventilation pressure loss generated when supplying the combustion air to the heat treatment furnace is subtracted, it is sufficient. The combustion air can be supplied, and the power of the push-in blower required for that purpose can be sufficiently suppressed by providing the supercharger and the first heat exchanger, and the power cost can be reduced as a whole.

特開2016−180528号公報Japanese Unexamined Patent Publication No. 2016-180528

上述した廃棄物処理設備では、熱交換器による廃熱回収量の増加に伴って押込み送風機で供給すべき空気圧が低減し、その結果、押込み送風機に要する動力が抑制されるようになるのであるが、押込み送風機による送風が実質的に不要となる状況下で押込み送風機を停止すると、その後の僅かな変動で押込み送風機を再始動し或いは再停止するような状態が数分間隔で繰り返され、安定しなかった。 In the above-mentioned waste treatment equipment, the air pressure to be supplied by the push-in blower decreases as the amount of waste heat recovered by the heat exchanger increases, and as a result, the power required for the push-in blower is suppressed. If the push blower is stopped in a situation where the blower by the push blower is practically unnecessary, the push blower is restarted or restarted with a slight fluctuation after that, and the state is repeated at intervals of several minutes and becomes stable. There wasn't.

また、数十キロワットから数百キロワット級の大型の押込み送風機では、過大な始動電流を低減する必要があるため、スターデルタ始動法やコンドルファ始動法等を採用しており、それほど迅速に始動できないため、応答遅れによってさらに必要送風量の変動の程度が大きくなる虞もあった。そのため、容易に押込み送風機を停止することができなかった。 In addition, large indentation blowers of tens to hundreds of kilowatts need to reduce excessive starting current, so the Star Delta starting method and Condorfa starting method are adopted, and it is not possible to start so quickly. Therefore, there is a possibility that the degree of fluctuation of the required air flow amount will be further increased due to the response delay. Therefore, the push-in blower could not be stopped easily.

本発明の目的は、必要空気量が変動しても大型の押込み送風機の頻繁な始動停止を回避可能な廃棄物処理設備及び廃棄物処理設備の運転方法を提供する点にある。 An object of the present invention is to provide a waste treatment facility and a method for operating the waste treatment facility, which can avoid frequent start and stop of a large indentation blower even if the required air amount fluctuates.

上述の目的を達成するため、本発明による廃棄物処理設備の第一特徴構成は、特許請求の範囲の書類の請求項1に記載した通り、汚泥等の廃棄物を焼却処理する熱処理炉と、前記熱処理炉の炉内燃焼熱及び/または煙道に導かれる排ガスの保有熱により燃焼用空気を予熱する第1熱交換器と、前記第1熱交換器で予熱された燃焼用空気により回転するタービンと前記タービンの回転により前記第1熱交換器に燃焼用空気を供給するコンプレッサとを含む過給機と、燃焼用空気を前記コンプレッサに供給する押込み送風機と、を備えている廃棄物処理設備であって、前記押込み送風機よりも低動力で前記押込み送風機から前記コンプレッサへの空気供給路に空気を供給する補助押込み送風機を備えている点にある。 In order to achieve the above object, the first characteristic configuration of the waste treatment facility according to the present invention is a heat treatment furnace for incinerating waste such as sludge, as described in claim 1 of the document in the scope of the patent claim. It is rotated by the first heat exchanger that preheats the combustion air by the combustion heat in the heat treatment furnace and / or the retained heat of the exhaust gas guided to the flue, and the combustion air preheated by the first heat exchanger. A waste treatment facility including a supercharger including a turbine and a compressor that supplies combustion air to the first heat exchanger by rotation of the turbine, and a push blower that supplies combustion air to the compressor. The point is that it is provided with an auxiliary push blower that supplies air to the air supply path from the push blower to the compressor with a lower power than the push blower.

押込み送風機を迅速に立ち上げ、或いは頻繁に始動と停止を繰り返す必要があるような場合に、押込み送風機よりも低動力の補助押込み送風機を駆動することにより、迅速に必要量の送風を行なえるようになり、また補助押込み送風機を繰返し始動または停止しても過大な始動電流の発生を回避することができる。 When it is necessary to start the push-in blower quickly or repeatedly start and stop it frequently, by driving an auxiliary push-in blower with a lower power than the push blower, the required amount of air can be blown quickly. In addition, even if the auxiliary indentation blower is repeatedly started or stopped, it is possible to avoid the generation of an excessive starting current.

同第二の特徴構成は、同請求項2に記載した通り、上述の第一の特徴構成に加えて、前記押込み送風機によって前記コンプレッサへ供給すべき必要送風量が予め設定された下限送風量になると前記押込み送風機を停止する制御部を備えている点にある。 In the second characteristic configuration, as described in claim 2, in addition to the first characteristic configuration described above, the required air volume to be supplied to the compressor by the indentation blower is set to a preset lower limit air flow amount. In that case, it is provided with a control unit for stopping the compressor.

押込み送風機による必要送風量が予め設定された下限送風量になると制御部により、速やかに押込み送風機が停止され、無駄な電力の消費及び送風機で生じる圧損の発生が回避される。 When the required amount of air blown by the push-in blower reaches a preset lower limit blower amount, the control unit promptly stops the push-in blower, and wasteful power consumption and pressure loss caused by the blower are avoided.

同第三の特徴構成は、同請求項3に記載した通り、上述の第二の特徴構成に加えて、前記制御部は、前記押込み送風機を停止した状態で前記必要送風量が前記下限送風量を上回ると前記補助押込み送風機を作動させる点にある。 As described in claim 3, in addition to the above-mentioned second feature configuration, the control unit has the required air flow amount as the lower limit air flow amount while the push-in blower is stopped. The point is that the auxiliary push-in blower is activated when the value exceeds.

押込み送風機を停止した状態で必要送風量が下限送風量を上回ると、制御部は押込み送風機に代えて補助押込み送風機を作動させる結果、熱処理炉への燃焼用空気の供給量を応答性良く目標量に調整でき、熱処理炉を安定した燃焼状態に制御することができる。 When the required amount of air blows exceeds the lower limit amount of air while the indentation blower is stopped, the control unit operates the auxiliary indentation blower instead of the indentation blower, and as a result, the amount of combustion air supplied to the heat treatment furnace is responsively targeted. The heat treatment furnace can be controlled to a stable combustion state.

同第四の特徴構成は、同請求項4に記載した通り、上述の第三の特徴構成に加えて、前記制御部は、前記必要送風量が前記下限送風量より多い起動送風量に達するまでの間は前記補助押込み送風機を作動させ、前記必要送風量が前記起動送風量を超えると前記補助押込み送風機に代えて前記押込み送風機を作動させる点にある。 As described in claim 4, the fourth feature configuration is, in addition to the third feature configuration described above, until the required air flow reaches a start air volume larger than the lower limit air flow. During the period, the auxiliary push-in blower is operated, and when the required blower amount exceeds the start-up blower amount, the push-in blower is operated in place of the auxiliary push-blower.

制御部は、押込み送風機に求められる必要送風量が下限送風量になると押込み送風機を停止し、停止した状態で必要送風量が下限送風量を超えても直ちに押込み送風機を作動させることなく、下限送風量より多い起動送風量に達すると押込み送風機を作動させるヒステリシス特性を持たせることにより、押込み送風機の頻繁な始動及び停止を回避するとともに、起動送風量に達するまでは押込み送風機に代えて始動特性に優れた補助押込み送風機を作動させることにより、送風量の変動に迅速に対応する。 The control unit stops the push-in blower when the required blower amount required for the push-in blower reaches the lower limit blower amount, and even if the required blower amount exceeds the lower limit blower amount in the stopped state, the push-in blower is not immediately operated and the lower limit blower is blown. By providing a hysteresis characteristic that activates the push-in blower when the start-up blower volume exceeds the air volume, frequent start and stop of the push-in blower is avoided, and the start-up characteristic is used instead of the push-in blower until the start-up blower volume is reached. By operating an excellent auxiliary push-in blower, it responds quickly to fluctuations in the amount of air blown.

同第五の特徴構成は、同請求項5に記載した通り、上述の第一から第四の何れかの特徴構成に加えて、前記タービンへ供給される燃焼用空気の入熱量を調整する入熱量調整機構を備えている請求項1から4点にある。 As described in claim 5, the fifth characteristic configuration is, in addition to any of the first to fourth characteristic configurations described above, an input that adjusts the amount of heat input of the combustion air supplied to the turbine. The points 1 to 4 are provided with a calorific value adjusting mechanism.

第1熱交換器による廃熱回収量が過大になり、コンプレッサへの空気供給量つまりコンプレッサによる吸引空気量が必要量を超えるような場合に、入熱量調整機構によってタービンへの入熱が調整される。その結果、コンプレッサへの空気供給量を目標空気量に調整できるようになる。 When the amount of waste heat recovered by the first heat exchanger becomes excessive and the amount of air supplied to the compressor, that is, the amount of suction air from the compressor exceeds the required amount, the heat input to the turbine is adjusted by the heat input adjustment mechanism. NS. As a result, the amount of air supplied to the compressor can be adjusted to the target amount of air.

同第六の特徴構成は、同請求項6に記載した通り、上述の第五の特徴構成に加えて、前記入熱量調整機構は、前記コンプレッサへの空気供給路に設けられた流量調整機構で構成されている点にある。 As described in claim 6, the sixth feature configuration is, in addition to the fifth feature configuration described above, the heat input amount adjusting mechanism is a flow rate adjusting mechanism provided in the air supply path to the compressor. It is in the point that it is composed.

押込み送風機を停止した状態で第1熱交換器による廃熱回収量が過大になり、コンプレッサへの空気供給量つまりコンプレッサによる吸引空気量が必要量を超えるような場合に、コンプレッサへの空気供給路に設けられた流量調整機構を作動させて吸引空気量を絞ることにより、タービンへの入熱が調整される。 Air supply path to the compressor when the amount of waste heat recovered by the first heat exchanger becomes excessive with the push-in blower stopped and the amount of air supplied to the compressor, that is, the amount of suction air supplied by the compressor exceeds the required amount. The heat input to the turbine is adjusted by operating the flow rate adjusting mechanism provided in the above to reduce the amount of suction air.

同第七の特徴構成は、同請求項7に記載した通り、上述の第六の特徴構成に加えて、前記流量調整機構は、前記押込み送風機をバイパスするバイパス路に設けられている点にある。 As described in claim 7, the seventh feature configuration is that, in addition to the sixth feature configuration described above, the flow rate adjusting mechanism is provided in a bypass path that bypasses the push-in blower. ..

コンプレッサへの空気供給路に押込み送風機の風路が含まれていると、押込み送風機を停止した場合にファンが抵抗となって圧力損失が生じるが、バイパス路を設けておけば、そのような圧力損失が生じることがない。またコンプレッサによる吸引空気量が必要量を超えるような場合には、バイパス路に備えた流量調整機構によって速やかに吸引空気量を調整することができる。 If the air supply path to the compressor includes the air passage of the push blower, the fan becomes a resistance and pressure loss occurs when the push blower is stopped. If a bypass path is provided, such pressure is generated. No loss occurs. When the amount of suction air by the compressor exceeds the required amount, the amount of suction air can be quickly adjusted by the flow rate adjusting mechanism provided in the bypass path.

同第八の特徴構成は、同請求項8に記載した通り、上述の第一から第七の何れかの特徴構成に加えて、前記タービンから送出された予熱空気の温度を前記排ガスの保有熱により調整する第2熱交換器を備えている点にある。 As described in claim 8, the eighth characteristic configuration is, in addition to the above-mentioned first to seventh characteristic configuration, the temperature of the preheated air sent from the turbine is used as the heat possessed by the exhaust gas. The point is that it is equipped with a second heat exchanger that is adjusted by.

入熱量調整機構が作動するとタービンから送出され燃焼用空気として熱処理炉に導かれる予熱空気の温度が変動して熱処理炉の安定操炉に支障を来す虞がある。そのような場合でも、第2熱交換器を備えることによりタービンから送出され熱処理炉に導かれる予熱空気の温度が適切な温度に調整できるようになる。 When the heat input amount adjusting mechanism is activated, the temperature of the preheated air sent from the turbine and guided to the heat treatment furnace as combustion air fluctuates, which may hinder the stable operation of the heat treatment furnace. Even in such a case, by providing the second heat exchanger, the temperature of the preheated air sent from the turbine and guided to the heat treatment furnace can be adjusted to an appropriate temperature.

本発明による廃棄物処理設備の運転方法の第一の特徴構成は、同請求項9に記載した通り、汚泥等の廃棄物を焼却処理する熱処理炉と、前記熱処理炉の炉内燃焼熱及び/または煙道に導かれる排ガスの保有熱により燃焼用空気を予熱する第1熱交換器と、前記第1熱交換器で予熱された燃焼用空気により回転するタービンと前記タービンの回転により前記第1熱交換器に燃焼用空気を供給するコンプレッサとを含む過給機と、燃焼用空気を前記コンプレッサに供給する押込み送風機と、前記押込み送風機と並列に接続され前記コンプレッサに空気を供給する前記押込み送風機よりも低動力である補助押込み送風機と、を備えている廃棄物処理設備の運転方法であって、前記熱処理炉への燃焼用空気の供給量が所定量に維持された状態で前記押込み送風機によって前記コンプレッサへ供給すべき必要送風量が予め設定された下限送風量になると前記押込み送風機を停止し、前記押込み送風機が停止した状態で前記必要送風量が前記下限送風量を上回ると前記補助押込み送風機を作動させる点にある。 As described in claim 9, the first characteristic configuration of the operation method of the waste treatment facility according to the present invention is the heat treatment furnace for incinerating waste such as sludge, and the heat of combustion in the heat treatment furnace and /. Alternatively, the first heat exchanger that preheats the combustion air by the retained heat of the exhaust gas guided to the flue, the turbine that rotates by the combustion air preheated by the first heat exchanger, and the first by the rotation of the turbine. A supercharger including a compressor that supplies combustion air to a heat exchanger, a push blower that supplies combustion air to the compressor, and a push blower that is connected in parallel with the push blower and supplies air to the compressor. It is a method of operating a waste treatment facility equipped with an auxiliary indentation blower having a lower power than that of the indentation blower in a state where the supply amount of combustion air to the heat treatment furnace is maintained at a predetermined amount. When the required air blower to be supplied to the compressor reaches the preset lower limit air flow amount, the push blower is stopped, and when the required air blower exceeds the lower limit air blower while the push blower is stopped, the auxiliary push blower is used. Is at the point of operating.

同第二の特徴構成は、同請求項10に記載した通り、上述の第一の特徴構成に加えて、前記必要送風量が前記下限送風量より多い起動送風量に達するまでの間は前記補助押込み送風機を作動させ、前記必要送風量が前記起動送風量を超えると前記補助押込み送風機に代えて前記押込み送風機を作動させる点にある。 As described in claim 10, the second feature configuration is, in addition to the first feature configuration described above, the auxiliary air volume until the required air flow amount reaches a start air flow amount larger than the lower limit air flow amount. The point is to operate the push-in blower, and when the required blower amount exceeds the start-up blower amount, the push-in blower is operated in place of the auxiliary push-blower.

同第三の特徴構成は、同請求項11に記載した通り、上述の第一または第二の特徴構成に加えて、前記タービンへ供給される燃焼用空気の入熱量を調整する入熱量調整機構を前記廃棄物処理設備にさらに備え、前記コンプレッサへ供給される燃焼用空気量が目標空気量となるように、前記入熱量調整機構を介して前記タービンへ供給される燃焼用空気の入熱量を調整する点にある。 As described in claim 11, the third feature configuration is, in addition to the first or second feature configuration described above, a heat input adjusting mechanism for adjusting the heat input amount of the combustion air supplied to the turbine. Is further provided in the waste treatment facility, and the amount of heat input of the combustion air supplied to the turbine via the heat input amount adjusting mechanism is adjusted so that the amount of combustion air supplied to the compressor becomes the target amount of air. There is a point to adjust.

以上説明した通り、本発明によれば、必要空気量が変動しても大型の押込み送風機の頻繁な始動停止を回避可能な廃棄物処理設備及び廃棄物処理設備の運転方法を提供することができるようになった。 As described above, according to the present invention, it is possible to provide a waste treatment facility and an operation method of the waste treatment facility that can avoid frequent start and stop of a large push-in blower even if the required air amount fluctuates. It became so.

本発明による廃棄物処理設備及び廃棄物処理設備の運転方法の説明図Explanatory drawing of waste treatment equipment and operation method of waste treatment equipment by this invention (a),(b),(c)は過給機のブレイトンサイクルを説明する線図、(d)は送風機動力と廃熱回収量の相関関係を示す特性図(A), (b), and (c) are diagrams explaining the Brayton cycle of the turbocharger, and (d) is a characteristic diagram showing the correlation between the blower power and the amount of waste heat recovered. 別実施形態を示し、本発明による廃棄物処理設備及び廃棄物処理設備の運転方法の説明図An explanatory diagram of a waste treatment facility and an operation method of the waste treatment facility according to the present invention, showing another embodiment. 別実施形態を示し、本発明による廃棄物処理設備及び廃棄物処理設備の運転方法の説明図An explanatory diagram of a waste treatment facility and an operation method of the waste treatment facility according to the present invention, showing another embodiment. 別実施形態を示し、本発明による廃棄物処理設備及び廃棄物処理設備の運転方法の説明図An explanatory diagram of a waste treatment facility and an operation method of the waste treatment facility according to the present invention, showing another embodiment. 別実施形態を示し、本発明による廃棄物処理設備及び廃棄物処理設備の運転方法の説明図An explanatory diagram of a waste treatment facility and an operation method of the waste treatment facility according to the present invention, showing another embodiment. 別実施形態を示し、本発明による廃棄物処理設備及び廃棄物処理設備の運転方法の説明図An explanatory diagram of a waste treatment facility and an operation method of the waste treatment facility according to the present invention, showing another embodiment.

以下、本発明による廃棄物処理設備及び廃棄物処理設備の運転方法の実施形態を説明する。 Hereinafter, embodiments of the waste treatment equipment and the operation method of the waste treatment equipment according to the present invention will be described.

図1には、汚泥等の廃棄物を焼却処理する廃棄物処理設備100が示されている。廃棄物処理設備100は、被焼却物である汚泥が貯留された汚泥貯留槽1と、汚泥投入機構11と、熱処理炉の一例である流動床式焼却炉2と、排ガス処理設備等を備えている。 FIG. 1 shows a waste treatment facility 100 that incinerates waste such as sludge. The waste treatment facility 100 includes a sludge storage tank 1 in which sludge to be incinerated is stored, a sludge input mechanism 11, a fluidized bed incinerator 2 which is an example of a heat treatment furnace, an exhaust gas treatment facility, and the like. There is.

流動床式焼却炉2は、空気供給機構3から供給される高温空気によって形成される流動床に汚泥投入機構11から供給される汚泥を投入して加熱し、ガス化された汚泥をフリーボード部20で燃焼させる熱処理炉である。フリーボード部20の下方には立上げ時に炉内を加熱する昇温バーナ21が配置され、炉が昇温した後に汚泥の燃焼に必要な熱量を補う補助バーナ22が設けられている。 In the fluidized bed incinerator 2, the sludge supplied from the sludge charging mechanism 11 is charged into the fluidized bed formed by the high temperature air supplied from the air supply mechanism 3 and heated, and the gasified sludge is discharged to the free board section. It is a heat treatment furnace that burns at 20. Below the freeboard section 20, a heating burner 21 that heats the inside of the furnace at the time of startup is arranged, and an auxiliary burner 22 that supplements the amount of heat required for burning sludge after the temperature of the furnace has risen is provided.

流動床式焼却炉2の煙道10に沿って順に、排ガスの保有熱により燃焼用空気を予熱する第1熱交換器5、煤塵を捕集する集塵装置6、アルカリ剤を噴霧して排ガス中の酸性ガス成分を中和する排煙処理塔7等が配置されている。 Along the flue 10 of the fluidized bed incinerator 2, the first heat exchanger 5 that preheats the combustion air by the retained heat of the exhaust gas, the dust collector 6 that collects soot and dust, and the exhaust gas by spraying an alkaline agent. A flue gas treatment tower 7 or the like that neutralizes the acidic gas component inside is arranged.

排煙処理塔7の下流側には煙道10の排ガスを誘引して炉内を負圧に維持する誘引送風機8が設けられ、誘引送風機8によって誘引された排ガスが各排ガス処理設備で浄化された後に煙突9から排気される。 An attracting blower 8 is provided on the downstream side of the smoke exhaust treatment tower 7 to attract the exhaust gas of the flue 10 and maintain the inside of the furnace at a negative pressure, and the exhaust gas attracted by the attracting blower 8 is purified by each exhaust gas treatment facility. After that, it is exhausted from the chimney 9.

上述した空気供給機構3は、ターボファン型の押込み送風機30,30aと、過給機40と、第1熱交換器5を備えて構成されている。過給機40は、駆動軸40aで一体に回転可能に連結されたコンプレッサ40c及びタービン40tを備えている。 The air supply mechanism 3 described above includes turbofan type push blowers 30, 30a, a supercharger 40, and a first heat exchanger 5. The turbocharger 40 includes a compressor 40c and a turbine 40t that are integrally rotatably connected by a drive shaft 40a.

押込み送風機30により約5kPaに予備圧縮された燃焼用空気が過給機40を構成するコンプレッサ40cの給気口に供給されて約100〜300kPaに圧縮された後に第1熱交換器5に供給される。 Combustion air precompressed to about 5 kPa by the indentation blower 30 is supplied to the air supply port of the compressor 40c constituting the supercharger 40, compressed to about 100 to 300 kPa, and then supplied to the first heat exchanger 5. NS.

第1熱交換器5で800〜1000℃の排ガスと熱交換されて500〜750℃に予熱された燃焼用空気が後段のタービン40tに供給されて、タービン40tが回転駆動され、駆動軸40aと連結されたコンプレッサ40cが回転駆動される。 The combustion air that has been heat-exchanged with the exhaust gas of 800 to 1000 ° C. in the first heat exchanger 5 and preheated to 500 to 750 ° C. is supplied to the turbine 40t in the subsequent stage, the turbine 40t is rotationally driven, and the drive shaft 40a The connected compressor 40c is rotationally driven.

タービン40tから排出された400〜650℃、約30〜40kPaの圧縮空気は、流動用及び燃焼用空気として流動床式焼却炉2に供給されて流動床が形成される。尚、本明細書で説明する圧力はゲージ圧である。 Compressed air at 400 to 650 ° C. and about 30 to 40 kPa discharged from the turbine 40t is supplied to the fluidized bed incinerator 2 as fluidized and combustion air to form a fluidized bed. The pressure described in this specification is a gauge pressure.

押込み送風機30により予備圧縮された燃焼用空気が過給機40のコンプレッサ40cに供給されるので、コンプレッサ40cのみならず押込み送風機30によっても圧縮された空気が、熱交換器5で予熱されるようになる。これにより、タービン40tの膨張仕事量が、コンプレッサ40cの圧縮仕事量以上になり、過給機40の駆動が維持されるため、流動床式焼却炉2に流動床を形成する際の通気圧損より高い圧力で燃焼用空気を供給することができるように構成されている。 Since the combustion air precompressed by the push blower 30 is supplied to the compressor 40c of the supercharger 40, the air compressed not only by the compressor 40c but also by the push blower 30 is preheated by the heat exchanger 5. become. As a result, the expansion work of the turbine 40t becomes equal to or greater than the compression work of the compressor 40c, and the drive of the supercharger 40 is maintained. It is configured to be able to supply combustion air at a high pressure.

図2(a)に示すように、ガスタービンや過給機はブレイトンサイクルに従って動作する装置であり、コンプレッサでの圧縮プロセス(図中、1→2)と、燃焼器や熱交換器での給熱プロセス(図中、2→3)と、タービンでの膨張プロセス(図中、3→4)で構成される。タービンでの膨張仕事がコンプレッサでの圧縮仕事を上回る場合に回転が維持される。 As shown in FIG. 2A, the gas turbine and the supercharger are devices that operate according to the Brayton cycle, and the compression process in the compressor (1 → 2 in the figure) and the supply in the combustor or heat exchanger. It consists of a thermal process (2 → 3 in the figure) and an expansion process in the turbine (3 → 4 in the figure). Rotation is maintained when the expansion work in the turbine exceeds the compression work in the compressor.

しかし、図2(b)に示すように、コンプレッサ40cの給気口を大気開放して外気を直接吸引するような構成を採用すると、タービン40tでの膨張仕事量xが流動床への通気圧損x1と通風抵抗x2で制約を受ける場合に、タービン40tでの膨張仕事量xがコンプレッサ40cでの圧縮仕事量yより少なくなり(x<y)、過給機40の駆動を維持できなくなる。 However, as shown in FIG. 2B, if a configuration is adopted in which the air supply port of the compressor 40c is opened to the atmosphere and the outside air is directly sucked, the expansion work amount x in the turbine 40t is the air pressure loss to the fluidized bed. When constrained by x1 and the ventilation resistance x2, the expansion work amount x in the turbine 40t becomes less than the compression work amount y in the compressor 40c (x <y), and the drive of the turbocharger 40 cannot be maintained.

そこで、押込み送風機30から送風路を介してコンプレッサ40cに空気を供給するように構成されている。 Therefore, it is configured to supply air from the push-in blower 30 to the compressor 40c via the air passage.

図2(c)に示すように、押込み送風機30により予備圧縮された燃焼用空気がコンプレッサ40cの給気口に供給されるので、コンプレッサ40cでの圧縮仕事量yが予備圧縮分y1だけ実質的に小さくなり(x>y)、流動床への通気圧損x1と通風抵抗x2があっても過給機40の駆動を維持させることができるようになる。 As shown in FIG. 2C, the combustion air precompressed by the indentation blower 30 is supplied to the air supply port of the compressor 40c, so that the amount of compression work y in the compressor 40c is substantially equal to the precompression amount y1. (X> y), and even if there is a ventilation pressure loss x1 and a ventilation resistance x2 to the fluidized bed, the drive of the supercharger 40 can be maintained.

また、過給機40を使用しない場合よりも押込み送風機30による吐出圧力を低下させることができるので、押込み送風機30の消費電力を低減させることができる。但し、流動床式焼却炉2の立上げ初期には専ら押込み送風機30のみで流動床を形成するために送風圧力を上昇させる必要があるが、過給機40の通風抵抗は小さく、立ち上げにより昇温されるに伴い過給機40による動力コストの低減効果を得られる。 Further, since the discharge pressure by the push-in blower 30 can be reduced as compared with the case where the supercharger 40 is not used, the power consumption of the push-in blower 30 can be reduced. However, at the initial stage of starting up the fluidized bed incinerator 2, it is necessary to increase the blowing pressure in order to form the fluidized bed exclusively with the indentation blower 30, but the ventilation resistance of the turbocharger 40 is small, and by starting up. As the temperature rises, the effect of reducing the power cost of the supercharger 40 can be obtained.

廃棄物処理設備100には制御部70が備えられている。制御部70は、フリーボード部20の出口部に備えた酸素ガスセンサSgにより検出される排ガスの酸素濃度に基づいて押込み送風機30の回転数を制御することにより、流動床式焼却炉2が適切な燃焼状態に維持されるように、燃焼用空気の供給量を調整するように構成されている。 The waste treatment facility 100 is provided with a control unit 70. The control unit 70 is suitable for the fluidized bed incinerator 2 by controlling the rotation speed of the push blower 30 based on the oxygen concentration of the exhaust gas detected by the oxygen gas sensor Sg provided at the outlet of the free board unit 20. It is configured to regulate the supply of combustion air so that it is maintained in a combustion state.

制御部70は、酸素ガスセンサSgにより検出される排ガスの酸素濃度と目標酸素濃度との偏差に基づいて所定の制御演算を行なうことにより、炉内に供給されるべき目標空気量を算出する。 The control unit 70 calculates the target air amount to be supplied to the furnace by performing a predetermined control calculation based on the deviation between the oxygen concentration of the exhaust gas detected by the oxygen gas sensor Sg and the target oxygen concentration.

予め想定される理論空気量に基づいて完全燃焼に要する空気量を設定し、そのときに排ガスに残存する基準酸素濃度が算出されている。酸素ガスセンサSgにより検出される排ガスの酸素濃度が基準酸素濃度より高い場合に目標空気量を減少し、排ガスの酸素濃度が基準酸素濃度より低い場合に目標空気量を増加するようにフィードバック演算が行なわれる。 The amount of air required for complete combustion is set based on the theoretical amount of air assumed in advance, and the reference oxygen concentration remaining in the exhaust gas at that time is calculated. A feedback calculation is performed so that the target air amount is reduced when the oxygen concentration of the exhaust gas detected by the oxygen gas sensor Sg is higher than the reference oxygen concentration, and the target air amount is increased when the oxygen concentration of the exhaust gas is lower than the reference oxygen concentration. Is done.

制御部70は、押込み送風機30とコンプレッサ40cとの間に設置された流量計Sqで検知された空気量と目標空気量との偏差に基づいて押込み送風機30の目標回転数を算出し、押込み送風機30が当該目標回転数となるようにインバータ75を制御する。 The control unit 70 calculates the target rotation speed of the push blower 30 based on the deviation between the air amount detected by the flow meter Sq installed between the push blower 30 and the compressor 40c and the target air amount, and the push blower 30. The inverter 75 is controlled so that 30 becomes the target rotation speed.

排ガスに含まれる酸素濃度を指標に用いることにより、流動床式焼却炉2で燃焼する汚泥の有機成分に対して適正な量の燃焼用空気量が把握でき、その指標に基づいて目標量が設定されるので、必要量に対して大きく過不足することなく燃焼用空気を供給することができるようになる。 By using the oxygen concentration in the exhaust gas as an index, the appropriate amount of combustion air for the organic components of the sludge burned in the fluidized bed incinerator 2 can be grasped, and the target amount is set based on the index. Therefore, it becomes possible to supply combustion air without a large excess or deficiency with respect to the required amount.

図2(d)には、燃焼用空気量を一定に維持するとの前提の下で、第1熱交換器5による廃熱回収量と押込み送風機30に要する動力との関係が示されている。廃熱回収量が増加するに連れて過給機40の回転数が上がるため、押込み送風機30によってコンプレッサ40Cへ供給すべき送風量、つまり必要送風量が減少し、それに伴って押込み送風機30に要する動力が低減されることが示されている。第1熱交換器5による廃熱回収量が増加するとコンプレッサ40cで引き込まれる圧縮空気量で十分な量が得られ、押込み送風機30による送風量が不要になるため、押込み送風機30が停止される。 FIG. 2D shows the relationship between the amount of waste heat recovered by the first heat exchanger 5 and the power required for the push-in blower 30 on the premise that the amount of combustion air is kept constant. Since the rotation speed of the turbocharger 40 increases as the amount of waste heat recovered increases, the amount of air to be supplied to the compressor 40C by the push-in blower 30, that is, the required amount of blown air decreases, and the push-in blower 30 is required accordingly. It has been shown that power is reduced. When the amount of waste heat recovered by the first heat exchanger 5 increases, a sufficient amount of compressed air is obtained by the amount of compressed air drawn by the compressor 40c, and the amount of air blown by the push-in blower 30 becomes unnecessary, so that the push-in blower 30 is stopped.

そのような状態で第1熱交換器5による廃熱回収量が減少すると、過給機40のタービン40tへの入熱量が低下するため、制御部70によって流動床式焼却炉2に必要な燃焼用空気量となるように、押込み送風機30を再度立ち上げる必要があるが、数十キロワット以上の大型の押込み送風機30を始動する際には始動電流を抑制するための始動回路が設けられており、それほど急に立ち上げることができない。そのため、遅延により制御特性が低下して押込み送風機30による送風量が変動して安定的な設備の運転ができない虞がある。 If the amount of waste heat recovered by the first heat exchanger 5 decreases in such a state, the amount of heat input to the turbine 40t of the supercharger 40 decreases. Therefore, the control unit 70 reduces the amount of combustion required for the fluidized bed incinerator 2. It is necessary to restart the push-in blower 30 so that the amount of air is sufficient, but when starting a large push-in blower 30 of several tens of kilowatts or more, a starting circuit for suppressing the starting current is provided. , I can't launch it so suddenly. Therefore, there is a possibility that the control characteristics deteriorate due to the delay and the amount of air blown by the indentation blower 30 fluctuates, so that stable equipment operation cannot be performed.

そこで、廃棄物処理設備100には、前者の課題に対応して、押込み送風機30よりも低動力で押込み送風機30からコンプレッサ40cへの空気供給路34に空気を供給する補助押込み送風機30aを備えるとともに、後者の課題に対応して、押込み送風機30を停止した状態で、コンプレッサ40cへの空気供給量が目標空気量となるように、タービン40tへの入熱量を調整する入熱量調整機構50を備えている。押込み送風機30よりも低動力の補助押込み送風機30aとは、必要とされる送風量が少ない場合に、押込み送風機30と同程度の送風量を確保でき、その際に必要とされる吐出圧力が低いために低い動力で作動させることができる送風機をいう。 Therefore, in response to the former problem, the waste treatment facility 100 is provided with an auxiliary push blower 30a that supplies air to the air supply path 34 from the push blower 30 to the compressor 40c with a lower power than the push blower 30. In response to the latter problem, a heat input adjusting mechanism 50 for adjusting the heat input to the turbine 40t is provided so that the air supply amount to the compressor 40c becomes the target air amount with the push-in blower 30 stopped. ing. The auxiliary push blower 30a, which has a lower power than the push blower 30, can secure the same amount of air as the push blower 30 when the required air flow is small, and the discharge pressure required at that time is low. Therefore, it is a blower that can be operated with low power.

補助押込み送風機30aとして、10キロワット程度のターボファン送風機を好適に採用できる。この様な補助押込み送風機30aであれば始動電流を抑制しながらも良好な立上り特性が得られる。 As the auxiliary push-in blower 30a, a turbofan blower of about 10 kW can be preferably adopted. With such an auxiliary push-in blower 30a, good rise characteristics can be obtained while suppressing the starting current.

制御部70は、例えば、流動床式焼却炉2への燃焼用空気の供給量が所定量に維持された状態で、押込み送風機30による必要送風量が予め設定された下限送風量になると押込み送風機30を停止し、押込み送風機30を停止した状態で必要送風量が下限送風量を上回ると押込み送風機30に代えて補助押込み送風機30aを作動させるように制御する。下限送風量の具体的な値は特に限定されるものではないが、例えば図2(d)の特性線とx軸との交点近傍の送風機動力となる値を適宜設定すればよい。 The control unit 70 is, for example, in a state where the supply amount of combustion air to the fluidized bed incinerator 2 is maintained at a predetermined amount, and when the required air flow amount by the push-in blower 30 reaches a preset lower limit blower amount, the push-in blower When the required air amount exceeds the lower limit air amount while the incinerator 30 is stopped and the incinerator 30 is stopped, the auxiliary incinerator 30a is controlled to operate instead of the incinerator 30. The specific value of the lower limit blower amount is not particularly limited, but for example, a value that becomes the blower power in the vicinity of the intersection of the characteristic line of FIG. 2D and the x-axis may be appropriately set.

そして、制御部70は、必要送風量が下限送風量より多い起動送風量に達するまでの間は補助押込み送風機30aを作動させ、必要送風量が起動送風量を超えると補助押込み送風機30aに代えて押込み送風機30を作動させるように構成されている。 Then, the control unit 70 operates the auxiliary push-in blower 30a until the required blower reaches a starter blower amount larger than the lower limit blower amount, and when the required blower amount exceeds the start-up blower amount, the control unit 70 replaces the auxiliary push-in blower 30a. It is configured to operate the push-in blower 30.

押込み送風機30を停止した状態で必要送風量が下限送風量を超えても直ちに押込み送風機30を作動させることなく、下限送風量より多い起動送風量に達すると押込み送風機30を作動させるヒステリシス特性を持たせることにより、押込み送風機30の頻繁な始動及び停止を回避するとともに、起動送風量に達するまでは押込み送風機30に代えて始動特性に優れた補助押込み送風機30aを作動させる。この様な構成により、送風量の変動に迅速に対応して、流動床式焼却炉2への燃焼用空気の供給量を応答性良く目標量に調整することができ、流動床式焼却炉2を安定した燃焼状態に制御することができる。 It has a hysteresis characteristic that activates the push-in blower 30 when the start-up blower amount exceeds the lower limit blower without immediately operating the push-in blower 30 even if the required blower amount exceeds the lower limit blower amount with the push-in blower 30 stopped. By doing so, the frequent start and stop of the push blower 30 is avoided, and the auxiliary push blower 30a having excellent starting characteristics is operated instead of the push blower 30 until the start air volume is reached. With such a configuration, it is possible to quickly respond to fluctuations in the amount of air blown and adjust the amount of combustion air supplied to the fluidized bed incinerator 2 to a target amount with good responsiveness. Can be controlled to a stable combustion state.

具体的に、押込み送風機30の作動時には、コンプレッサ40cへの空気供給路34に導かれるバイパス路35及び補助押込み送風機30aを備えた補助空気供給路36に備えた流量調整機構としてのダンパ32,33を閉塞し、押込み送風機30の停止時には押込み送風機30の出口に備えた流量調整機構としてのダンパ31を閉塞するとともに、コンプレッサ40cによる空気供給となるバイパス路35に備えたダンパ32を開放する。後述するように、これらの流量調整機構は、タービン40tへの入熱量を調整する入熱量調整機構50として機能する。 Specifically, when the push-in blower 30 is operated, the dampers 32 and 33 as flow rate adjusting mechanisms provided in the bypass path 35 guided to the air supply path 34 to the compressor 40c and the auxiliary air supply path 36 provided with the auxiliary push-blower 30a. When the push blower 30 is stopped, the damper 31 as a flow rate adjusting mechanism provided at the outlet of the push blower 30 is closed, and the damper 32 provided in the bypass path 35 for supplying air by the compressor 40c is opened. As will be described later, these flow rate adjusting mechanisms function as the heat input adjusting mechanism 50 for adjusting the heat input to the turbine 40t.

この状態で過渡的に送風が必要な場合には、補助空気供給路36に備えたダンパ33を開放するとともに、補助押込み送風機30aを作動させるのである。なお、空気供給路34、バイパス路35及び補助空気供給路36の上流側は、汚泥の発生源である水処理設備や汚泥貯留設備に備えた臭気ガス収集部に接続され、流動床式焼却炉2で燃焼脱臭するように構成されている。 When transient air blowing is required in this state, the damper 33 provided in the auxiliary air supply path 36 is opened and the auxiliary indentation blower 30a is operated. The upstream side of the air supply path 34, the bypass path 35, and the auxiliary air supply path 36 is connected to an odor gas collecting unit provided in a water treatment facility or a sludge storage facility, which is a source of sludge, and is a fluidized bed incinerator. It is configured to be burned and deodorized in 2.

上述した入熱量調整機構50について説明する。第1熱交換器5による廃熱回収量が過大になり、コンプレッサ40cへの空気供給量つまりコンプレッサ40cによる吸引空気量が必要量を超えるような場合に、入熱量調整機構50によってタービン40tへの入熱量が調整される。その結果、コンプレッサ40cの回転数が低下して空気供給量を目標空気量に調整できるようになる。 The above-mentioned heat input amount adjusting mechanism 50 will be described. When the amount of waste heat recovered by the first heat exchanger 5 becomes excessive and the amount of air supplied to the compressor 40c, that is, the amount of suction air taken by the compressor 40c exceeds the required amount, the heat input adjusting mechanism 50 sends the turbine 40t to the turbine 40t. The amount of heat input is adjusted. As a result, the rotation speed of the compressor 40c is reduced, and the air supply amount can be adjusted to the target air amount.

図1に示すように、入熱量調整機構50は、コンプレッサ40cから送出され第1熱交換器5に導かれる空気の一部を直接タービン40tの導入ポート側に導くバイパス路51と、バイパス路51に設けられた流量調整機構52としてのダンパ機構で構成されている。 As shown in FIG. 1, the heat input adjusting mechanism 50 has a bypass path 51 and a bypass path 51 that directly guide a part of the air sent from the compressor 40c and guided to the first heat exchanger 5 to the introduction port side of the turbine 40t. It is composed of a damper mechanism as a flow rate adjusting mechanism 52 provided in the above.

コンプレッサ40cから送出され第1熱交換器5に導かれる空気の一部がバイパス路51を介してタービン40tの導入ポート側に導かれる。第1熱交換器5により予熱された空気と流量調整機構52を介してバイパス路51に導かれた空気が合流してタービン40tに導入されることにより、タービン40tへの入熱量が調整される。 A part of the air sent from the compressor 40c and guided to the first heat exchanger 5 is guided to the introduction port side of the turbine 40t via the bypass path 51. The amount of heat input to the turbine 40t is adjusted by merging the air preheated by the first heat exchanger 5 and the air guided to the bypass path 51 via the flow rate adjusting mechanism 52 and introducing the air into the turbine 40t. ..

詳述すると、制御部70は、第1熱交換器5での熱交換量が上昇して、流量計Sqで検知された空気量が目標量よりも上昇すると、バイパス路51でバイパスされる空気量を増加させるように流量調整機構52を調整することにより、タービン40tへの入熱量を低下させ、逆に第1熱交換器5での熱交換量が下降して、流量計Sqで検知された空気量が目標量よりも低下すると、バイパス路51でバイパスされる空気量を増加させるように流量調整機構52を調整することにより、タービン40tへの入熱量を上昇させるように制御するように構成されている。なお、押込み送風機30の状態にかかわらず、入熱量調整機構50を作動させるように構成されていてもよいことはいうまでもない。 More specifically, in the control unit 70, when the amount of heat exchanged in the first heat exchanger 5 increases and the amount of air detected by the flow meter Sq rises above the target amount, the air bypassed in the bypass path 51 By adjusting the flow rate adjusting mechanism 52 so as to increase the amount, the amount of heat input to the turbine 40t is reduced, and conversely, the amount of heat exchanged by the first heat exchanger 5 is reduced and detected by the flowmeter Sq. When the amount of air collected is lower than the target amount, the flow rate adjusting mechanism 52 is adjusted so as to increase the amount of air bypassed in the bypass path 51, so that the amount of heat input to the turbine 40t is controlled to increase. It is configured. Needless to say, the heat input adjusting mechanism 50 may be operated regardless of the state of the push-in blower 30.

押込み送風機30をバイパスするバイパス路35に設けたダンパ32により流量調整機構52としての機能を発揮させることも可能である。例えば、第1熱交換器5での熱交換量が上昇して、流量計Sqで検知された空気量が目標量よりも上昇すると、ダンパ32の開度を絞ってバイパス路35から空気供給路34に供給される空気量を制限することで、流動床式焼却炉2への燃焼用空気の供給量を安定させることができる。即ち、バイパス路35及びダンパ32は、押込み送風機30を停止した状態で、コンプレッサ40cへの空気供給量が目標空気量となるように、タービン40tへの入熱量を調整する入熱量調整機構50として機能する。 It is also possible to exert the function as the flow rate adjusting mechanism 52 by the damper 32 provided in the bypass path 35 that bypasses the push-in blower 30. For example, when the amount of heat exchanged in the first heat exchanger 5 increases and the amount of air detected by the flow meter Sq rises above the target amount, the opening degree of the damper 32 is narrowed down and the air supply path from the bypass path 35 By limiting the amount of air supplied to 34, the amount of combustion air supplied to the fluidized bed incinerator 2 can be stabilized. That is, the bypass passage 35 and the damper 32 serve as a heat input amount adjusting mechanism 50 that adjusts the heat input amount to the turbine 40t so that the air supply amount to the compressor 40c becomes the target air amount while the push-in blower 30 is stopped. Function.

逆に第1熱交換器5での熱交換量が下降して、流量計Sqで検知された空気量が目標量よりも低下すると、ダンパ32の開度を大きくしてバイパス路35から空気供給路34に供給される空気量を増やすことも可能である。ダンパ32とダンパ52の双方を同時に制御するように構成してもよい。 On the contrary, when the amount of heat exchange in the first heat exchanger 5 decreases and the amount of air detected by the flow meter Sq decreases below the target amount, the opening degree of the damper 32 is increased and air is supplied from the bypass path 35. It is also possible to increase the amount of air supplied to the road 34. It may be configured to control both the damper 32 and the damper 52 at the same time.

制御部70は、第1熱交換器5での熱交換量が下降して、流量計Sqで検知された空気量が目標量よりも低下する場合に、上述した補助押込み送風機30aによる送風量の増加制御と、入熱量調整機構50による第1熱交換器5に対するバイパス量の抑制制御を同時に行なうことにより、より制御の応答性を良くすることができる。 When the amount of heat exchanged by the first heat exchanger 5 decreases and the amount of air detected by the flow meter Sq decreases below the target amount, the control unit 70 determines the amount of air blown by the auxiliary push-in blower 30a described above. By simultaneously performing the increase control and the suppression control of the bypass amount with respect to the first heat exchanger 5 by the heat input amount adjusting mechanism 50, the responsiveness of the control can be further improved.

また、第1熱交換器5での熱交換量が上昇して、流量計Sqで検知された空気量が目標量よりも上昇する場合に、上述したダンパ32の開度を絞ることによる送風量の減少制御と、入熱量調整機構50による第1熱交換器5に対するバイパス量の増量制御を同時に行なうことにより、より制御の応答性を良くすることができる。 Further, when the amount of heat exchanged by the first heat exchanger 5 increases and the amount of air detected by the flow meter Sq rises above the target amount, the amount of air blown by reducing the opening degree of the damper 32 described above. By simultaneously performing the reduction control of the above and the increase control of the bypass amount with respect to the first heat exchanger 5 by the heat input amount adjusting mechanism 50, the responsiveness of the control can be further improved.

上述したように、本発明による廃棄物処理設備の運転方法は、制御部70によって実行され、流動床式焼却炉2への燃焼用空気の供給量が所定量に維持された状態で押込み送風機30による必要送風量が予め設定された下限送風量になると押込み送風機30を停止し、押込み送風機30を停止した状態で必要送風量が下限送風量を上回ると押込み送風機30に代えて補助押込み送風機30aを作動させるように構成されている。 As described above, the operation method of the waste treatment facility according to the present invention is executed by the control unit 70, and the push blower 30 is maintained in a state where the supply amount of combustion air to the fluidized bed incinerator 2 is maintained at a predetermined amount. When the required air volume reaches the preset lower limit air volume, the push blower 30 is stopped, and when the required air flow exceeds the lower limit air volume while the push blower 30 is stopped, the auxiliary push blower 30a is used instead of the push blower 30. It is configured to operate.

具体的に、必要送風量が下限送風量より多い起動送風量に達するまでの間は補助押込み送風機30aを作動させ、必要送風量が起動送風量を超えると補助押込み送風機30aに代えて押込み送風機30を作動させる。 Specifically, the auxiliary push-in blower 30a is operated until the required blower amount reaches the start-up blower amount larger than the lower limit blower amount, and when the required blower amount exceeds the start-up blower amount, the push-in blower 30a is replaced with the auxiliary push-in blower 30a. To operate.

また、コンプレッサ40cへの空気供給量が目標空気量となるように、熱量調整機構50を介してタービン40tへの入熱量を調整するように構成されている。 Further, the amount of heat input to the turbine 40t is adjusted via the heat amount adjusting mechanism 50 so that the amount of air supplied to the compressor 40c becomes the target amount of air.

以下、本発明による廃棄物処理設備及びその運転方法の別実施形態を説明する。上述した実施形態では、補助押込み送風機30aによる送風量の調整機構と入熱量調整機構50の双方を備えた例を説明したが、本発明は少なくとも補助押込み送風機30aを備えていればよく、入熱量調整機構50を備えていなくてもよい。 Hereinafter, another embodiment of the waste treatment equipment and the operation method thereof according to the present invention will be described. In the above-described embodiment, an example in which both the air blower amount adjusting mechanism and the heat input amount adjusting mechanism 50 by the auxiliary push-in blower 30a have been described has been described. The adjusting mechanism 50 may not be provided.

なお、入熱量調整機構50を備える場合には、図3に示すように、入熱量調整機構50の作動時にタービン40tから送出された予熱空気の温度を調整する第2熱交換器4を備えていることが好ましい。 When the heat input adjusting mechanism 50 is provided, as shown in FIG. 3, a second heat exchanger 4 that adjusts the temperature of the preheated air sent from the turbine 40t when the heat input adjusting mechanism 50 is operated is provided. It is preferable to have.

そして、タービン40tから送出される予熱空気を第2熱交換器4に導く流路にバイパス路61を設けるとともにバイパス路61に流量調整機構62としてのダンパ機構を設けた温度調整機構60を備え、第2熱交換器4により加熱された空気とバイパス路61を通過した空気を合流させた燃焼用空気を流動床式焼却炉2へ供給するように構成することが好ましい。 Then, a bypass path 61 is provided in the flow path for guiding the preheated air sent from the turbine 40t to the second heat exchanger 4, and the bypass path 61 is provided with a temperature adjusting mechanism 60 provided with a damper mechanism as the flow rate adjusting mechanism 62. It is preferable that the combustion air obtained by merging the air heated by the second heat exchanger 4 and the air passing through the bypass path 61 is supplied to the fluidized bed incinerator 2.

この場合、流動床式焼却炉2への燃焼用空気の供給部に温度センサStを備え、制御部70が温度センサStにより検出された温度が目標温度となるように流量調整機構62を制御するように構成されていることが好ましい。 In this case, a temperature sensor St is provided in the supply unit of combustion air to the fluidized bed incinerator 2, and the control unit 70 controls the flow rate adjusting mechanism 62 so that the temperature detected by the temperature sensor St becomes the target temperature. It is preferable that the structure is as follows.

入熱量調整機構50が作動して、タービン40tから送出され燃焼用空気として流動床式焼却炉2に導かれる予熱空気の温度が変動して流動床式焼却炉2の安定操炉に支障を来す虞がある場合でも、第2熱交換器4を備えることによりタービン40tから送出され流動床式焼却炉2に導かれる予熱空気の温度が適切な温度に調整できるようになる。 The heat input adjusting mechanism 50 operates, and the temperature of the preheated air sent from the turbine 40t and guided to the fluidized bed incinerator 2 as combustion air fluctuates, which hinders the stable operation of the fluidized bed incinerator 2. Even if there is a risk of this, the provision of the second heat exchanger 4 makes it possible to adjust the temperature of the preheated air sent out from the turbine 40t and guided to the fluidized bed incinerator 2 to an appropriate temperature.

さらに、図4に示すように、流動床式焼却炉2に供給する燃焼用空気の温度を調整すべく、第2熱交換器4に配した伝熱管を流れる排ガスの流れ方向に沿って最下流側と最下流側よりも上流側の2か所に燃焼用空気を供給する空気流入部4a,4bを設けるとともに、タービン40tから送出された空気を第2熱交換器4に導く流路71に、空気流入部4a及び空気流入部4bから流入する空気量を調整する流量調整機構72としてのダンパ機構を設けてもよい。 Further, as shown in FIG. 4, in order to adjust the temperature of the combustion air supplied to the fluidized bed incinerator 2, the most downstream along the flow direction of the exhaust gas flowing through the heat transfer tube arranged in the second heat exchanger 4. Air inflow portions 4a and 4b for supplying combustion air are provided at two locations on the side and on the upstream side of the most downstream side, and in the flow path 71 for guiding the air sent from the turbine 40t to the second heat exchanger 4. , A damper mechanism as a flow rate adjusting mechanism 72 for adjusting the amount of air flowing in from the air inflow portion 4a and the air inflow portion 4b may be provided.

この場合も、流動床式焼却炉2への燃焼用空気の供給部に温度センサStを備え、制御部70が温度センサStにより検出された温度が目標温度となるように流量調整機構72を制御するように構成すればよい。 Also in this case, the temperature sensor St is provided in the supply unit of the combustion air to the fluidized bed incinerator 2, and the control unit 70 controls the flow rate adjusting mechanism 72 so that the temperature detected by the temperature sensor St becomes the target temperature. It may be configured to do so.

図5に示すように、入熱量調整機構50の構成は、図1に示した構成に限るものではなく、コンプレッサ40cから送出され第1熱交換器5に導かれる空気の一部を直接タービン40tの送出ポート側に導くバイパス路51と、バイパス路51に設けられた流量調整機構52としてのダンパ機構とで構成されていてもよい。 As shown in FIG. 5, the configuration of the heat input adjusting mechanism 50 is not limited to the configuration shown in FIG. 1, and a part of the air sent from the compressor 40c and guided to the first heat exchanger 5 is directly transferred to the turbine 40t. It may be composed of a bypass path 51 leading to the transmission port side of the above and a damper mechanism as a flow rate adjusting mechanism 52 provided in the bypass path 51.

バイパス路51に備えた流量調整機構52により第1熱交換器5に導かれる空気量が間接的に調整される結果、タービン40tへの入熱量が調整されるようになる。タービン40tから送出される予熱空気とバイパス路51に導かれた空気が合流して燃焼用空気として流動床式焼却炉2に供給される。 As a result of indirectly adjusting the amount of air guided to the first heat exchanger 5 by the flow rate adjusting mechanism 52 provided in the bypass path 51, the amount of heat input to the turbine 40t is adjusted. The preheated air sent from the turbine 40t and the air guided to the bypass path 51 merge and are supplied to the fluidized bed incinerator 2 as combustion air.

図6に示すように、入熱量調整機構50は、第1熱交換器5から送出されタービン40tの導入ポートに導かれる予熱空気の一部を直接タービン40tの送出ポート側に導くバイパス路51と、バイパス路51に設けられた流量調整機構52としてのダンパ機構で構成されていてもよい。 As shown in FIG. 6, the heat input adjusting mechanism 50 includes a bypass path 51 that directly guides a part of the preheated air sent from the first heat exchanger 5 to the introduction port of the turbine 40t to the delivery port side of the turbine 40t. , The damper mechanism as the flow rate adjusting mechanism 52 provided in the bypass path 51 may be configured.

なお、何れの流量調整機構も、ダンパ機構を採用する例に限るものではなく、バルブ機構など公知の流量調整機構を適宜採用できることはいうまでもない。 It should be noted that any flow rate adjusting mechanism is not limited to the example of adopting the damper mechanism, and it goes without saying that a known flow rate adjusting mechanism such as a valve mechanism can be appropriately adopted.

コンプレッサ40cから送出される空気の全量が第1熱交換器5に導かれ、第1熱交換器5で予熱された空気の一部が流量調整機構52を介してバイパス路51に案内され、その残余がタービン40tに導かれる結果、タービン40tへの入熱量が調整されるようになる。タービン40tから送出される予熱空気とバイパス路51に導かれた予熱空気が合流して燃焼用空気として流動床式焼却炉2に供給される。 The entire amount of air sent out from the compressor 40c is guided to the first heat exchanger 5, and a part of the air preheated by the first heat exchanger 5 is guided to the bypass path 51 via the flow rate adjusting mechanism 52. As a result of the residue being guided to the turbine 40t, the amount of heat input to the turbine 40t is adjusted. The preheated air sent from the turbine 40t and the preheated air guided to the bypass path 51 merge and are supplied to the fluidized bed incinerator 2 as combustion air.

図3及び図4に示した実施形態では、煙道10に沿って上流側に第2熱交換器4が配され、その下流側に第1熱交換器5が配された例を説明したが、図7に示すように、煙道10に配置される第2熱交換器4と第1熱交換器5とが排ガスの流れ方向に沿って並列配置されるように配置されていてもよい。 In the embodiment shown in FIGS. 3 and 4, an example in which the second heat exchanger 4 is arranged on the upstream side along the flue 10 and the first heat exchanger 5 is arranged on the downstream side thereof has been described. , As shown in FIG. 7, the second heat exchanger 4 and the first heat exchanger 5 arranged in the flue 10 may be arranged so as to be arranged in parallel along the flow direction of the exhaust gas.

上述した実施形態では、第1熱交換器5が煙道10に配され、煙道に導かれる排ガスの保有熱により燃焼用空気を予熱するように構成された例を説明したが、第1熱交換器5は流動床式焼却炉2に設けられ、炉内燃焼熱により燃焼用空気を予熱するように構成されていてもよい。 In the above-described embodiment, an example in which the first heat exchanger 5 is arranged in the flue 10 and is configured to preheat the combustion air by the retained heat of the exhaust gas guided to the flue has been described. The exchanger 5 may be provided in the flue type incinerator 2 and may be configured to preheat the combustion air by the combustion heat in the furnace.

上述した実施形態は、熱処理炉として流動床式焼却炉2を採用した場合について説明したが、本発明が適用される焼却炉は流動床式焼却炉2に限らず、流動床式焼却炉2と同様に通気圧損が大きいシャフト炉等の他の形式の工業炉にも適用可能である。例えば、底部にコークスベッドが形成され、当該コークスベッドに燃焼用空気を供給する羽口が形成されたシャフト炉の上方から汚泥を投入して溶融するような熱処理炉やスクラップを投入して溶解するキュポラ等であっても、本発明が適用可能である。 In the above-described embodiment, the case where the fluidized bed incinerator 2 is adopted as the heat treatment furnace has been described, but the incinerator to which the present invention is applied is not limited to the fluidized bed incinerator 2, and is not limited to the fluidized bed incinerator 2. Similarly, it can be applied to other types of industrial furnaces such as shaft furnaces having a large ventilation pressure loss. For example, a heat treatment furnace or scrap that melts by throwing sludge from above a shaft furnace having a coke bed formed at the bottom and a tuyere for supplying combustion air to the coke bed is thrown in and melted. The present invention can be applied even to a cupola or the like.

上述した複数の実施形態を適宜組み合わせて構成してもよい。例えば図5、図6に示した入熱量調整機構50と、図3、図4に示した第2熱交換器4とを組み合わせて廃棄物処理設備を構成してもよい。 The plurality of embodiments described above may be combined as appropriate. For example, the waste treatment facility may be configured by combining the heat input amount adjusting mechanism 50 shown in FIGS. 5 and 6 and the second heat exchanger 4 shown in FIGS. 3 and 4.

上述した実施形態は、何れも本発明の一例であり、当該記載により本発明が限定されるものではなく、夫々の特徴構成を適宜向き合わせてもよく、また各部の具体的構成を本発明の作用効果が奏される範囲で適宜変更設計してもよいことはいうまでもない。 Each of the above-described embodiments is an example of the present invention, and the present invention is not limited by the description thereof. Needless to say, it may be appropriately modified and designed within the range in which the action and effect are exhibited.

100:廃棄物処理設備
2:流動床式焼却炉(熱処理炉)
3:空気供給機構
4:第2熱交換器
5:第1熱交換器
10:煙道
30:押込み送風機
30a:補助押込み送風機
31,32,33:ダンパ
40:過給機
40c:コンプレッサ
40t:タービン
50:入熱量調整機構
51:バイパス路
52:流量調整機構(ダンパ機構)
70:制御部
75:インバータ
100: Waste treatment equipment 2: Fluidized bed incinerator (heat treatment furnace)
3: Air supply mechanism 4: Second heat exchanger 5: First heat exchanger 10: Flue 30: Push-in blower 30a: Auxiliary push-in blower 31, 32, 33: Damper 40: Supercharger 40c: Compressor 40t: Turbine 50: Heat input adjusting mechanism 51: Bypass path 52: Flow rate adjusting mechanism (damper mechanism)
70: Control unit 75: Inverter

Claims (11)

汚泥等の廃棄物を焼却処理する熱処理炉と、
前記熱処理炉の炉内燃焼熱及び/または煙道に導かれる排ガスの保有熱により燃焼用空気を予熱する第1熱交換器と、
前記第1熱交換器で予熱された燃焼用空気により回転するタービンと前記タービンの回転により前記第1熱交換器に燃焼用空気を供給するコンプレッサとを含む過給機と、
燃焼用空気を前記コンプレッサに供給する押込み送風機と、
を備えている廃棄物処理設備であって、
前記押込み送風機よりも低動力で前記押込み送風機から前記コンプレッサへの空気供給路に空気を供給する補助押込み送風機を備えている廃棄物処理設備。
A heat treatment furnace that incinerates waste such as sludge,
A first heat exchanger that preheats the combustion air by the combustion heat in the furnace and / or the retained heat of the exhaust gas guided to the flue.
A supercharger including a turbine rotated by combustion air preheated by the first heat exchanger and a compressor that supplies combustion air to the first heat exchanger by rotation of the turbine.
A push-in blower that supplies combustion air to the compressor,
It is a waste treatment facility equipped with
A waste treatment facility including an auxiliary push blower that supplies air to an air supply path from the push blower to the compressor with a lower power than the push blower.
前記押込み送風機によって前記コンプレッサへ供給すべき必要送風量が予め設定された下限送風量になると前記押込み送風機を停止する制御部を備えている請求項1記載の廃棄物処理設備。 The waste treatment facility according to claim 1, further comprising a control unit that stops the push blower when the required blow rate to be supplied to the compressor by the push blower reaches a preset lower limit blower. 前記制御部は、前記押込み送風機を停止した状態で前記必要送風量が前記下限送風量を上回ると前記補助押込み送風機を作動させる請求項2記載の廃棄物処理設備。 The waste treatment equipment according to claim 2, wherein the control unit operates the auxiliary push-in blower when the required blower amount exceeds the lower limit blower amount while the push-in blower is stopped. 前記制御部は、前記必要送風量が前記下限送風量より多い起動送風量に達するまでの間は前記補助押込み送風機を作動させ、前記必要送風量が前記起動送風量を超えると前記補助押込み送風機に代えて前記押込み送風機を作動させる請求項3記載の廃棄物処理設備。 The control unit operates the auxiliary push-in blower until the required blower reaches a start air amount larger than the lower limit blower, and when the required blower exceeds the start-up blower, the auxiliary push-in blower is used. The waste treatment facility according to claim 3, wherein the push-in blower is operated instead. 前記タービンへ供給される燃焼用空気の入熱量を調整する入熱量調整機構を備えている請求項1から4の何れかに記載の廃棄物処理設備。 The waste treatment facility according to any one of claims 1 to 4, further comprising an heat input adjusting mechanism for adjusting the heat input of combustion air supplied to the turbine. 前記入熱量調整機構は、前記コンプレッサへの空気供給路に設けられた流量調整機構で構成されている請求項5記載の廃棄物処理設備。 The waste treatment facility according to claim 5, wherein the heat input adjusting mechanism is composed of a flow rate adjusting mechanism provided in an air supply path to the compressor. 前記流量調整機構は、前記押込み送風機をバイパスするバイパス路に設けられている請求項6記載の廃棄物処理設備。 The waste treatment facility according to claim 6, wherein the flow rate adjusting mechanism is provided in a bypass path that bypasses the indentation blower. 前記タービンから送出された予熱空気の温度を前記排ガスの保有熱により調整する第2熱交換器を備えている請求項1から7の何れかに記載の廃棄物処理設備。 The waste treatment facility according to any one of claims 1 to 7, further comprising a second heat exchanger that adjusts the temperature of the preheated air sent from the turbine by the retained heat of the exhaust gas. 汚泥等の廃棄物を焼却処理する熱処理炉と、
前記熱処理炉の炉内燃焼熱及び/または煙道に導かれる排ガスの保有熱により燃焼用空気を予熱する第1熱交換器と、
前記第1熱交換器で予熱された燃焼用空気により回転するタービンと前記タービンの回転により前記第1熱交換器に燃焼用空気を供給するコンプレッサとを含む過給機と、
燃焼用空気を前記コンプレッサに供給する押込み送風機と、
前記押込み送風機と並列に接続され前記コンプレッサに空気を供給する前記押込み送風機よりも低動力である補助押込み送風機と、
を備えている廃棄物処理設備の運転方法であって、
前記熱処理炉への燃焼用空気の供給量が所定量に維持された状態で前記押込み送風機によって前記コンプレッサへ供給すべき必要送風量が予め設定された下限送風量になると前記押込み送風機を停止し、前記押込み送風機が停止した状態で前記必要送風量が前記下限送風量を上回ると前記補助押込み送風機を作動させる廃棄物処理設備の運転方法。
A heat treatment furnace that incinerates waste such as sludge,
A first heat exchanger that preheats the combustion air by the combustion heat in the furnace and / or the retained heat of the exhaust gas guided to the flue.
A supercharger including a turbine rotated by combustion air preheated by the first heat exchanger and a compressor that supplies combustion air to the first heat exchanger by rotation of the turbine.
A push-in blower that supplies combustion air to the compressor,
An auxiliary push blower that is connected in parallel with the push blower and has a lower power than the push blower that supplies air to the compressor.
It is a method of operating a waste treatment facility equipped with
When the required amount of air to be supplied to the compressor by the indentation blower reaches a preset lower limit air amount while the amount of combustion air supplied to the heat treatment furnace is maintained at a predetermined amount, the indentation blower is stopped. A method of operating a waste treatment facility that operates the auxiliary indentation blower when the required air amount exceeds the lower limit air amount in a state where the indentation blower is stopped.
前記必要送風量が前記下限送風量より多い起動送風量に達するまでの間は前記補助押込み送風機を作動させ、前記必要送風量が前記起動送風量を超えると前記補助押込み送風機に代えて前記押込み送風機を作動させる請求項9記載の廃棄物処理設備の運転方法。 The auxiliary push-in blower is operated until the required blower amount reaches a start air amount larger than the lower limit blower amount, and when the required blower amount exceeds the start-up blower amount, the push-in blower is replaced with the auxiliary push-blower. 9. The method of operating the waste treatment facility according to claim 9. 前記タービンへ供給される燃焼用空気の入熱量を調整する入熱量調整機構を前記廃棄物処理設備にさらに備え、
前記コンプレッサへ供給される燃焼用空気量が目標空気量となるように、前記入熱量調整機構を介して前記タービンへ供給される燃焼用空気の入熱量を調整する請求項9または10記載の廃棄物処理設備の運転方法。
The waste treatment facility is further equipped with a heat input amount adjusting mechanism for adjusting the heat input amount of the combustion air supplied to the turbine.
The disposal according to claim 9 or 10, wherein the heat input amount of the combustion air supplied to the turbine is adjusted via the heat input amount adjusting mechanism so that the combustion air amount supplied to the compressor becomes the target air amount. How to operate the material processing equipment.
JP2017214322A 2017-11-07 2017-11-07 How to operate waste treatment equipment and waste treatment equipment Active JP6947608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017214322A JP6947608B2 (en) 2017-11-07 2017-11-07 How to operate waste treatment equipment and waste treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017214322A JP6947608B2 (en) 2017-11-07 2017-11-07 How to operate waste treatment equipment and waste treatment equipment

Publications (2)

Publication Number Publication Date
JP2019086207A JP2019086207A (en) 2019-06-06
JP6947608B2 true JP6947608B2 (en) 2021-10-13

Family

ID=66764080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017214322A Active JP6947608B2 (en) 2017-11-07 2017-11-07 How to operate waste treatment equipment and waste treatment equipment

Country Status (1)

Country Link
JP (1) JP6947608B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7409838B2 (en) * 2019-11-26 2024-01-09 株式会社神鋼環境ソリューション waste treatment equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183313A (en) * 1987-01-24 1988-07-28 Ishikawajima Harima Heavy Ind Co Ltd Heated air supply system
JP2003529701A (en) * 1999-06-10 2003-10-07 エンハンスド タービン アウトプット ホールディング エル エル シー Supercharged gas turbine device, supercharged auxiliary device, supercharged gas turbine device operating method, high-pressure fluid transfer duct, and power generation facility
JP6490466B2 (en) * 2015-03-24 2019-03-27 株式会社クボタ Waste treatment facility and method of operating waste treatment facility
JP6683531B2 (en) * 2016-04-15 2020-04-22 メタウォーター株式会社 Waste treatment facility

Also Published As

Publication number Publication date
JP2019086207A (en) 2019-06-06

Similar Documents

Publication Publication Date Title
JP6490466B2 (en) Waste treatment facility and method of operating waste treatment facility
JP6655467B2 (en) Furnace operation method of waste treatment equipment and waste treatment equipment
JP6333021B2 (en) Incineration processing equipment and incineration processing method
JP5067653B2 (en) Pressurized incinerator equipment and operating method thereof
JP6800594B2 (en) Waste treatment equipment and how to operate the waste treatment equipment
JP6580398B2 (en) Waste treatment facility and operation method of waste treatment facility
JP2015194308A (en) Incineration equipment and incineration method
JP4771309B2 (en) Pressurized fluidized incineration equipment and its startup method
JP2008025966A (en) Pressure incinerator equipment and its start-up method
JP2004084981A (en) Waste incinerator
JP2017190929A (en) Waste treatment facility
JP6947608B2 (en) How to operate waste treatment equipment and waste treatment equipment
JP4714912B2 (en) Pressurized fluidized incineration equipment and its startup method
JP2015194307A (en) Incineration equipment and incineration method
JP7156922B2 (en) Waste treatment equipment and operation method of waste treatment equipment
JP5508022B2 (en) Batch waste gasification process
JP5871207B2 (en) Waste incinerator and waste incineration method
JP2022097537A (en) Incinerator with supercharger
JP2022075687A (en) Waste treatment facility operation method and waste treatment facility
JP7316925B2 (en) Waste treatment equipment and operation method of waste treatment equipment
JP2007163048A (en) Gas cooling tower and incineration system
JP7156923B2 (en) Waste treatment equipment and operation method of waste treatment equipment
JP2003322321A (en) Combustion method for stoker type refuse incinerator and stoker type refuse incinerator
JP3683146B2 (en) Waste incinerator and its operating method
WO2013146598A1 (en) Operating method for pressurized fluidized furnace system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210916

R150 Certificate of patent or registration of utility model

Ref document number: 6947608

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150