JP7075574B2 - Combustion furnace of organic waste and treatment system of organic waste using the combustion furnace - Google Patents

Combustion furnace of organic waste and treatment system of organic waste using the combustion furnace Download PDF

Info

Publication number
JP7075574B2
JP7075574B2 JP2017105556A JP2017105556A JP7075574B2 JP 7075574 B2 JP7075574 B2 JP 7075574B2 JP 2017105556 A JP2017105556 A JP 2017105556A JP 2017105556 A JP2017105556 A JP 2017105556A JP 7075574 B2 JP7075574 B2 JP 7075574B2
Authority
JP
Japan
Prior art keywords
organic waste
fluidized bed
combustion furnace
furnace
compressed air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017105556A
Other languages
Japanese (ja)
Other versions
JP2018200150A (en
Inventor
高広 村上
肇 安田
俊樹 小林
英和 長沢
友寛 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Tsukishima Kikai Co Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Tsukishima Kikai Co Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2017105556A priority Critical patent/JP7075574B2/en
Publication of JP2018200150A publication Critical patent/JP2018200150A/en
Application granted granted Critical
Publication of JP7075574B2 publication Critical patent/JP7075574B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Description

本発明は、下水汚泥、食品残さ、都市ごみ等の有機性廃棄物を焼却処理するための燃焼炉及び該燃焼炉を用いた有機性廃棄物の処理システムに関し、特に、外部循環型流動層燃焼炉を用いて有機性廃棄物を焼却処理する処理システムに関する。 The present invention relates to a combustion furnace for incinerating organic waste such as sewage sludge, food residue, and municipal waste, and an organic waste treatment system using the incineration furnace, and in particular, external circulation type fluidized layer combustion. It relates to a treatment system for incinerating organic waste using a furnace.

例えば、下水処理によって発生する下水汚泥は、下水の増加にともなって年々増加しており、その大半が焼却処理されており、焼却炉の大部分には、流動層燃焼炉が用いられている。
この流動層燃焼炉には、気泡流動層燃焼炉と循環型流動層燃焼炉とがある。
前者の気泡流動層燃焼炉は、炉底に砂等の流動媒体を充填してその下方から高圧空気の吹き込みにより流動状態にして該流動媒体中に投入した廃棄物を乾燥、燃焼させるものである。
また、後者の循環型流動層燃焼炉は、流動層とフリーボードとからなる燃焼炉と、微粒子を捕集するサイクロンなどから構成されており、廃棄物を、燃焼炉底部から導入される一次空気により流動化されている流動層に供給すると、流動層内で流動媒体と混合攪拌され、流動しつつ乾燥及び熱分解しながら燃焼され、流動層から吹き上げられる流動媒体と廃棄物中の未燃焼分などは二次空気の導入によりフリーボードへ同伴して燃焼排ガス中の未燃焼分を完全燃焼させ、燃焼排ガスからサイクロンにより流動媒体を捕集して燃焼炉に返送して循環利用するものである。
For example, the amount of sewage sludge generated by sewage treatment is increasing year by year as the amount of sewage increases, and most of it is incinerated, and most of the incinerators use fluidized bed combustion furnaces.
The fluidized bed combustion furnace includes a bubble fluidized bed combustion furnace and a circulating fluidized bed combustion furnace.
In the former bubble fluidized bed combustion furnace, the bottom of the furnace is filled with a fluidized medium such as sand, and high-pressure air is blown from below to make the furnace fluid, and the waste put into the fluidized bed is dried and burned. ..
The latter circulating flow layer combustion furnace is composed of a combustion furnace consisting of a flow layer and a free board, a cyclone that collects fine particles, and the like, and waste is introduced from the bottom of the combustion furnace. When it is supplied to the fluidized layer, it is mixed and agitated with the fluidized medium in the fluidized layer, and is burned while being dried and thermally decomposed while flowing. By introducing secondary air, the unburned portion in the combustion exhaust gas is completely burned along with the free board, and the fluid medium is collected from the combustion exhaust gas by the cyclone and returned to the combustion furnace for recycling. ..

こうした流動層燃焼炉を用いた有機性廃棄物の焼却処理においては、燃焼炉から排出された燃焼排ガス中に含まれる、ダイオキシンやCO、NO等の未燃分、中でも、特に温室効果ガスであるとともにオゾン層破壊物質であるNOを低減化することが強く求められており、そのための対策がなされている。 In the incineration of organic waste using such a flow layer combustion furnace, unburned components such as dioxin, CO, and N2O contained in the combustion exhaust gas discharged from the combustion furnace, especially greenhouse gases, are used. At the same time, there is a strong demand for reducing N2O, which is an ozone - depleting substance, and measures have been taken for that purpose.

例えば、特許文献1に記載のシステムは、気泡流動層燃焼炉を加圧で運転することで、汚泥を燃焼させた高温の燃焼排ガスを活用して該加圧気泡流動層燃焼炉の後段に設置した過給機を駆動し、燃焼用圧縮空気を生成させるものであり、該システムによれば、システム中のファンを省略して大幅に電力を削減することができるばかりでなく、流動層内に生成される高温域により、NOの大幅な低減が達成できる。 For example, the system described in Patent Document 1 is installed in the subsequent stage of the pressurized bubble bed combustion furnace by operating the bubble fluidized bed combustion furnace under pressure and utilizing the high temperature combustion exhaust gas obtained by burning sludge. It drives the supercharger to generate compressed air for combustion, and according to the system, not only can the fan in the system be omitted and the power can be significantly reduced, but also in the fluidized bed. Due to the high temperature range generated, a significant reduction in N2O can be achieved.

また、特許文献2、3に記載の方法では、循環型流動層燃焼炉で下水汚泥等の廃棄物を燃焼させて燃焼排ガスを排出させた後、該燃焼炉から排出された燃焼排ガス中の未燃分を、後段に設置した二次燃焼炉で完全燃焼させることにより、NO排出量の大幅な低減を図っている。 Further, in the methods described in Patent Documents 2 and 3, waste such as sewage sludge is burned in a circulating fluidized layer combustion furnace to discharge combustion exhaust gas, and then the combustion exhaust gas discharged from the combustion furnace is not yet discharged. By completely burning the fuel in the secondary combustion furnace installed in the subsequent stage, the amount of N2O emissions is significantly reduced.

また、これらの特許文献では言及されていないものの、下水汚泥等の有機性廃棄物を焼却処理する際のもう1つの課題として、下水汚泥等の有機性廃棄物中には硫黄化合物が多く含まれているため、SOx等の硫黄酸化物が発生する場合があるという問題があり、硫黄酸化物を含む燃焼排ガスは大気汚染、酸性雨の原因となることから、硫黄酸化物を除去(脱硫)する必要がある。
従来の有機性廃棄物の焼却システムにおいて、多くは焼却炉後段に排煙処理塔を設置することで脱硫を行っている(例えば図参照)が、焼却システムのランニングコスト削減に向けて、燃焼炉内でおこなうことが検討されている。
In addition, although not mentioned in these patent documents, another problem in incinerating organic waste such as sewage sludge is that organic waste such as sewage sludge contains a large amount of sulfur compounds. Therefore, there is a problem that sulfur oxides such as SOx may be generated, and since combustion exhaust gas containing sulfur oxides causes air pollution and acidic rain, sulfur oxides are removed (desulfurized). There is a need.
In conventional organic waste incinerator systems, desulfurization is often performed by installing a flue gas treatment tower at the rear stage of the incinerator (see Fig. 5 for example), but combustion is aimed at reducing the running cost of the incinerator. It is being considered to do it in the furnace.

燃焼炉内での脱硫法の1つに、燃焼炉内に脱硫剤を投入して流動媒体とともに循環させる方法がある。
例えば、特許文献4には、循環型流動層燃焼炉を用いて下水汚泥を焼却処理する際に、炉内温度が850~950℃に維持された炉内で、脱硫剤である石灰石(CaCO)を用いて脱硫することが提案されており、該方法によれば、高温の砂が燃焼炉内全域に分散しているため、焼却炉全域において約850~950℃の均一な高温度が形成されており、NOも低減化できるとしている。
One of the desulfurization methods in a combustion furnace is a method in which a desulfurizing agent is put into a combustion furnace and circulated together with a flow medium.
For example, Patent Document 4 describes limestone (CaCO 3 ) as a desulfurizing agent in a furnace in which the temperature inside the furnace is maintained at 850 to 950 ° C. when incinerating sewage sludge using a circulating fluidized layer combustion furnace. ) Has been proposed, and according to this method, high-temperature sand is dispersed in the entire combustion furnace, so that a uniform high temperature of about 850 to 950 ° C. is formed in the entire incinerator. It is said that N2O can also be reduced.

また、特許文献5には、燃焼炉内に脱硫剤として投入されたCaCOは、高温(例えば850℃)下において酸化されてCaOを生成し、生成されたCaOは、本来の役割である脱硫反応を起こしてSOxをCaSOにするばかりでなく、NH、HCN、NO等の窒素化合物の酸化反応の触媒作用を果たし、NOxを生成させることが記載されている。 Further, in Patent Document 5, CaCO 3 charged as a desulfurizing agent in a combustion furnace is oxidized at a high temperature (for example, 850 ° C.) to generate CaO, and the produced CaO is desulfurization, which is the original role. It is described that it not only causes a reaction to convert SOx to CaSO 4 , but also catalyzes the oxidation reaction of nitrogen compounds such as NH 3 , HCN, and N 2 O to generate NOx.

特許第3783024号公報Japanese Patent No. 3783024 特開2009-139043号公報Japanese Unexamined Patent Publication No. 2009-139043 特開2013-155954号公報Japanese Unexamined Patent Publication No. 2013-155954 特開2002-130641号公報Japanese Unexamined Patent Publication No. 2002-130641 特開2009-229056号公報Japanese Unexamined Patent Publication No. 2009-229056

以上のとおり、従来の循環型流動層炉を用いた下水汚泥等の有機性廃棄物の焼却処理において、燃焼炉内で、脱硫剤を投入して脱硫する工程と、有機性廃棄物に含まれる窒素化合物から発生するNOを分解して低減させる工程とを行うことが検討されている。
しかしながら、例えば、脱硫工程に必要なCaSOへの反応は800~850℃程度の高温で行われるのに対して、NOの分解には850℃以上、好ましくは900~950℃が好ましく、さらに、有機性廃棄物の乾燥・熱分解は、それほどの高温を必要とせず、750℃程度で充分であるなど、有機性廃棄物の乾燥・熱分解、脱硫、及びNOの分解の各々の工程の最適な条件は異なっており、それぞれの工程を、それぞれ適した条件で行うための検討が十分にはなされていない。
As described above, in the incineration of organic waste such as sewage sludge using a conventional circulating fluidized bed furnace, the process of adding a desulfurizing agent to desulfurize in the combustion furnace and the organic waste are included. It is being studied to carry out a step of decomposing and reducing N2O generated from a nitrogen compound.
However, for example, the reaction to CaSO 4 required for the desulfurization step is carried out at a high temperature of about 800 to 850 ° C., whereas the decomposition of N2O is preferably 850 ° C. or higher, preferably 900 to 950 ° C. Furthermore, the drying / pyrolysis of organic waste does not require such a high temperature, and about 750 ° C is sufficient. The optimum conditions for each step are different, and sufficient studies have not been made to carry out each step under suitable conditions.

例えば、特許文献4記載の燃焼炉では、約850~950℃の均一な高温度を形成することによりNOの分解を行うものであって、高温の砂が燃焼炉内全域に分散しているために焼却炉全域において約850~950℃の均一な高温度が形成されており、有機性廃棄物の乾燥・熱分解、脱硫、及びNOの分解の各々の工程を最適な条件で行うことが困難である。
また、特許文献5記載の燃焼炉では、850℃の高温下で生成したCaOの触媒作用により、排ガス中のNOを酸化してNOxとするものであるが、850℃ではNOの分解に長い滞留時間が必要と考えられる。
For example, in the combustion furnace described in Patent Document 4 , N2O is decomposed by forming a uniform high temperature of about 850 to 950 ° C., and high-temperature sand is dispersed in the entire combustion furnace. Therefore, a uniform high temperature of about 850 to 950 ° C is formed in the entire incinerator, and each process of drying / thermal decomposition of organic waste, desulfurization, and decomposition of N2O is performed under optimum conditions. Difficult to do.
Further, in the combustion furnace described in Patent Document 5 , N2O in the exhaust gas is oxidized to NOx by the catalytic action of CaO generated at a high temperature of 850 ° C., but at 850 ° C., N2O is produced. It is considered that a long residence time is required for decomposition.

一方、特許文献2、3には、排ガス中に発生したNOを850~950℃の高温下で分解することが提案されているが、いずれも、脱硫工程については検討されていない。 On the other hand, Patent Documents 2 and 3 propose that N2O generated in the exhaust gas is decomposed at a high temperature of 850 to 950 ° C., but neither of them has studied the desulfurization step.

さらに、従来の循環型流動層炉を用いた有機性廃棄物の焼却処理においては、加圧下で運転を行うことで、特許文献1に記載されたシステムのように、システム内のファンを省略することについては何ら検討されていない。 Further, in the incineration of organic waste using a conventional circulating fluidized bed furnace, by operating under pressure, the fan in the system is omitted as in the system described in Patent Document 1. Nothing has been considered about that.

本発明は、以上のような事情に鑑みてなされたものであり、下水汚泥等の有機性廃棄物を焼却処理するための循環型流動層燃焼炉において、有機性廃棄物の乾燥・熱分解、脱硫、及びNOの分解のそれぞれの工程を、各々に適した最適な条件で行うことができる燃焼炉を提供することを目的とするものである。 The present invention has been made in view of the above circumstances, and is used for drying and pyrolyzing organic waste in a circulating fluidized bed combustion furnace for incinerating organic waste such as sewage sludge. It is an object of the present invention to provide a combustion furnace capable of performing each step of desulfurization and decomposition of N2O under optimum conditions suitable for each .

本発明者らは、上記目的を達成すべく検討を重ねた結果、下水汚泥等の有機性廃棄物の「乾燥・熱分解」、「脱硫」、「NO分解」それぞれを燃焼炉内で最適な条件で行わせるために、各工程を、温度の異なるゾーンに分けることが有効であることを見いだし、本発明を完成するに至った。
また、本発明においては、「NO分解」工程に必要な850~950℃の高温にされた流動媒体を、有機性廃棄物の「乾燥・熱分解」工程に返送する前に、熱交換器に循環させることにより、熱を最大限利用できることが判明した。
さらに、本発明に係る循環型流動層燃焼炉を加圧下で運転し、生成した高温の燃焼排ガスを活用して該加圧気泡流動層燃焼炉の後段に設置した過給機を駆動し、燃焼用圧縮空気を生成させるシステムを提供できることも判明した。
As a result of repeated studies to achieve the above object, the present inventors have performed "drying / pyrolysis", "desulfurization", and " N2O decomposition" of organic waste such as sewage sludge in a combustion furnace. We have found that it is effective to divide each process into zones with different temperatures so that the process can be performed under optimum conditions, and have completed the present invention.
Further, in the present invention, the fluid medium heated to a high temperature of 850 to 950 ° C. required for the “N2O decomposition” step is heat exchanged before being returned to the “drying / pyrolysis” step of the organic waste. It was found that the heat can be maximized by circulating it in the vessel.
Further, the circulating fluidized bed combustion furnace according to the present invention is operated under pressure, and the generated high-temperature combustion exhaust gas is utilized to drive a supercharger installed in the subsequent stage of the pressurized bubble fluidized bed combustion furnace for combustion. It has also been found that it is possible to provide a system that produces compressed air for use.

本発明はこれらの知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。
[1]流動層とフリーボードとからなる流動層炉と、
前記フリーボードに吹き上げられた流動媒体を捕集するサイクロンと、
前記流動媒体を返送するダウンカマーと
を備えた有機性廃棄物を焼却処理するための循環型流動層燃焼炉において、
前記流動層炉の前段に設置された、流動層と、該流動層に有機性廃棄物を投入する手段と、発生した分解ガス及び有機性廃棄物残渣分を流動媒体とともに下流側に送る手段とを有する有機性廃棄物の乾燥・熱分解ゾーンと、
前記有機性廃棄物の乾燥・熱分解ゾーンの前段に設置された熱交換器と
を備え、
前記乾燥・熱分解ゾーンの後段から前記流動層炉の上流側までを、前記乾燥・熱分解ゾーンから送られた熱分解ガス、有機性廃棄物残渣分及び流動媒体の混合物のうちの未燃焼分の一部が燃焼するとともに炉内脱硫剤により脱硫される脱硫ゾーンとし、
前記流動層炉の下流側及び流動層炉出口と前記サイクロンを連結するダクト内をN O分解ゾーンとし、
前記有機性廃棄物の乾燥・熱分解ゾーン、脱硫ゾーン、及びNO分解ゾーン各ゾーンの温度、それぞれ、700~800℃、800~850℃、及び850~950℃に設定することを特徴とする循環型流動層燃焼炉。
[2]前記有機性廃棄物の乾燥・熱分解ゾーンに、炉内脱硫剤を投入する手段を備え、脱硫反応の一部を前記乾燥・熱分解ゾーンの一部で起こらせるようにすることを特徴とする[1]に記載の循環型流動層燃焼炉。
][1]又は]に記載の循環型流動層燃焼炉を用いた有機性廃棄物の処理システムであって、
前記熱交換器で熱媒体を加熱し、加熱した熱媒体を使用する発電装置、または温水製造装置の少なくとも一つを備えることを特徴とする下水汚泥処理システム。
][1]又は]に記載の循環型流動層燃焼炉を用いた有機性廃棄物の処理システムであって、
前記循環流動層燃焼炉を加圧下で運転し、有機性廃棄物を燃焼することで生成する高温の燃焼排ガスを活用し、燃焼炉後段に設置した過給機を駆動させ圧縮空気を製造し、製造した圧縮空気を燃焼用空気として循環流動層燃焼炉に供給することを特徴とする有機性廃棄物の処理システム。
]前記燃焼排ガスと前記過給機により製造した圧縮空気を熱交換する空気予熱器を備えることを特徴とする[]に記載の有機性廃棄物の処理システム。
]前記燃焼排ガスを利用し、圧縮空気を製造する第2の過給機を備えることを特徴とする[]又は[]に記載の有機性廃棄物の処理システム。
][1]又は]に記載の循環型流動層燃焼炉を用いた下水汚泥の処理システムであって、
循環流動層燃焼炉を加圧下で運転し、下水汚泥を燃焼することで生成する高温の燃焼排ガスを活用し、燃焼炉後段に設置した過給機を駆動させて圧縮空気を製造し、製造した圧縮空気を下水処理場内の曝気槽等へ供給することを特徴とする有機性廃棄物の処理システム。
]前記過給機から排気された燃焼排ガスを利用し、蒸気を生成するボイラを備えることを特徴とする[]~[]のいずれかに記載の有機性廃棄物の処理システム。
][1]又は]に記載の循環型流動層燃焼炉を用いた有機性廃棄物の処理システムであって、
燃焼排ガスを利用し、発電する発電手段を備えることを特徴とする有機性廃棄物の処理システム。
10]前記過給機及び/又は前記発電手段から排気された燃焼排ガスを利用し、蒸気を生成することを特徴とする[]~[]のいずれかに記載の有機性廃棄物の処理システム。
11][1]又は]に記載の循環型流動層燃焼炉を用いた有機性廃棄物の処理システムであって、
前記循環流動層燃焼炉から排出された燃焼排ガスと圧縮空気とを熱交換する空気予熱器と、該空気予熱器で加熱された圧縮空気を駆動源とし、熱交換器に供給する圧縮空気を生成する過給機とを備え、前記過給機から排出される加熱され低圧となった圧縮空気は、前記循環流動層燃焼炉に供給されることを特徴とする有機性廃棄物の処理システム。
The present invention has been completed based on these findings, and according to the present invention, the following inventions are provided.
[1] A fluidized bed furnace consisting of a fluidized bed and a freeboard,
A cyclone that collects the fluid medium blown up on the freeboard,
With the downcomer that returns the fluid medium
In a circulating fluidized bed combustion furnace for incinerating organic waste equipped with
A fluidized bed installed in front of the fluidized bed furnace, a means for charging organic waste into the fluidized bed, and a means for sending the generated decomposition gas and organic waste residue together with the fluidized bed to the downstream side. Drying / pyrolysis zone of organic waste with
With the heat exchanger installed in front of the drying / pyrolysis zone of the organic waste
Equipped with
From the latter stage of the drying / pyrolysis zone to the upstream side of the fluidized bed furnace, the unburned portion of the mixture of the pyrolysis gas, the organic waste residue and the fluidized medium sent from the drying / pyrolysis zone. A desulfurization zone where a part of the gas is burned and desulfurized by the in-furnace desalting agent.
The downstream side of the fluidized bed furnace and the inside of the duct connecting the fluidized bed furnace outlet and the cyclone are designated as N2O decomposition zones.
The temperatures of the drying / thermal decomposition zone, the desulfurization zone, and the N2O decomposition zone of the organic waste are set to 700 to 800 ° C, 800 to 850 ° C, and 850 to 950 ° C, respectively. A characteristic circulating fluidized bed combustion furnace.
[2] A means for injecting an in-furnace desulfurization agent into the drying / pyrolysis zone of the organic waste is provided so that a part of the desulfurization reaction can occur in a part of the drying / pyrolysis zone. The circulating fluidized bed combustion furnace according to [1], which is characterized by this.
[ 3 ] The organic waste treatment system using the circulating fluidized bed combustion furnace according to [1] or [ 2 ].
A sewage sludge treatment system comprising at least one of a power generation device or a hot water production device in which a heat medium is heated by the heat exchanger and the heated heat medium is used.
[ 4 ] The organic waste treatment system using the circulating fluidized bed combustion furnace according to [1] or [ 2 ].
The circulating fluidized bed combustion furnace is operated under pressure, and the high-temperature combustion exhaust gas generated by burning organic waste is utilized to drive the supercharger installed in the latter stage of the combustion furnace to produce compressed air. An organic waste treatment system characterized by supplying the produced compressed air as combustion air to a circulating fluidized bed combustion furnace.
[ 5 ] The organic waste treatment system according to [ 4 ], comprising an air preheater for heat exchange between the combustion exhaust gas and the compressed air produced by the turbocharger.
[ 6 ] The organic waste treatment system according to [ 4 ] or [ 5 ], further comprising a second turbocharger that produces compressed air using the combustion exhaust gas.
[ 7 ] A sewage sludge treatment system using the circulating fluidized bed combustion furnace according to [1] or [ 2 ].
The circulating fluidized bed combustion furnace is operated under pressure, and the high-temperature combustion exhaust gas generated by burning sewage sludge is used to drive the supercharger installed in the latter stage of the combustion furnace to produce and manufacture compressed air. An organic waste treatment system characterized by supplying compressed air to an aeration tank or the like in a sewage treatment plant.
[ 8 ] The organic waste treatment system according to any one of [ 4 ] to [ 7 ], which comprises a boiler that generates steam by using the combustion exhaust gas exhausted from the turbocharger.
[ 9 ] The organic waste treatment system using the circulating fluidized bed combustion furnace according to [1] or [ 2 ].
An organic waste treatment system characterized by being equipped with a power generation means that uses combustion exhaust gas to generate electricity.
[ 10 ] The organic waste according to any one of [ 4 ] to [ 9 ], which uses the combustion exhaust gas exhausted from the turbocharger and / or the power generation means to generate steam. Processing system.
[ 11 ] The organic waste treatment system using the circulating fluidized bed combustion furnace according to [1] or [ 2 ].
An air preheater that exchanges heat between the combustion exhaust gas discharged from the circulating flow layer combustion furnace and the compressed air, and the compressed air heated by the air preheater are used as drive sources to generate compressed air to be supplied to the heat exchanger. A system for treating organic waste, which comprises a supercharger and supplies heated and low-pressure compressed air discharged from the supercharger to the circulating flow layer combustion furnace.

本発明によれば、循環型流動層燃焼炉を用いた下水汚泥等の有機性廃棄物の焼却処理において、有機性廃棄物の「乾燥・熱分解」、「脱硫」及び「NO分解」のそれぞれの工程を最適な条件で行うことができる。また、「NO分解」工程を経て得られた高温の燃焼排ガスを利用して、燃焼炉に供給する圧縮空気を生成及び送風する「過給機」を、本発明に係る循環型流動層燃焼炉の後段に設置することにより、該過給機により生成した圧縮空気を燃焼用空気に活用することで、システム中のファンを省くことができる。さらに、本発明の循環型流動層燃焼炉内の乾燥・熱分解ゾーンの前段に熱交換器を設置することにより、該熱交換器における熱交換によって生成させた蒸気を有効利用できる。 According to the present invention, in the incineration of organic waste such as sewage sludge using a circulating fluidized bed combustion furnace, "drying / pyrolysis", "desulfurization" and " N2O decomposition" of the organic waste. Each step can be performed under optimum conditions. Further, a "supercharger" that generates and blows compressed air to be supplied to a combustion furnace by using high - temperature combustion exhaust gas obtained through the "N2O decomposition" step is a circulating flow layer according to the present invention. By installing it in the subsequent stage of the combustion furnace, the compressed air generated by the turbocharger can be utilized as the combustion air, and the fan in the system can be omitted. Further, by installing a heat exchanger in front of the drying / pyrolysis zone in the circulating fluidized layer combustion furnace of the present invention, the steam generated by the heat exchange in the heat exchanger can be effectively used.

本発明に係る循環型流動層燃焼炉の第1の実施形態を示すための模式図Schematic diagram for showing 1st Embodiment of the circulation type fluidized bed combustion furnace which concerns on this invention. 本発明に係る循環型流動層燃焼炉の第2の実施形態を示すための模式図The schematic diagram for showing the 2nd Embodiment of the circulation type fluidized bed combustion furnace which concerns on this invention. 循環型流動層燃焼炉の参考例を示すための模式図Schematic diagram for showing a reference example of a circulating fluidized bed combustion furnace 本発明に係る循環型流動層燃焼炉を用いた有機性廃棄物の処理システムの概要を示すブロック図A block diagram showing an outline of an organic waste treatment system using a circulating fluidized bed combustion furnace according to the present invention. 従来の流動層燃焼炉を用いた有機性廃棄物の処理システムの概要を示すブロック図Block diagram showing the outline of the organic waste treatment system using the conventional fluidized bed combustion furnace 本発明に係る循環流動層燃焼炉の後段に過給機を設置した有機性廃棄物の処理システムの他の事例について概要を示すブロック図A block diagram showing an outline of another example of an organic waste treatment system in which a supercharger is installed at the subsequent stage of a circulating fluidized bed combustion furnace according to the present invention.

[循環型流動層燃焼炉]
以下、図面を参照して、本発明に係る循環型流動層燃焼炉について実施形態を用いて説明するが、本発明に係る循環型流動層燃焼炉は、これらの実施形態に限定されないことは言うまでもない。
[Circulation type fluidized bed combustion furnace]
Hereinafter, the circulating fluidized bed combustion furnace according to the present invention will be described with reference to the drawings using embodiments, but it goes without saying that the circulating fluidized bed combustion furnace according to the present invention is not limited to these embodiments. stomach.

(第1実施形態)
図1は、本発明に係る循環型流動層燃焼炉の第1の実施形態を示す模式図である。
該図に示すように、本実施形態においては、一般的な循環型流動層燃焼炉が備えている、流動層とフリーボードとからなる流動層炉と、フリーボードに吹き上げられた流動砂を捕集するサイクロンと、流動砂を返送するダウンカマーとに加え、前記流動層炉の前段に設置された、有機性廃棄物を乾燥・熱分解する「乾燥・熱分解ゾーン」と、該「乾燥・熱分解ゾーン」の前段に設置された「熱交換器」とを有しており、さらに、前記流動層炉内の流側に、炉内脱硫である石灰石(CaCO)による脱硫を行なう「脱硫ゾーン」を設け、前記流動層炉内の流側及び流動層炉出口と前記サイクロンを連結するダクト内を、高温域でNOを分解する「NO分解ゾーン」としたものである。
(First Embodiment)
FIG. 1 is a schematic view showing a first embodiment of a circulating fluidized bed combustion furnace according to the present invention.
As shown in the figure, in the present embodiment, a fluidized bed furnace composed of a fluidized bed and a free board, which is provided in a general circulating fluidized bed combustion furnace, and fluidized sand blown up by the free board are captured. In addition to the cyclone that collects and the downcommer that returns the fluidized sand, the "drying / thermal decomposition zone" that dries and thermally decomposes organic waste installed in front of the fluidized bed furnace and the "drying / thermal decomposition zone" It has a "heat exchanger" installed in front of the "heat decomposition zone", and further desulfurizes with limestone (CaCO 3 ), which is an in-combustion desulfurizing agent , on the upstream side in the fluidized bed furnace. A "desulfurization zone" is provided, and the downstream side of the fluidized bed furnace and the inside of the duct connecting the fluidized bed furnace outlet and the cyclone are designated as "N 2 O decomposition zones" that decompose N 2 O in a high temperature region. Is.

「乾燥・熱分解ゾーン」には、流動層が設けられており、炉の底部から導入される空気により流動化されている流動層に有機性廃棄物を投入すると、有機性廃棄物は流動層内で流動媒体(一般には硅砂)とともに混合攪拌されて微細化されるとともに、乾燥・熱分解する。
「乾燥・熱分解ゾーン」に導入される空気の空気比は、1.0未満であり、好ましくは、0.7~0.8程度である。
また、「乾燥・熱分解ゾーン」の温度は、有機性廃棄物の乾燥・熱分解に必要な温度であればよく、好ましくは、700~800℃で充分であるが、必要に応じて、補助燃料を用いることもできる。なお、補助燃料としては、重油、灯油あるいは都市ガスや石炭等の可燃物質が挙げられる。
乾燥・熱分解により発生した熱分解ガス及び有機性廃棄物残渣分は流動媒体とともに、次の「脱硫ゾーン」に送られる。
A fluidized bed is provided in the "drying / pyrolysis zone", and when organic waste is put into the fluidized bed that is fluidized by the air introduced from the bottom of the furnace, the organic waste becomes a fluidized bed. Inside, it is mixed and stirred together with a fluidized medium (generally silica sand) to make it finer, and it is dried and thermally decomposed.
The air ratio of the air introduced into the "drying / pyrolysis zone" is less than 1.0, preferably about 0.7 to 0.8.
The temperature of the "drying / pyrolysis zone" may be any temperature necessary for drying / pyrolysis of organic waste, preferably 700 to 800 ° C., but is supplemented as necessary. Fuel can also be used. Examples of the auxiliary fuel include heavy oil, kerosene, and combustible substances such as city gas and coal.
The pyrolysis gas and organic waste residue generated by drying and thermal decomposition are sent to the next "desulfurization zone" together with the fluid medium.

「脱硫ゾーン」では、前記「乾燥・熱分解ゾーン」から送られてきた、熱分解ガス、有機性廃棄物残渣分及び流動媒体の混合物に、炉内脱硫剤である石灰石が投入混合された後、炉の底部から導入される一次空気により流動化されている流動層上に投入される。
ここで、未燃焼分の一部が燃焼するとともに、投入された石灰石により、炉内脱硫される。
また、「脱硫ゾーン」の温度は、脱硫に必要な800~850℃に設定されるが、必要に応じて補助燃料を用いることもできる。
脱硫された熱分解ガスを含む排ガスは、流動媒体と共に、あるいは、更に二次空気と共に、上流の「NO分解ゾーン」に送られる。このとき用いられる一次空気と二次空気をあわせた空気比は、1.2~1.3程度である。
In the "desulfurization zone", after the in-core desulfurization agent limestone is charged and mixed with the mixture of the pyrolysis gas, the organic waste residue and the fluidized bed sent from the "drying / pyrolysis zone". , Is charged onto the fluidized bed fluidized by the primary air introduced from the bottom of the furnace.
Here, a part of the unburned portion is burned, and at the same time, it is desulfurized in the furnace by the charged limestone.
Further, the temperature of the "desulfurization zone" is set to 800 to 850 ° C. required for desulfurization, but auxiliary fuel can also be used if necessary.
The exhaust gas containing the desulfurized pyrolysis gas is sent to the upstream "N2O decomposition zone" together with the flow medium or further with the secondary air. The combined air ratio of the primary air and the secondary air used at this time is about 1.2 to 1.3.

「NO分解ゾーン」では、脱硫ゾーンから送られてくる熱分解ガスを含む排ガスを、必要に応じて補助燃料を用い、850℃より高温で加熱して、排ガス中に含まれるNOを分解させる。
Oが分解された燃焼排ガスは、最後にサイクロンにより固気分離されて、炉の上部より取り出される。
取り出された燃焼排ガスは、各種用途に有効利用される。具体的には、例えば燃焼排ガスを利用して該循環型流動層燃焼炉の後段に設置した過給機を駆動し、燃焼用圧縮空気を生成させること等が挙げられる。
In the "N 2 O decomposition zone", the exhaust gas containing the pyrolysis gas sent from the desulfurization zone is heated to a temperature higher than 850 ° C. using an auxiliary fuel as necessary, and the exhaust gas contained in the exhaust gas is N 2 O. To disassemble.
The combustion exhaust gas from which N 2 O is decomposed is finally separated into solid air by a cyclone and taken out from the upper part of the furnace.
The extracted combustion exhaust gas is effectively used for various purposes. Specifically, for example, the combustion exhaust gas is used to drive a supercharger installed in the subsequent stage of the circulating fluidized bed combustion furnace to generate compressed air for combustion.

一方、サイクロンで捕集された高温の流動媒体は、ダウンカマーを経て、再び「乾燥・熱分解ゾーン」に還流される。
サイクロンで捕集された流動媒体は高温であるため、「乾燥・熱分解ゾーン」の前段に設置された熱交換器に通過させてから「乾燥・熱分解ゾーン」に還流することで、熱を最大限利用することができる。
具体的には、例えば、熱交換器で高温蒸気又は高温空気を発生させ、その高温蒸気又は高温空気を蒸気タービン又は高温空気タービンに利用して発電する、あるいはその高温蒸気又は高温空気で温水を製造すること等が挙げられる。
On the other hand, the high-temperature fluid medium collected by the cyclone is returned to the "drying / pyrolysis zone" again via the downcomer.
Since the fluid medium collected by the cyclone has a high temperature, heat is transferred to the "drying / pyrolysis zone" by passing it through a heat exchanger installed in front of the "drying / pyrolysis zone" and then refluxing it to the "drying / pyrolysis zone". It can be used to the maximum.
Specifically, for example, a heat exchanger generates high-temperature steam or high-temperature air, and the high-temperature steam or high-temperature air is used in a steam turbine or high-temperature air turbine to generate power, or hot water is generated by the high-temperature steam or high-temperature air. Manufacture and the like can be mentioned.

(第2実施形態)
図2は、本発明に係る循環型流動層燃焼炉の第2の実施形態を示す模式図である。
該図に示すように、本実施形態では、前述の第1の実施形態において、石灰石を脱硫ゾーンに投入する形態に代えて、有機性廃棄物と石灰石を同時に「乾燥・分解ゾーン」に投入するように変更した以外は、前述の第1の実施形態と同じである。
脱硫反応の一部は700~800℃程度でも起こるため、本実施形態によれば、有機性廃棄物と脱硫剤の同時投入により、「乾燥・熱分解ゾーン」でも脱硫の一部が起こり、その結果、実質的に脱硫工程を長くすることが可能となる。
(Second Embodiment)
FIG. 2 is a schematic view showing a second embodiment of the circulating fluidized bed combustion furnace according to the present invention.
As shown in the figure, in the present embodiment, instead of the mode in which the limestone is charged into the desulfurization zone in the above-mentioned first embodiment, the organic waste and the limestone are simultaneously charged into the “drying / decomposition zone”. It is the same as the above-mentioned first embodiment except that it is changed as described above.
Since a part of the desulfurization reaction occurs even at about 700 to 800 ° C., according to this embodiment, a part of desulfurization occurs even in the "drying / pyrolysis zone" due to the simultaneous injection of the organic waste and the desulfurization agent. As a result, the desulfurization step can be substantially lengthened.

参考例
図3は、循環型流動層燃焼炉の参考例を示す模式図であって、燃焼炉の後段に二次燃焼炉を設置し、そこをNO分解ゾーンとするものである。
すなわち、該図に示すように、本参考例では、流動層とフリーボードとからなる流動層炉内の流側に「乾燥・熱分解ゾーン」を設け、前記流動層炉内の流側及び流動層炉出口とサイクロンを連結するダクト内を「脱硫ゾーン」とするとともに、該流動層炉の後段に、二次燃焼炉を設置して、前記二次燃焼炉を「NO分解ゾーン」とするように変更した以外は、前述の第1の実施形態と同じである。

( Reference example )
FIG. 3 is a schematic view showing a reference example of a circulating fluidized bed combustion furnace, in which a secondary combustion furnace is installed in the subsequent stage of the combustion furnace, and the secondary combustion furnace is used as an N2O decomposition zone.
That is, as shown in the figure, in this reference example , a "drying / pyrolysis zone" is provided on the upstream side in the fluidized bed furnace composed of the fluidized bed and the free board, and the downstream side in the fluidized bed furnace. The inside of the duct connecting the outlet of the fluidized bed furnace and the cyclone is designated as a "desulfurization zone", and a secondary combustion furnace is installed after the fluidized bed furnace to make the secondary combustion furnace an "N2O decomposition zone". It is the same as the above-mentioned first embodiment except that it is changed to be.

「乾燥・熱分解ゾーン」では、流動層炉の底部から導入される一次空気により流動化されている流動層に、有機性廃棄物及び炉内脱硫剤である石灰石が投入され、有機性廃棄物は流動層内で流動媒体とともに混合攪拌されて微細化されるとともに、乾燥・熱分解する。
「乾燥・熱分解ゾーン」に導入される一次空気の空気比は、1.0未満であり、好ましくは、0.7~0.8程度である。
また、「乾燥・熱分解ゾーン」の温度は、有機性廃棄物の乾燥・熱分解に必要な温度であればよく、好ましくは、700~800℃で充分であるが、必要に応じて、補助燃料を用いることもできる。なお、補助燃料としては、重油、灯油あるいは都市ガスや石炭等の可燃物質が挙げられる。
乾燥・熱分解により発生した熱分解ガス及び有機性廃棄物残渣分及び石灰石は、流動媒体とともに、或いは更に導入された二次空気と共に、次の、流動層炉上流側に設けられた「脱硫ゾーン」に送られる。
In the "drying / pyrolysis zone", organic waste and limestone, which is a desulfurizing agent in the furnace, are put into the fluidized bed fluidized by the primary air introduced from the bottom of the fluidized bed furnace, and the organic waste is discharged. Is mixed and stirred together with the fluidized bed in the fluidized bed to be made finer, and dried and thermally decomposed.
The air ratio of the primary air introduced into the "drying / pyrolysis zone" is less than 1.0, preferably about 0.7 to 0.8.
The temperature of the "drying / pyrolysis zone" may be any temperature necessary for drying / pyrolysis of organic waste, preferably 700 to 800 ° C., but is supplemented as necessary. Fuel can also be used. Examples of the auxiliary fuel include heavy oil, kerosene, and combustible substances such as city gas and coal.
The pyrolysis gas, organic waste residue, and limestone generated by the drying and thermal decomposition are combined with the fluidized medium or the secondary air introduced further into the next "desulfurization zone" provided on the upstream side of the fluidized bed furnace. Will be sent to.

流動層炉上流側及び炉の出口とサイクロンを繋ぐダクト内に設けられた「脱硫ゾーン」では、未燃焼分の一部が燃焼するとともに、石灰石により、炉内脱硫される。
また、「脱硫ゾーン」の温度は、脱硫に必要な800~850℃に設定されるが、必要に応じて補助燃料を用いることもできる。
脱硫された熱分解ガスを含む排ガスは、サイクロンにより固気分離されて、炉の上部より取り出され、「NO分解ゾーン」である二次燃焼炉に送られる。一方、サイクロンで捕集された流動媒体は、ダウンカマー及び熱交換器を経て、「乾燥・熱分解ゾーン」に還流される。
In the "desulfurization zone" provided on the upstream side of the fluidized bed furnace and in the duct connecting the outlet of the furnace and the cyclone, a part of the unburned portion is burned and the inside of the furnace is desulfurized by limestone.
Further, the temperature of the "desulfurization zone" is set to 800 to 850 ° C. required for desulfurization, but auxiliary fuel can also be used if necessary.
The exhaust gas containing the desulfurized pyrolysis gas is separated into solid air by a cyclone, taken out from the upper part of the furnace, and sent to the secondary combustion furnace which is the "N2O decomposition zone". On the other hand, the fluid medium collected by the cyclone is returned to the "drying / pyrolysis zone" via the downcomer and the heat exchanger.

「NO分解ゾーン」では、脱硫ゾーンから送られてくる熱分解ガスを含む排ガスを、必要に応じて空気、補助燃料を用い、850℃より高温で加熱して、排ガス中に含まれるNOを分解させる。 In the "N 2 O decomposition zone", the exhaust gas containing the pyrolysis gas sent from the desulfurization zone is heated at a temperature higher than 850 ° C. using air and auxiliary fuel as necessary, and the N contained in the exhaust gas is contained. 2 Disassemble O.

[循環型流動層燃焼炉を用いた有機性廃棄物の処理システム]
有機性廃棄物を燃焼させる処理システムとして、過給式流動燃焼システムが知られている(特許文献1)。この過給式流動燃焼システムは、たとえば下水汚泥を加圧流動床炉に供給して燃焼させ、燃焼炉から排出される燃焼排ガスによって過給機を回転駆動することで圧縮空気を生成し、この圧縮空気を燃焼炉に供給して燃焼を促進させるシステムである。
本発明に係る循環型流動層燃焼炉を用いて有機性廃棄物の焼却処理する際においても、この特許文献1に記載したシステムの場合と同様に、過給機を用いたシステムとすることが望ましい。
[Organic waste treatment system using a circulating fluidized bed combustion furnace]
A supercharged flow combustion system is known as a treatment system for burning organic waste (Patent Document 1). In this supercharged fluidized combustion system, for example, sewage sludge is supplied to a pressurized fluidized bed furnace and burned, and the supercharger is rotationally driven by the combustion exhaust gas discharged from the combustion furnace to generate compressed air. It is a system that supplies compressed air to the combustion furnace to promote combustion.
When incinerating organic waste using the circulating fluidized bed combustion furnace according to the present invention, the system using a supercharger may be used as in the case of the system described in Patent Document 1. desirable.

以下に、本発明に係る循環型流動層燃焼炉の後段に過給機を設置した有機性廃棄物の処理システムについて説明する。
は、本発明に係る循環型流動層燃焼炉を加圧下で運転して、有機性廃棄物を焼却する処理システムの一例の概要を示すブロック図である。
に示すシステムでは、加圧下で運転される本発明に係る循環型流動層燃焼炉の後段に、空気予熱器、セラミックフィルタ、過給機、白煙防止予熱器、及び煙突が設けられている。
The organic waste treatment system in which a supercharger is installed at the subsequent stage of the circulating fluidized bed combustion furnace according to the present invention will be described below.
FIG. 4 is a block diagram showing an outline of an example of a treatment system for incinerating organic waste by operating a circulating fluidized bed combustion furnace according to the present invention under pressure.
In the system shown in FIG. 4 , an air preheater, a ceramic filter, a supercharger, a white smoke prevention preheater, and a chimney are provided at the subsequent stage of the circulating fluidized bed combustion furnace according to the present invention, which is operated under pressure. There is.

空気予熱器は、循環型流動層燃焼炉によって生成された燃焼排ガスと、過給機から生成された圧縮空気とを間接的に熱交換することによって、圧縮空気を所定温度まで加温するものである。
この高温に加温された圧縮空気を、循環型流動層燃焼炉の下部から燃焼用空気として、給することにより、燃焼効率を向上させることができる。
The air preheater heats the compressed air to a predetermined temperature by indirectly exchanging heat between the combustion exhaust gas generated by the circulating flow layer combustion furnace and the compressed air generated from the supercharger. be.
Combustion efficiency can be improved by supplying the compressed air heated to a high temperature as combustion air from the lower part of the circulating fluidized bed combustion furnace.

セラミックフィルタは、循環型流動層燃焼炉によって生成された燃焼排ガス中に含まれるダストを除去するのに用いられる高温フィルタの一例であり、該フィルタによって捕集されたダストは、循環型流動層燃焼炉に供給して再度燃焼させることもできる。
上記空気予熱器とセラミックフィルタとの配置は逆でも良く、まず、セラミックフィルタにおいて燃焼排ガス中に含有するダストを除去した後に、空気予熱器において燃焼排ガスの熱エネルギによって圧縮空気を加温しても良い。
The ceramic filter is an example of a high temperature filter used to remove dust contained in the combustion exhaust gas generated by the circulating fluidized bed combustion furnace, and the dust collected by the filter is the circulating fluidized bed combustion. It can also be supplied to the furnace and burned again.
The arrangement of the air preheater and the ceramic filter may be reversed. First, the dust contained in the combustion exhaust gas may be removed by the ceramic filter, and then the compressed air may be heated by the thermal energy of the combustion exhaust gas in the air preheater. good.

過給機は、上記燃焼排ガスよって回転駆動されるタービン(図示せず)及び当該タービンの回転動力を伝達されることによって前記圧縮空気を生成して送風するコンプレッサ(図示せず)から構成されている。 The turbocharger is composed of a turbine (not shown) that is rotationally driven by the combustion exhaust gas and a compressor (not shown) that generates and blows compressed air by transmitting the rotational power of the turbine. There is.

上記過給機の後段には、白煙が外部に排気されることを防止するための白煙防止予熱器が設けられており、白煙防止予熱器を通過した燃焼排ガスは、煙突から排出される。 A white smoke prevention preheater for preventing white smoke from being exhausted to the outside is provided in the subsequent stage of the turbocharger, and the combustion exhaust gas that has passed through the white smoke prevention preheater is discharged from the chimney. Smoke.

該システムにおいては、加圧循環型流動層燃焼炉から取り出された高温の燃焼排ガスは、燃焼炉後段に設置した過給機により、圧縮空気の生成に利用される一方、加圧循環型流動層燃焼炉内の高温の流動媒体は、熱交換器で熱交換されて熱媒体を加熱し、加熱された熱媒体は蒸気タービン等の発電装置や、ボイラ等の温水製造設備に供給され有効活用される。熱媒体として、水、空気などに加え、代替フロン、熱媒油、溶融塩が採用できる。水を熱媒体とした場合は、熱交換器で蒸気を生成し、蒸気タービンや、ボイラ等に供給することになる。空気を熱媒体とした場合には、熱交換器で高温ガスが生成されることになり、その高温ガスを発電装置や温水製造設備に供給することができる。
また、炉内脱硫することで、燃焼炉後段の排煙処理塔を省くことができ、大幅な電力削減効果が期待できる。
さらに、過給機により生成した圧縮空気は、燃焼用空気へ活用でき、図に示すような従来の流動層燃焼炉を用いた有機性廃棄物の処理システムと比較すると、システム中のファン(流動ブロワおよび誘引ファン)を省くことができる。また、過給機により生成した圧縮空気は、その量に応じて下水処理場内の曝気槽への有効活用も可能であり、また、過給機は複数設置しても良いし、過給機と蒸気タービンの組合せもあり得る。
In the system, the high-temperature combustion exhaust gas taken out from the pressurized circulation type flow layer combustion furnace is used to generate compressed air by the supercharger installed in the latter stage of the combustion furnace, while the pressurized circulation type flow layer. The high-temperature flow medium in the combustion furnace is heat-exchanged by a heat exchanger to heat the heat medium, and the heated heat medium is supplied to a power generation device such as a steam turbine and hot water production equipment such as a boiler for effective utilization. To. As the heat medium, in addition to water, air, etc., alternative CFCs, heat medium oils, molten salts, etc. can be adopted. When water is used as a heat medium, steam is generated by a heat exchanger and supplied to a steam turbine, a boiler, or the like. When air is used as a heat medium, high-temperature gas is generated in the heat exchanger, and the high-temperature gas can be supplied to a power generation device or hot water production equipment.
Further, by desulfurizing in the furnace, it is possible to omit the flue gas treatment tower in the latter stage of the combustion furnace, and a significant power reduction effect can be expected.
Furthermore, the compressed air generated by the turbocharger can be used for combustion air, and compared to the organic waste treatment system using a conventional fluidized bed combustion furnace as shown in FIG. 5 , the fan in the system ( Fluidized blowers and attracting fans) can be omitted. In addition, the compressed air generated by the turbocharger can be effectively used for the aeration tank in the sewage treatment plant according to the amount, and multiple turbochargers may be installed. A combination of steam turbines is also possible.

本発明に係る循環型流動層燃焼炉の後段に過給機を設置した有機性廃棄物の処理システムの他の事例について説明する。
は、本発明に係る循環型流動層燃焼炉を炉内圧が大気圧下から負圧となる条件で運転して、有機性廃棄物を焼却する処理システムの他の一例の概要を示すブロック図である。
に示すシステムでは、本発明に係る循環型流動層燃焼炉、燃焼用空気を供給する過給機、空気予熱器、白煙防止予熱器、バグフィルタ及び煙突が設けられている。この事例で使用する過給機は、空気予熱器で加熱された流動空気をタービンに供給することで駆動するものである。
Another example of the organic waste treatment system in which a supercharger is installed at the subsequent stage of the circulating fluidized bed combustion furnace according to the present invention will be described.
FIG. 6 is a block showing an outline of another example of a treatment system for incinerating organic waste by operating the circulating fluidized bed combustion furnace according to the present invention under the condition that the pressure inside the furnace becomes negative pressure from below atmospheric pressure. It is a figure.
The system shown in FIG. 6 is provided with a circulating fluidized bed combustion furnace according to the present invention, a supercharger for supplying combustion air, an air preheater, a white smoke prevention preheater, a bag filter, and a chimney. The turbocharger used in this case is driven by supplying fluid air heated by an air preheater to the turbine.

空気予熱器は、循環型流動層燃焼炉によって生成された燃焼排ガスと、過給機から生成された圧縮空気とを間接的に熱交換することによって、圧縮空気を所定温度まで加温するものである。
この高温に加温された圧縮空気を、過給機のタービンに供給することで過給機を駆動させるとともに、タービンから排出される圧力が下がった圧縮空気を循環型流動層燃焼炉の下部から燃焼用空気として、供給する。
The air preheater heats the compressed air to a predetermined temperature by indirectly exchanging heat between the combustion exhaust gas generated by the circulating flow layer combustion furnace and the compressed air generated from the supercharger. be.
The compressed air heated to a high temperature is supplied to the turbine of the turbocharger to drive the turbocharger, and the compressed air whose pressure discharged from the turbine is lowered is discharged from the lower part of the circulating fluidized layer combustion furnace. It is supplied as combustion air.

空気予熱器の後段には、白煙が外部に排気されることを防止するための白煙防止予熱器が設けられている。 A white smoke prevention preheater is provided after the air preheater to prevent white smoke from being exhausted to the outside.

バグフィルタは、循環型流動層燃焼炉によって生成された燃焼排ガス中に含まれるダストを除去するのに用いられる高温フィルタの一例であり、該フィルタによって捕集されたダストは、循環型流動層燃焼炉に供給して再度燃焼させることもできる。バグフィルタを通過した燃焼排ガスは、煙突から排出される。なお、バグフィルタを通過した燃焼排ガスは、排煙処理塔や誘引ファン(いずれも図示せず)を経由して煙突から排出しても良い。 The bag filter is an example of a high temperature filter used to remove dust contained in the combustion exhaust gas generated by the circulating fluidized bed combustion furnace, and the dust collected by the filter is the circulating fluidized bed combustion. It can also be supplied to the furnace and burned again. Combustion exhaust gas that has passed through the bag filter is discharged from the chimney. The combustion exhaust gas that has passed through the bag filter may be discharged from the chimney via a smoke exhaust treatment tower or an attraction fan (neither is shown).

過給機は、前記空気予熱器で加熱された圧縮空気によって回転駆動されるタービン(図示せず)及び当該タービンの回転動力を伝達されることによって前記圧縮空気を生成して送風するコンプレッサ(図示せず)から構成されている。 The turbocharger is a turbine (not shown) that is rotationally driven by compressed air heated by the air preheater, and a compressor that generates and blows the compressed air by transmitting the rotational power of the turbine (not shown). Not shown).

該システムにおいては、循環型流動層燃焼炉から取り出された高温の燃焼排ガスは、空気予熱器を介して圧縮空気を加熱することで過給機での圧縮空気の生成に利用される一方、循環型流動層燃焼炉内の高温の流動媒体は、熱交換器で熱交換されて熱媒体を加熱し、加熱された熱媒体は蒸気タービン等の発電装置や、ボイラ等の温水製造設備に供給され有効活用される。熱媒体として、水、空気などに加え、代替フロン、熱媒油、溶融塩が採用できる。水を熱媒体とした場合は、熱交換器で蒸気を生成し、蒸気タービンや、ボイラ等に供給することになる。空気を熱媒体とした場合には、熱交換器で高温ガスが生成されることになり、その高温ガスを発電装置や温水製造設備に供給することができる。 In the system, the high-temperature combustion exhaust gas taken out from the circulating flow layer combustion furnace is used for generating compressed air in the supercharger by heating the compressed air via an air preheater, while circulating. The high-temperature flow medium in the mold flow layer combustion furnace is heat-exchanged by a heat exchanger to heat the heat medium, and the heated heat medium is supplied to a power generation device such as a steam turbine and a hot water production facility such as a boiler. It will be used effectively. As the heat medium, in addition to water, air, etc., alternative CFCs, heat medium oils, molten salts, etc. can be adopted. When water is used as a heat medium, steam is generated by a heat exchanger and supplied to a steam turbine, a boiler, or the like. When air is used as a heat medium, high-temperature gas is generated in the heat exchanger, and the high-temperature gas can be supplied to a power generation device or hot water production equipment.

Claims (11)

流動層とフリーボードとからなる流動層炉と、
前記フリーボードに吹き上げられた流動媒体を捕集するサイクロンと、
前記流動媒体を返送するダウンカマーと
を備えた有機性廃棄物を焼却処理するための循環型流動層燃焼炉であって、
前記流動層炉の前段に設置された、流動層と、該流動層に有機性廃棄物を投入する手段と、発生した分解ガス及び有機性廃棄物残渣分を流動媒体とともに下流側に送る手段とを有する有機性廃棄物の乾燥・熱分解ゾーンと、
前記有機性廃棄物の乾燥・熱分解ゾーンの前段に設置された熱交換器と
を備え、
前記乾燥・熱分解ゾーンの後段から前記流動層炉の上流側までを、前記乾燥・熱分解ゾーンから送られた熱分解ガス、有機性廃棄物残渣分及び流動媒体の混合物のうちの未燃焼分の一部が燃焼するとともに炉内脱硫剤により脱硫される脱硫ゾーンとし、
前記流動層炉の下流側及び流動層炉出口と前記サイクロンを連結するダクト内をN O分解ゾーンとし、
前記有機性廃棄物の乾燥・熱分解ゾーン、脱硫ゾーン、及びNO分解ゾーン各ゾーン、それぞれ、700~800℃、800~850℃、及び850~950℃の異なる温度に設定することを特徴とする循環型流動層燃焼炉。
A fluidized bed furnace consisting of a fluidized bed and a freeboard,
A cyclone that collects the fluid medium blown up on the freeboard,
With the downcomer that returns the fluid medium
It is a circulating fluidized bed combustion furnace for incinerating organic waste equipped with
A fluidized bed installed in front of the fluidized bed furnace, a means for charging organic waste into the fluidized bed, and a means for sending the generated decomposition gas and organic waste residue together with the fluidized bed to the downstream side. Drying / pyrolysis zone of organic waste with
With the heat exchanger installed in front of the drying / pyrolysis zone of the organic waste
Equipped with
From the latter stage of the drying / pyrolysis zone to the upstream side of the fluidized bed furnace, the unburned portion of the mixture of the pyrolysis gas, the organic waste residue and the fluidized medium sent from the drying / pyrolysis zone. A desulfurization zone where a part of the gas is burned and desulfurized by the in-furnace desalting agent.
The downstream side of the fluidized bed furnace and the inside of the duct connecting the fluidized bed furnace outlet and the cyclone are designated as N2O decomposition zones.
The drying / thermal decomposition zone, desulfurization zone, and N2O decomposition zone of the organic waste are set to different temperatures of 700 to 800 ° C, 800 to 850 ° C, and 850 to 950 ° C, respectively . A circulating fluidized bed combustion furnace characterized by.
前記有機性廃棄物の乾燥・熱分解ゾーンに、炉内脱硫剤を投入する手段を備え、脱硫反応の一部を前記乾燥・熱分解ゾーンの一部で起こらせるようにすることを特著とする請求項1に記載の循環型流動層燃焼炉。 It is a special note that a means for injecting an in-furnace desulfurization agent into the drying / pyrolysis zone of the organic waste is provided so that a part of the desulfurization reaction can occur in a part of the drying / pyrolysis zone. The circulating fluidized bed combustion furnace according to claim 1. 請求項1又は2に記載の循環型流動層燃焼炉を用いた有機性廃棄物の処理システムであって、
前記熱交換器で熱媒体を加熱し、加熱した熱媒体を使用する発電装置、または温水製造装置の少なくとも一つを備えることを特徴とする下水汚泥処理システム。
A system for treating organic waste using the circulating fluidized bed combustion furnace according to claim 1 or 2 .
A sewage sludge treatment system comprising at least one of a power generation device or a hot water production device in which a heat medium is heated by the heat exchanger and the heated heat medium is used.
請求項1又は2に記載の循環型流動層燃焼炉を用いた有機性廃棄物の処理システムであって、
前記循環流動層燃焼炉を加圧下で運転し、有機性廃棄物を燃焼することで生成する高温の燃焼排ガスを活用し、燃焼炉後段に設置した過給機を駆動させ圧縮空気を製造し、製造した圧縮空気を燃焼用空気として循環流動層燃焼炉に供給することを特徴とする有機性廃棄物の処理システム。
A system for treating organic waste using the circulating fluidized bed combustion furnace according to claim 1 or 2 .
The circulating fluidized bed combustion furnace is operated under pressure, and the high-temperature combustion exhaust gas generated by burning organic waste is utilized to drive the supercharger installed in the latter stage of the combustion furnace to produce compressed air. An organic waste treatment system characterized by supplying the produced compressed air as combustion air to a circulating fluidized bed combustion furnace.
前記燃焼排ガスと前記過給機により製造した圧縮空気を熱交換する空気予熱器を備えることを特徴とする請求項に記載の有機性廃棄物の処理システム。 The organic waste treatment system according to claim 4 , further comprising an air preheater for heat exchange between the combustion exhaust gas and the compressed air produced by the turbocharger. 前記燃焼排ガスを利用し、圧縮空気を製造する第2の過給機を備えることを特徴とする請求項又はに記載の有機性廃棄物の処理システム。 The organic waste treatment system according to claim 4 or 5 , further comprising a second turbocharger that produces compressed air using the combustion exhaust gas. 請求項1又は2に記載の循環型流動層燃焼炉を用いた下水汚泥の処理システムであって、
循環流動層燃焼炉を加圧下で運転し、下水汚泥を燃焼することで生成する高温の燃焼排ガスを活用し、燃焼炉後段に設置した過給機を駆動させて圧縮空気を製造し、製造した圧縮空気を下水処理場内の曝気槽等へ供給することを特徴とする有機性廃棄物の処理システム。
A sewage sludge treatment system using the circulating fluidized bed combustion furnace according to claim 1 or 2 .
The circulating fluidized bed combustion furnace is operated under pressure, and the high-temperature combustion exhaust gas generated by burning sewage sludge is used to drive the supercharger installed in the latter stage of the combustion furnace to produce and manufacture compressed air. An organic waste treatment system characterized by supplying compressed air to an aeration tank or the like in a sewage treatment plant.
前記過給機から排気された燃焼排ガスを利用し、蒸気を生成するボイラを備えることを特徴とする請求項のいずれか1項に記載の有機性廃棄物の処理システム。 The organic waste treatment system according to any one of claims 4 to 7 , further comprising a boiler that generates steam by using the combustion exhaust gas exhausted from the turbocharger. 請求項1又は2に記載の循環型流動層燃焼炉を用いた有機性廃棄物の処理システムであって、
燃焼排ガスを利用し、発電する発電手段を備えることを特徴とする有機性廃棄物の処理システム。
A system for treating organic waste using the circulating fluidized bed combustion furnace according to claim 1 or 2 .
An organic waste treatment system characterized by being equipped with a power generation means that uses combustion exhaust gas to generate electricity.
前記過給機及び/又は前記発電手段から排気された燃焼排ガスを利用し、蒸気を生成することを特徴とする請求項のいずれか1項に記載の有機性廃棄物の処理システム。 The organic waste treatment system according to any one of claims 4 to 9 , wherein steam is generated by using the combustion exhaust gas exhausted from the turbocharger and / or the power generation means. 請求項1又は2に記載の循環型流動層燃焼炉を用いた有機性廃棄物の処理システムであって、
前記循環流動層燃焼炉から排出された燃焼排ガスと圧縮空気とを熱交換する空気予熱器と、該空気予熱器で加熱された圧縮空気を駆動源とし、熱交換器に供給する圧縮空気を生成する過給機とを備え、前記過給機から排出される加熱され低圧となった圧縮空気は、前記循環流動層燃焼炉に供給されることを特徴とする有機性廃棄物の処理システム。
A system for treating organic waste using the circulating fluidized bed combustion furnace according to claim 1 or 2 .
An air preheater that exchanges heat between the combustion exhaust gas discharged from the circulating flow layer combustion furnace and the compressed air, and the compressed air heated by the air preheater are used as drive sources to generate compressed air to be supplied to the heat exchanger. A system for treating organic waste, which comprises a supercharger and supplies heated and low-pressure compressed air discharged from the supercharger to the circulating flow layer combustion furnace.
JP2017105556A 2017-05-29 2017-05-29 Combustion furnace of organic waste and treatment system of organic waste using the combustion furnace Active JP7075574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017105556A JP7075574B2 (en) 2017-05-29 2017-05-29 Combustion furnace of organic waste and treatment system of organic waste using the combustion furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017105556A JP7075574B2 (en) 2017-05-29 2017-05-29 Combustion furnace of organic waste and treatment system of organic waste using the combustion furnace

Publications (2)

Publication Number Publication Date
JP2018200150A JP2018200150A (en) 2018-12-20
JP7075574B2 true JP7075574B2 (en) 2022-05-26

Family

ID=64667998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017105556A Active JP7075574B2 (en) 2017-05-29 2017-05-29 Combustion furnace of organic waste and treatment system of organic waste using the combustion furnace

Country Status (1)

Country Link
JP (1) JP7075574B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112377895B (en) * 2020-11-10 2021-11-05 浙江大学 Adjustable double-bed anti-corrosion external high-temperature superheater ash return device and method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146116A (en) 1998-11-11 2000-05-26 Electric Power Dev Co Ltd Combustion apparatus and corrosion preventing method of heat exchanger tube thereof
JP2002122305A (en) 2000-10-16 2002-04-26 Mitsubishi Heavy Ind Ltd Operation method for circulated fluidized bed incinerator
JP2005028251A (en) 2003-07-09 2005-02-03 Public Works Research Institute System and method for treating sludge
JP2009040886A (en) 2007-08-09 2009-02-26 Ihi Corp Gasification method and gasification system
JP2009139043A (en) 2007-12-10 2009-06-25 Metawater Co Ltd Sludge incineration equipment and sludge incineration method using it
JP2010175157A (en) 2009-01-30 2010-08-12 Metawater Co Ltd Fluidized incinerator
WO2011016556A1 (en) 2009-08-07 2011-02-10 独立行政法人産業技術総合研究所 Organic waste treatment system and method
JP2016180528A (en) 2015-03-24 2016-10-13 株式会社クボタ Waste treatment facility, and operating method of waste treatment facility

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5989921A (en) * 1982-11-11 1984-05-24 Nippon Kokan Kk <Nkk> Sludge feeding method in sludge incinerator system with drying machine
JPS6249111A (en) * 1985-08-28 1987-03-03 Tsukishima Kikai Co Ltd Method of incinerating liquid impregnated substance
JPH0384302A (en) * 1989-08-28 1991-04-09 Mitsubishi Heavy Ind Ltd Combustion device with fluidized bed
US5043150A (en) * 1990-04-17 1991-08-27 A. Ahlstrom Corporation Reducing emissions of N2 O when burning nitrogen containing fuels in fluidized bed reactors
JPH04155105A (en) * 1990-10-18 1992-05-28 Nippon Steel Corp Fluidized bed boiler to suppress generation of nitrous oxide
JP3037457B2 (en) * 1991-04-30 2000-04-24 月島機械株式会社 Drying and incineration of hydrated solids
JP3095499B2 (en) * 1991-12-27 2000-10-03 三菱重工業株式会社 Fluidized bed combustion boiler
JP2889049B2 (en) * 1992-06-09 1999-05-10 株式会社神戸製鋼所 Method for reducing N2O and NOx in fluidized bed combustion
JP3059995B2 (en) * 1994-06-03 2000-07-04 工業技術院長 Fluidized bed combustion method for simultaneous reduction of nitrous oxide and nitrogen oxides
JPH09137929A (en) * 1995-11-16 1997-05-27 Mitsubishi Heavy Ind Ltd Fluidized bed combustor
JP4158208B2 (en) * 1996-04-22 2008-10-01 株式会社Ihi Method and apparatus for improving combustion and toxic gas emissions in fluidized bed combustion furnaces with natural minerals
JP3771791B2 (en) * 2000-10-18 2006-04-26 三菱重工業株式会社 Waste incinerator with high water content and high volatility such as sewage sludge
JP4298398B2 (en) * 2002-06-28 2009-07-15 出光興産株式会社 Method for suppressing emission of N2O and NOX in a combustion apparatus
JP4362428B2 (en) * 2004-10-01 2009-11-11 新日本製鐵株式会社 Treatment method of sludge and incineration ash
JP5361449B2 (en) * 2008-02-28 2013-12-04 三菱重工環境・化学エンジニアリング株式会社 Circulating fluidized bed furnace and method of operating the circulating fluidized bed furnace
JP2009204282A (en) * 2008-02-29 2009-09-10 Mhi Environment Engineering Co Ltd Sludge treatment method and sludge treatment system with circulating fluidized bed furnace
JP5444847B2 (en) * 2009-05-26 2014-03-19 株式会社Ihi Gasifier
JP5699523B2 (en) * 2010-10-21 2015-04-15 株式会社Ihi Gas generation amount control method and gas generation amount control device
JP2012122623A (en) * 2010-12-06 2012-06-28 Metawater Co Ltd Method and apparatus for drying and incinerating sewage sludge
JP2012255114A (en) * 2011-06-10 2012-12-27 Ihi Corp System and method for producing gasified gas
JP6061472B2 (en) * 2012-01-31 2017-01-18 株式会社神鋼環境ソリューション Two-stage combustion furnace and two-stage combustion method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146116A (en) 1998-11-11 2000-05-26 Electric Power Dev Co Ltd Combustion apparatus and corrosion preventing method of heat exchanger tube thereof
JP2002122305A (en) 2000-10-16 2002-04-26 Mitsubishi Heavy Ind Ltd Operation method for circulated fluidized bed incinerator
JP2005028251A (en) 2003-07-09 2005-02-03 Public Works Research Institute System and method for treating sludge
JP2009040886A (en) 2007-08-09 2009-02-26 Ihi Corp Gasification method and gasification system
JP2009139043A (en) 2007-12-10 2009-06-25 Metawater Co Ltd Sludge incineration equipment and sludge incineration method using it
JP2010175157A (en) 2009-01-30 2010-08-12 Metawater Co Ltd Fluidized incinerator
WO2011016556A1 (en) 2009-08-07 2011-02-10 独立行政法人産業技術総合研究所 Organic waste treatment system and method
JP2016180528A (en) 2015-03-24 2016-10-13 株式会社クボタ Waste treatment facility, and operating method of waste treatment facility

Also Published As

Publication number Publication date
JP2018200150A (en) 2018-12-20

Similar Documents

Publication Publication Date Title
CA2298785A1 (en) Reburn process
WO2014013849A1 (en) Waste processing method and waste incinerator
JP6824640B2 (en) Waste incineration equipment, waste incineration method, incineration ash treatment equipment and incineration ash treatment method
JP2009139043A (en) Sludge incineration equipment and sludge incineration method using it
JP4400467B2 (en) Method and apparatus for burning hydrous waste
JP3957737B1 (en) Combustion system for flame-retardant high-viscosity waste such as PCB
CN112062435B (en) Oil sludge pyrolysis treatment device and process thereof
JP7075574B2 (en) Combustion furnace of organic waste and treatment system of organic waste using the combustion furnace
JP2006242490A (en) Stoker-type incinerator and its operation method
JP4652609B2 (en) Coal combustion ash melting method and melt processing system
CN111895424A (en) Garbage disposal and generator set coupling power generation system
KR100870758B1 (en) The flue-gas treatment process of fluidized bed boiler system
CN103791503A (en) Organic solid waste gasifying and incineration integrated device and method
CN105546552A (en) Fluidized-bed high-temperature incineration and purification all-in-one device and method for resin type dangerous waste
JP2013164226A (en) Waste material incinerator and waste material incinerating method
KR101277078B1 (en) A fluidized incinerator incinerating sewage sludge for reducing discharge of the enviornmental contaminants and an incinerating system using thereof
KR101309279B1 (en) All fluidize bed that phlogiston device and produce steam resource
CN105664690A (en) System for performing denitration on cement decomposing furnace through coal gas generator
JPH07506179A (en) Method for maintaining the nominal operating temperature of flue gas in a PFBC power plant
JP2008215661A (en) Combustion furnace, waste gasification system and combustible gas treatment method
JP2008214542A (en) Biomass gasifying method and biomass gasifying equipment
JP2006194533A (en) NOx REDUCTION METHOD IN CIRCULATING FLUIDIZED BED BOILER
JP4241578B2 (en) Method and apparatus for burning hydrous waste
JP2003056363A (en) Composite facility of waste incinerating facility and gas turbine generator
JPH11159731A (en) Waste incinerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220427

R150 Certificate of patent or registration of utility model

Ref document number: 7075574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350