JP2009204282A - Sludge treatment method and sludge treatment system with circulating fluidized bed furnace - Google Patents

Sludge treatment method and sludge treatment system with circulating fluidized bed furnace Download PDF

Info

Publication number
JP2009204282A
JP2009204282A JP2008049487A JP2008049487A JP2009204282A JP 2009204282 A JP2009204282 A JP 2009204282A JP 2008049487 A JP2008049487 A JP 2008049487A JP 2008049487 A JP2008049487 A JP 2008049487A JP 2009204282 A JP2009204282 A JP 2009204282A
Authority
JP
Japan
Prior art keywords
sludge
fluidized bed
furnace
circulating fluidized
bed furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008049487A
Other languages
Japanese (ja)
Inventor
Shinichi Sawada
伸一 澤田
Sueo Yoshida
季男 吉田
Kazuhiro Kuroyama
和宏 黒山
Keiichi Hayashi
慶一 林
Tsuneki Yamauchi
恒樹 山内
Yasuhiro Suzuki
康弘 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Environmental Engineering Co Ltd
Original Assignee
Mitsubishi Heavy Industries Environmental Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Environmental Engineering Co Ltd filed Critical Mitsubishi Heavy Industries Environmental Engineering Co Ltd
Priority to JP2008049487A priority Critical patent/JP2009204282A/en
Publication of JP2009204282A publication Critical patent/JP2009204282A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sludge treatment method and a sludge treatment system with a circulating fluidized bed furnace, capable of appropriately maintaining a pressure difference within the furnace without replenishing additional fluid media even when a fluid medium is discharged together with exhaust gas. <P>SOLUTION: In the sludge treatment method, after sludge 3 is dried by a dryer 2, dried sludge 4 is charged to the circulating fluidized bed furnace 10 and is burned while mixed with a fluid medium. In the dryer 2, drying treatment is performed to obtain the dried sludge 4 having 60-30% of a water content, and at least part of the dried sludge 4 charged to the circulating fluidized bed furnace 10 becomes block sludge particles and is circulated within the furnace 10 together with the fluid medium. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、下水汚泥等の汚泥を乾燥機で乾燥処理した後、乾燥汚泥を循環流動層炉にて流動媒体と混合しながら燃焼させる汚泥処理方法及び循環流動層炉を備えた汚泥処理システムに関する。   The present invention relates to a sludge treatment method in which sludge such as sewage sludge is dried with a dryer and then burned while being mixed with a fluidized medium in a circulating fluidized bed furnace, and a sludge treatment system equipped with a circulating fluidized bed furnace. .

従来、下水処理場、し尿処理場、廃水処理設備等から排出される汚泥の処理に、循環流動層炉が多く用いられている。循環流動層炉は、ライザ底部から導入する一次空気により汚泥と流動媒体とを混合しながら燃焼して飛散させ、該飛散した流動媒体を二次空気の導入によりフリーボードへ同伴して排ガス中の未燃分を完全燃焼させ、燃焼排ガスからサイクロンにより流動媒体を分離し、ライザに返送して流動媒体を循環利用するものである。このような循環流動層炉は、汚泥を瞬時に乾燥、焼却できるものであり、これにより流動媒体を高温に維持して連続燃焼を可能としている。また、流動媒体が保有する熱容量が非常に大きいため、停止時の放熱が少なく間欠運転にも適しており、さらに流動媒体の熱伝導率が大きいため、下水汚泥のような含水率の高い被処理物にも好適に用いられる。   Conventionally, circulating fluidized bed furnaces are often used for the treatment of sludge discharged from sewage treatment plants, human waste treatment plants, wastewater treatment facilities, and the like. The circulating fluidized bed furnace burns and disperses the sludge and the fluid medium mixed with the primary air introduced from the bottom of the riser, and entrains the dispersed fluid medium to the free board by introducing the secondary air. The unburned matter is completely burned, the fluidized medium is separated from the combustion exhaust gas by a cyclone, returned to the riser, and the fluidized medium is recycled. Such a circulating fluidized bed furnace can instantly dry and incinerate sludge, thereby maintaining a fluid medium at a high temperature and enabling continuous combustion. In addition, since the heat capacity of the fluidized medium is very large, it is suitable for intermittent operation with little heat dissipation when stopped, and the fluidized medium has a high thermal conductivity, so it has a high water content such as sewage sludge. It is also suitably used for products.

このような循環流動層炉を備えた処理システムでは、含水率が高い汚泥を処理する場合、汚泥を脱水、乾燥処理した後、循環流動層炉に投入して焼却処理していた。例えば特許文献1(特開平11−63458号公報)には、脱水汚泥を乾燥機にて乾燥処理した後、循環流動層炉に投入して焼却処理する方法が開示されている。
また、特許文献2(特許第3790431号公報)には、循環流動層炉の上流側に乾燥機が設けられ、循環流動層炉より排出される排ガス中の灰分を捕集して、該乾燥機に戻すようにした装置が開示されている。この装置は、循環流動層炉の燃焼排ガスの廃熱により蒸気を生成し、この蒸気を乾燥機に導入して乾燥処理を行うようにしており、一般的に80〜90%の含水率を有する脱水汚泥を、70〜75%程度の含水率まで低減するように乾燥処理していた。
In a treatment system equipped with such a circulating fluidized bed furnace, when treating sludge having a high water content, the sludge is dehydrated and dried, and then put into the circulating fluidized bed furnace for incineration. For example, Patent Document 1 (Japanese Patent Laid-Open No. 11-63458) discloses a method in which dehydrated sludge is dried with a dryer and then put into a circulating fluidized bed furnace for incineration.
Further, in Patent Document 2 (Japanese Patent No. 3790431), a dryer is provided on the upstream side of the circulating fluidized bed furnace to collect ash in the exhaust gas discharged from the circulating fluidized bed furnace, and the dryer An apparatus adapted to return to is disclosed. This apparatus generates steam by waste heat of combustion exhaust gas from a circulating fluidized bed furnace and introduces this steam into a dryer to perform a drying process, and generally has a moisture content of 80 to 90%. The dehydrated sludge was dried so as to reduce the water content to about 70 to 75%.

特開平11−63458号公報Japanese Patent Laid-Open No. 11-63458 特許第3790431号公報Japanese Patent No. 3790431

上記した従来の循環流動層炉では、流動媒体が流動に伴う破砕等により小さくなり、サイクロンから排ガス側に移行していた。その結果、炉内を循環する流動媒体が減少し、炉内の差圧を適正範囲に維持することができなくなる。そこでこれを補充するために新しい流動媒体を供給する必要が生じ、ランニングコストが増大してしまう。一方、排ガス処理で捕集された飛灰から流動媒体を分離回収して炉内に戻す方法も提案されているが、流動媒体と飛灰を分離することは困難であり、また手間がかかった。
従って、本発明は上記従来技術の問題点に鑑み、流動媒体が排ガスに同伴して排出されてしまう場合でも、新たな流動媒体を補充することなく炉内の差圧を適正に維持することができる汚泥処理方法及び循環流動層炉を備えた汚泥処理システムを提供することを目的とする。
In the above-described conventional circulating fluidized bed furnace, the fluidized medium has become smaller due to crushing accompanying the flow, and has shifted from the cyclone to the exhaust gas side. As a result, the fluid medium circulating in the furnace decreases, and the pressure difference in the furnace cannot be maintained in an appropriate range. Therefore, it is necessary to supply a new fluid medium to replenish this, and the running cost increases. On the other hand, a method of separating and recovering the fluid medium from the fly ash collected by the exhaust gas treatment and returning it to the furnace has also been proposed, but it is difficult and time-consuming to separate the fluid medium and the fly ash. .
Therefore, in view of the above-described problems of the prior art, the present invention can properly maintain the differential pressure in the furnace without replenishing a new fluid medium even when the fluid medium is exhausted along with the exhaust gas. An object is to provide a sludge treatment method and a sludge treatment system equipped with a circulating fluidized bed furnace.

そこで、本発明はかかる課題を解決するために、
汚泥を乾燥機で乾燥処理した後、乾燥汚泥を循環流動層炉に投入して流動媒体と混合しながら燃焼させる汚泥処理方法において、
前記乾燥機にて、含水率60〜30%の乾燥汚泥が得られるように前記汚泥を乾燥処理することにより、前記循環流動層炉に投入された該乾燥汚泥の少なくとも一部が、塊状の汚泥粒子の状態で流動媒体とともに炉内を循環するようにしたことを特徴とする。
Therefore, in order to solve this problem, the present invention provides:
In the sludge treatment method in which the sludge is dried with a dryer, and then the dried sludge is put into a circulating fluidized bed furnace and burned while being mixed with a fluid medium.
By drying the sludge so as to obtain a dried sludge having a water content of 60 to 30% in the dryer, at least a part of the dried sludge put into the circulating fluidized bed furnace is a lump sludge. It is characterized in that it is circulated in the furnace together with the fluid medium in the form of particles.

汚泥は乾燥すると水分が抜けて固定炭素分と灰分が中心に向けて集まる。含水率が60%〜30%の乾燥汚泥は、集まった固定炭素と灰分により強度が増すため、循環流動層炉内に投入しても小粒径化し難くなり、流動媒体として作用することとなる。
これに対して、含水率60%以上の汚泥は、循環流動層炉に投入すると灰が集合しないまま燃焼を開始するため、灰が崩れて小粒径化して流動媒体とはならず、サイクロンから排ガス側へ移行してしまう。一方、含水率30%以下の汚泥は、循環流動層炉に投入すると直ぐに燃焼してしまい灰化するため流動媒体とはならない。
そこで、本発明のように汚泥を含水率60〜30%まで乾燥処理した後、循環流動層炉に投入することにより、固定炭素分と灰分が塊状となった汚泥が流動媒体として作用するため、排ガスに同伴されて流動媒体が排出されても、新たに流動媒体を供給することなく炉内差圧を一定の適正範囲に維持することが可能である。
When the sludge dries, the moisture is lost and the fixed carbon and ash collect toward the center. The dry sludge having a moisture content of 60% to 30% increases in strength due to the collected fixed carbon and ash, so that it is difficult to reduce the particle size even if it is put into the circulating fluidized bed furnace, and it acts as a fluid medium. .
On the other hand, sludge having a water content of 60% or more starts combustion without being collected by ash when it is introduced into a circulating fluidized bed furnace. It moves to the exhaust gas side. On the other hand, sludge having a water content of 30% or less burns immediately after being introduced into a circulating fluidized bed furnace and is ashed to become a fluid medium.
Therefore, after the sludge is dried to a moisture content of 60 to 30% as in the present invention, the sludge in which fixed carbon and ash are agglomerated acts as a fluid medium by putting it in a circulating fluidized bed furnace. Even if the fluidized medium is discharged accompanying the exhaust gas, it is possible to maintain the in-furnace differential pressure within a certain appropriate range without newly supplying the fluidized medium.

また、前記汚泥の一部を前記乾燥機で乾燥処理した後、乾燥汚泥を前記循環流動層炉に投入し、残りの汚泥を乾燥処理せずに前記循環流動層炉に直接投入し、これらの汚泥を前記循環流動層炉にて同時に燃焼処理することを特徴とする。
循環流動層炉における乾燥機は、排ガスの廃熱を利用して乾燥処理を行うことが多く、乾燥に使用できる熱量は限られている。従来の乾燥機を備えた循環流動層炉では、汚泥を全量乾燥すると、その含水率は70%前後までしか低減できず、造粒効果が期待できる含水率には至らなかった。そこで本発明のように、汚泥を全量乾燥させずに、一部の汚泥のみを乾燥することで含水率を上記範囲60〜30%まで低減することができ、これにより流動媒体となる灰を製造することが可能となった。
In addition, after drying a part of the sludge with the dryer, the dried sludge is put into the circulating fluidized bed furnace, and the remaining sludge is directly fed into the circulating fluidized bed furnace without drying. The sludge is simultaneously burned in the circulating fluidized bed furnace.
A dryer in a circulating fluidized bed furnace often performs a drying process using waste heat of exhaust gas, and the amount of heat that can be used for drying is limited. In a circulating fluidized bed furnace equipped with a conventional dryer, when the entire amount of sludge is dried, the moisture content can be reduced only to around 70%, and the moisture content at which a granulation effect can be expected has not been achieved. Therefore, as in the present invention, the moisture content can be reduced to the above range of 60 to 30% by drying only a portion of the sludge without drying the entire amount of sludge, thereby producing the ash that is the fluidized medium. It became possible to do.

さらに、前記循環流動層炉の炉内差圧を検出し、該炉内差圧が、予め設定された適正範囲を超えたときに、前記循環流動層炉から流動媒体を抜き出すことを特徴とする。
これは、含水率60〜30%まで乾燥させた乾燥汚泥の投入により炉内の流動媒体が増加することが考えられるため、これを炉内差圧で監視し、流動媒体が増加し過ぎた場合には炉下部から流動媒体を抜き出すことで炉内差圧を適正範囲まで下げることができ、安定運転が可能となる。
Further, the in-furnace differential pressure of the circulating fluidized bed furnace is detected, and when the in-furnace differential pressure exceeds a preset appropriate range, the fluidized medium is extracted from the circulating fluidized bed furnace. .
This is because the flow medium in the furnace increases due to the input of dry sludge dried to a moisture content of 60 to 30%. This is monitored by the pressure difference in the furnace, and the flow medium increases excessively. In this case, by extracting the fluid medium from the lower part of the furnace, the pressure difference in the furnace can be lowered to an appropriate range, and stable operation is possible.

さらにまた、前記循環流動層炉の炉内差圧を検出し、該炉内差圧が、予め設定された適正範囲を超えたときに、前記循環流動層炉のライザ下部から流動媒体を抜き出し、
該抜き出した流動媒体を粒径分離し、大径側粒子を前記循環流動層炉に返送することを特徴とする。
ライザ下部より抜き出した流動媒体には、粒子径が大きいものや燃焼が完了していないものも含まれる。そこで、流動媒体を粒径分離し、未燃分を多く含む大径側粒子を循環流動層炉に戻すことにより、未燃分発生量を低下することが可能となる。
Furthermore, the in-furnace differential pressure of the circulating fluidized bed furnace is detected, and when the in-furnace differential pressure exceeds a preset appropriate range, the fluid medium is extracted from the lower part of the riser of the circulating fluidized bed furnace,
The extracted fluidized medium is subjected to particle size separation, and the large-diameter side particles are returned to the circulating fluidized bed furnace.
The fluid medium extracted from the lower part of the riser includes those having a large particle diameter and those in which combustion has not been completed. Therefore, it is possible to reduce the amount of unburned matter generated by separating the particle size of the fluidized medium and returning the large diameter side particles containing a large amount of unburned matter to the circulating fluidized bed furnace.

また、循環流動層炉を備えた汚泥処理システムにおいて、
汚泥を含水率60〜30%となるように乾燥処理する乾燥機と、
前記乾燥機からの乾燥汚泥が投入され、該乾燥汚泥を流動媒体と混合しながら燃焼させるとともに、該乾燥汚泥の少なくとも一部が塊状の汚泥粒子の状態で流動媒体とともに炉内を循環する循環流動層炉と、を備えたことを特徴とする。
さらに、前記乾燥機は、前記循環流動層炉からの燃焼排ガスの廃熱を熱源としており、
前記汚泥の一部を前記乾燥機に投入し、該乾燥機からの乾燥汚泥を前記循環流動層炉に投入する経路と、他の汚泥を前記循環流動層炉に直接投入する経路とを設けたことを特徴とする。
In the sludge treatment system equipped with a circulating fluidized bed furnace,
A drier for drying the sludge so as to have a moisture content of 60 to 30%;
A circulating flow in which the dried sludge from the dryer is charged and combusted while mixing the dried sludge with a fluid medium, and at least a portion of the dried sludge is circulated in the furnace together with the fluid medium in the form of massive sludge particles. And a laminar furnace.
Furthermore, the dryer uses the waste heat of the combustion exhaust gas from the circulating fluidized bed furnace as a heat source,
A part of the sludge was charged into the dryer, a path for feeding the dried sludge from the dryer into the circulating fluidized bed furnace, and a path for directly feeding other sludge into the circulating fluidized bed furnace were provided. It is characterized by that.

また前記循環流動層炉のライザ下部から流動媒体を抜き出す流動媒体抜き出し手段と、前記循環流動層炉のライザ炉頂部と炉底部の差圧を検出する炉内差圧検出手段と備え、
前記炉内差圧検出手段にて検出された炉内差圧が、予め設定された適正範囲を超えたときに、前記流動媒体抜き出し手段によりライザ下部から流動媒体を抜き出すことを特徴とする。
さらに、前記動媒体抜き出し手段によりライザ下部から抜き出した流動媒体を粒径分離する分離器を備え、該分離器により分離された大径側粒子を、前記循環流動層炉に返送する返送経路を設けたことを特徴とする。
さらにまた、前記循環流動層炉のシールポット下部から流動媒体を抜き出す流動媒体抜き出し手段と、前記循環流動層炉のライザ炉頂部と炉底部の差圧を検出する炉内差圧検出手段と備え、
前記炉内差圧検出手段にて検出された炉内差圧が、予め設定された適正範囲を超えたときに、前記流動媒体抜き出し手段によりシールポット下部から流動媒体を抜き出すことを特徴とする。
In addition, a fluid medium extracting means for extracting a fluid medium from a lower part of the riser of the circulating fluidized bed furnace, and an in-furnace differential pressure detecting means for detecting a differential pressure between a riser top and a furnace bottom of the circulating fluidized bed furnace,
When the in-furnace differential pressure detected by the in-furnace differential pressure detection means exceeds a preset appropriate range, the fluid medium extraction means extracts the fluid medium from the lower portion of the riser.
Furthermore, a separator for separating the particle size of the fluid medium extracted from the lower part of the riser by the moving medium extraction means is provided, and a return path is provided for returning the large-diameter side particles separated by the separator to the circulating fluidized bed furnace. It is characterized by that.
Furthermore, a fluid medium extracting means for extracting a fluid medium from a lower part of the seal pot of the circulating fluidized bed furnace, and an in-furnace differential pressure detecting means for detecting a differential pressure between a riser top and a furnace bottom of the circulating fluidized bed furnace,
When the in-furnace differential pressure detected by the in-furnace differential pressure detection means exceeds a preset appropriate range, the fluid medium is extracted from the lower part of the seal pot by the fluid medium extraction means.

以上記載のごとく本発明によれば、汚泥を含水率60〜30%まで乾燥処理した後、循環流動層炉に投入することにより、固定炭素分と灰分が塊状となった乾燥汚泥が炉内で流動媒体として作用するため、排ガスに同伴されて流動媒体が排出されても、新たに流動媒体を供給することなく炉内差圧を一定の適正範囲に維持することが可能である。
また、汚泥を全量乾燥処理せずに一部のみを乾燥することで、限られた熱源の中で含水率を上記範囲60〜30%まで低減することができ、これにより流動媒体となる灰を製造することが可能となる。
さらに、炉内差圧を監視し、流動媒体が増加し過ぎた場合にはライザ下部から流動媒体を抜き出すことで炉内差圧を適正範囲まで下げることができ、安定運転が可能となる。
さらにまた、ライザ下部より抜き出した流動媒体を粒径分離し、未燃分を多く含む大径側粒子を循環流動層炉に戻すことにより、未燃分発生量を低下することができる。
As described above, according to the present invention, after the sludge is dried to a moisture content of 60 to 30%, the dried sludge in which fixed carbon and ash are agglomerated in the furnace is introduced into the circulating fluidized bed furnace. Since the fluid medium acts as a fluid medium, even if the fluid medium is discharged accompanying the exhaust gas, it is possible to maintain the in-furnace differential pressure within a certain appropriate range without newly supplying the fluid medium.
In addition, by drying only a part of the sludge without drying, the moisture content can be reduced to the above range of 60 to 30% in a limited heat source. It can be manufactured.
Furthermore, the pressure difference in the furnace is monitored, and when the fluid medium increases too much, the fluid pressure medium is extracted from the lower part of the riser, so that the furnace pressure difference can be lowered to an appropriate range, and stable operation is possible.
Furthermore, the amount of unburned matter generated can be reduced by separating the particle size of the fluid medium extracted from the lower portion of the riser and returning the large diameter side particles containing a large amount of unburned matter to the circulating fluidized bed furnace.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.

図1は、本実施例1に係る処理システムを示す全体構成図である。本実施例1は、脱水汚泥を定量ずつ給送する圧送ポンプ1と、該圧送ポンプ1により給送された脱水汚泥3を乾燥処理する乾燥機2と、該乾燥機2からの乾燥汚泥4が投入され、これを焼却処理する循環流動層炉10と、該循環流動層炉10から排出される燃焼排ガスを処理する排ガス処理設備とを備える。前記脱水汚泥は、下水処理場、し尿処理場、廃水処理設備等から排出された汚泥を脱水したものであり、その含水率は80〜90%程度である。   FIG. 1 is an overall configuration diagram illustrating the processing system according to the first embodiment. In the first embodiment, a pressure-feed pump 1 that feeds dehydrated sludge quantitatively, a dryer 2 that dries dehydrated sludge 3 fed by the pressure pump 1, and a dry sludge 4 from the dryer 2 are provided. A circulating fluidized bed furnace 10 that is charged and incinerated, and an exhaust gas treatment facility that processes combustion exhaust gas discharged from the circulating fluidized bed furnace 10 are provided. The dewatered sludge is obtained by dewatering sludge discharged from sewage treatment plants, human waste treatment plants, wastewater treatment facilities, and the like, and its water content is about 80 to 90%.

前記循環流動層炉10は、炉底に充填されたけい砂等の流動媒体が流動化して得られる流動層11aとその上方に位置するフリーボード11bからなるライザ11と、該ライザ11の上部に接続され、フリーボード11bから吹き上げられた流動媒体を捕集するとともに、流動媒体を分離した排ガスを煙道21へ排出するサイクロン14と、ダウンカマー15を介してサイクロン14に接続され、炉内未燃ガスのサイクロン14への吹き抜けを防止するシールポット16と、シールポット16に貯留された流動媒体をライザ11に返送する流動媒体戻し管17と、を主要構成とする。   The circulating fluidized bed furnace 10 includes a riser 11 composed of a fluidized bed 11a obtained by fluidizing a fluid medium such as silica sand filled in the furnace bottom, and a free board 11b positioned above the fluidized bed 11a. The cyclone 14 connected to the cyclone 14 that collects the fluid medium blown up from the free board 11b and discharges the exhaust gas separated from the fluid medium to the flue 21 and the cyclone 14 via the downcomer 15 is connected to the furnace. A seal pot 16 that prevents the fuel gas from blowing through the cyclone 14 and a fluid medium return pipe 17 that returns the fluid medium stored in the seal pot 16 to the riser 11 are mainly configured.

ライザ11の底部には一次空気導入口13が設けられ、該一次空気導入口13から導入される一次空気により流動媒体を流動化し、流動層11aを形成している。該流動層11a上方のライザ炉壁には、二次空気導入口(図示略)が設けられ、ここから導入される二次空気によりフリーボード11bの筒速が維持されるとともに、燃焼排ガス中の未燃分が燃焼される。
前記ライザ11の流動層11a上方には、汚泥投入手段12が設けられる。該汚泥投入手段12は、汚泥投入ホッパより受け入れた脱水汚泥を、供給フィーダにより適宜量ずつ炉内に投入する構成を備える。
A primary air inlet 13 is provided at the bottom of the riser 11, and the fluidized medium is fluidized by the primary air introduced from the primary air inlet 13 to form a fluidized bed 11a. The riser furnace wall above the fluidized bed 11a is provided with a secondary air introduction port (not shown), and the cylinder speed of the free board 11b is maintained by the secondary air introduced from the secondary air introduction port. Unburned matter is burned.
Above the fluidized bed 11 a of the riser 11, sludge charging means 12 is provided. The sludge charging means 12 has a configuration in which dewatered sludge received from the sludge charging hopper is appropriately fed into the furnace by a supply feeder.

また循環流動層炉10は、流動媒体を炉内に供給する流動媒体供給手段と、必要に応じて、脱硫材を炉内に投入する脱硫材投入手段とを備えている。該流動媒体供給手段及び脱硫材投入手段は、流動媒体の循環系であればどこに設置してもよいが、好適には、前記脱硫材投入手段は、ライザ11の二次空気導入口より下方側に設置させ、流動媒体供給手段はシールポット15側に位置させる。前記脱硫材投入手段にて炉内に投入する脱硫材は、例えば、石灰石(CaCO)や消石灰(Ca(OH))、ドロマイト(CaCO・MgCO)等が用いられる。 The circulating fluidized bed furnace 10 includes a fluid medium supply means for supplying a fluid medium into the furnace, and a desulfurization material charging means for charging the desulfurization material into the furnace as necessary. The fluid medium supply means and the desulfurization material charging means may be installed anywhere as long as the circulation system of the fluid medium. Preferably, the desulfurization material charging means is located below the secondary air inlet of the riser 11. The fluid medium supply means is positioned on the seal pot 15 side. As the desulfurizing material to be introduced into the furnace by the desulfurizing material charging means, for example, limestone (CaCO 3 ), slaked lime (Ca (OH) 2 ), dolomite (CaCO 3 .MgCO 3 ), or the like is used.

前記排ガス処理設備は、空気予熱器22と、廃熱ボイラ23と、ガス冷却塔24と、バグフィルタ25とが直列に配設された構成を有する。
前記空気予熱器22は、押込ファン28により導入される空気とサイクロン14からの燃焼排ガスとを熱交換し、一次空気又は二次空気の予熱を行なう。予熱された一次空気は、前記一次空気導入口13より炉内に導入される。
前記廃熱ボイラ23は、燃焼排ガスにより給水31を加熱して蒸気を生成する。生成された蒸気32は乾燥機2に供給される。該乾燥機2は、汚泥のような粘凋質の物質を、蒸気を使って間接的に乾燥するのに有効で、廃熱ボイラ23で生成された蒸気32を熱媒体として乾燥する。乾燥機2で用いられた蒸気は、水33に凝縮されて給水31とともに廃熱ボイラ23に戻される。尚、前記乾燥機2は、外部熱源を利用して脱水汚泥を乾燥処理する構成としてもよい。
The exhaust gas treatment facility has a configuration in which an air preheater 22, a waste heat boiler 23, a gas cooling tower 24, and a bag filter 25 are arranged in series.
The air preheater 22 exchanges heat between the air introduced by the pushing fan 28 and the combustion exhaust gas from the cyclone 14, and preheats the primary air or the secondary air. The preheated primary air is introduced into the furnace through the primary air inlet 13.
The waste heat boiler 23 generates steam by heating the feed water 31 with combustion exhaust gas. The generated steam 32 is supplied to the dryer 2. The dryer 2 is effective for indirectly drying a viscous material such as sludge using steam, and dries the steam 32 generated by the waste heat boiler 23 as a heat medium. The steam used in the dryer 2 is condensed into water 33 and returned to the waste heat boiler 23 together with the feed water 31. The dryer 2 may be configured to dry the dewatered sludge using an external heat source.

前記ガス冷却塔24は、冷却水との熱交換により燃焼排ガスを冷却する。前記バグフィルタ25は、冷却された排ガス中の飛灰を捕集して除去する装置である。燃焼排ガスはバグフィルタ26の後段に設置された誘引ファン26により上記した排ガス処理設備を通過した後、煙突27より系外へ排出される。
尚、排ガス処理設備は、上記した構成に限定されるものではなく、適宜必要とされる装置を選択して構成する。別の構成例として、例えば空気予熱器と、廃熱ボイラと、セラミックフィルタとが直列に配設された構成がある。このように、本実施形態に適用される排ガス処理設備において、その装置構成は特に限定されない。
The gas cooling tower 24 cools the combustion exhaust gas by heat exchange with cooling water. The bag filter 25 is a device that collects and removes fly ash in the cooled exhaust gas. The combustion exhaust gas passes through the exhaust gas treatment facility described above by the induction fan 26 installed at the rear stage of the bag filter 26 and is then discharged out of the system from the chimney 27.
Note that the exhaust gas treatment facility is not limited to the above-described configuration, and is configured by selecting a necessary apparatus as appropriate. As another configuration example, for example, there is a configuration in which an air preheater, a waste heat boiler, and a ceramic filter are arranged in series. Thus, in the exhaust gas treatment facility applied to this embodiment, the apparatus configuration is not particularly limited.

上記構成を備えた処理システムにおいて、本実施例1では、乾燥機2にて脱水汚泥3を60〜30%の含水率となるまで乾燥処理するようにしている。
汚泥は乾燥すると水分が抜けて固定炭素分と灰分が中心に向けて集まる。含水率が60%以下になると、集まった固定炭素と灰分により強度が増すため、循環流動層炉10内に投入しても小粒径化し難くなり、流動媒体として作用することとなる。即ち、上記含水率範囲まで乾燥処理した汚泥は、循環流動層炉10内にて150μm以上の径を有したまま、炉内を循環する。
In the processing system having the above configuration, in the first embodiment, the drying sludge 3 is dried by the dryer 2 until the moisture content becomes 60 to 30%.
When the sludge dries, the moisture is lost and the fixed carbon and ash collect toward the center. When the water content is 60% or less, the strength increases due to the collected fixed carbon and ash, so even if it is put into the circulating fluidized bed furnace 10, it becomes difficult to reduce the particle size, and it acts as a fluid medium. That is, the sludge dried to the above moisture content range circulates in the furnace while having a diameter of 150 μm or more in the circulating fluidized bed furnace 10.

図4に、汚泥の加熱試験結果を示す。これは、図5に示す試験装置にて、汚泥を加熱していった時の汚泥重量、温度等の変化を測定したグラフである。この試験装置にて、容器103に入れた汚泥110を電気炉101内に設置し、ヒータ102により炉内を加熱して汚泥を乾燥させ、重量測定計104により汚泥の重量変化を測定するとともに、温度検出計(図示略)により汚泥温度を検出した。その他、CO濃度等のデータも測定している。
図4において、乾燥領域では、図中写真に見られるように汚泥が黒い塊状となっており、加熱し続けると、次第にこの黒い塊状の汚泥は中心に向けて集まって小さくなっていく。尚、乾燥領域以降は汚泥の燃焼領域である。また、図中写真は、図5の矢印A方向から撮影した写真である。
FIG. 4 shows the results of the sludge heating test. This is a graph obtained by measuring changes in sludge weight, temperature and the like when the sludge is heated with the test apparatus shown in FIG. In this test apparatus, the sludge 110 placed in the container 103 is installed in the electric furnace 101, the inside of the furnace is heated by the heater 102 to dry the sludge, and the weight change of the sludge is measured by the weight meter 104, The sludge temperature was detected by a temperature detector (not shown). In addition, data such as CO concentration is also measured.
In FIG. 4, in the dry region, the sludge is a black lump as seen in the photograph in the figure, and as the heating continues, the black lump sludge gradually gathers toward the center and becomes smaller. In addition, after a drying area | region, it is a combustion area | region of sludge. The photograph in the figure is a photograph taken from the direction of arrow A in FIG.

これに対して、含水率60%以上の汚泥は、循環流動層炉10に投入すると、灰が集合しないまま燃焼を開始するため、灰が崩れて小粒径化して流動媒体とならず、サイクロン14から排ガス側へ移行してしまう。汚泥の灰自体は極めて小さく、20μ程度であるため、炉内を循環することはない。一方、含水率30%以下の汚泥は、循環流動層炉10に投入すると直ぐに燃焼してしまい塊状とならず、微細な灰化してしまうため流動媒体にはならない。   On the other hand, when the sludge having a water content of 60% or more is put into the circulating fluidized bed furnace 10, combustion starts without assembling the ash, so that the ash collapses and becomes a small particle size and does not become a fluid medium. 14 shifts to the exhaust gas side. The sludge ash itself is very small, about 20 μm, and therefore does not circulate in the furnace. On the other hand, the sludge having a water content of 30% or less burns immediately when it is introduced into the circulating fluidized bed furnace 10 and does not form a lump and becomes a fine ash so that it does not become a fluid medium.

そこで、本実施例1のように脱水汚泥3を含水率60〜30%まで乾燥処理した後、循環流動層炉10に投入することにより、固定炭素分と灰分が塊状となった汚泥が流動媒体として作用するため、排ガスに同伴されて流動媒体が排出されても、新たに流動媒体を供給することなく炉内差圧を一定の適正範囲に維持することが可能である。   Therefore, after drying the dehydrated sludge 3 to a moisture content of 60 to 30% as in Example 1, the sludge in which fixed carbon and ash are agglomerated is added to the fluidized medium by introducing it into the circulating fluidized bed furnace 10. Therefore, even if the fluid medium is discharged accompanying the exhaust gas, it is possible to maintain the in-furnace differential pressure within a certain appropriate range without newly supplying the fluid medium.

図2に、本実施例2に係る処理システムの全体構成図を示す。以下、実施例2及び実施例3において、上記した実施例1と同様の構成については、その詳細な説明を省略する。
本実施例2では、脱水汚泥を循環流動層炉10に投入する際、脱水汚泥をそのまま循環流動層炉10に投入する経路(脱水汚泥5)と、脱水汚泥を乾燥機2に給送した後、乾燥機2から循環流動層炉10に投入する経路(脱水汚泥3−乾燥汚泥4)とを設けた構成としている。そして、脱水汚泥の一部3を乾燥機2に導入して乾燥処理し、乾燥汚泥4として循環流動層炉10に投入するとともに、残りの脱水汚泥5は乾燥処理せずにそのまま循環流動層炉10に投入する。このとき、乾燥機2に給送する脱水汚泥の量は、廃熱ボイラ23で回収された熱により、含水率60〜30%まで乾燥可能な量とすることが好ましい。
FIG. 2 shows an overall configuration diagram of the processing system according to the second embodiment. Hereinafter, in Example 2 and Example 3, the detailed description of the same configuration as that of Example 1 described above is omitted.
In Example 2, when dewatered sludge is charged into the circulating fluidized bed furnace 10, the dehydrated sludge is directly fed into the circulating fluidized bed furnace 10 (dehydrated sludge 5), and the dehydrated sludge is fed to the dryer 2. In addition, a path (dehydrated sludge 3-dried sludge 4) that is fed from the dryer 2 to the circulating fluidized bed furnace 10 is provided. Then, a part 3 of the dewatered sludge is introduced into the dryer 2 and dried, and the dried sludge 4 is put into the circulating fluidized bed furnace 10, and the remaining dewatered sludge 5 is left as it is without being dried. 10 At this time, it is preferable that the amount of dewatered sludge fed to the dryer 2 is an amount that can be dried to a moisture content of 60 to 30% by the heat recovered by the waste heat boiler 23.

循環流動層炉10における乾燥機2は、排ガスの熱を利用して乾燥処理を行うことが多く、乾燥に使用できる熱量は限られている。従来の乾燥機を備えた循環流動層炉10では、汚泥を全量乾燥すると、その含水率は70%前後までしか低減できず、造粒効果が期待できる含水率には至らなかった。
そこで本実施例2のように、汚泥を全量乾燥処理せずに、一部を乾燥することで含水率を60〜30%まで低減することができ、これにより流動媒体となる灰を製造することが可能となった。
The dryer 2 in the circulating fluidized bed furnace 10 often performs a drying process using the heat of exhaust gas, and the amount of heat that can be used for drying is limited. In the circulating fluidized bed furnace 10 equipped with a conventional dryer, when the entire amount of sludge was dried, the moisture content could be reduced only to around 70%, and the moisture content that could be expected to produce a granulation effect was not reached.
Therefore, as in Example 2, the moisture content can be reduced to 60 to 30% by drying a part of the sludge without drying the whole amount, thereby producing the ash as the fluidized medium. Became possible.

図3に、本実施例3に係る処理システムの全体構成図を示す。本実施例3は、上記した実施例1又は実施例2の構成に組み合わせて用いられる。図3には、一例として実施例1と組み合わせた構成を示す。
本実施例3は、ライザ11の底部に流動媒体抜き出し部18を設けて、この抜き出し部18に、開閉自在なバルブ(図示略)を設けている。さらに、ライザ11の底部と頂部に圧力計35、36を夫々設けている。そして、コントローラ37により、圧力計35、36にて検出された炉内差圧を監視し、該検出された炉内差圧が、予め設定される適正範囲を超えたときに、前記バルブを開放して流動媒体抜き出し部18より流動媒体を抜き出す。
これは、含水率60〜30%まで乾燥させた乾燥汚泥により炉内の流動媒体量が増加することが考えられるため、これを炉内差圧で監視し、流動媒体が増加し過ぎた場合にはライザ下部から流動媒体を抜き出すことで炉内差圧を適正範囲まで下げることができ、安定運転が可能となる。
FIG. 3 shows an overall configuration diagram of the processing system according to the third embodiment. The third embodiment is used in combination with the configuration of the first embodiment or the second embodiment described above. FIG. 3 shows a configuration combined with the first embodiment as an example.
In the third embodiment, a fluid medium extraction portion 18 is provided at the bottom of the riser 11, and a valve (not shown) that can be opened and closed is provided at the extraction portion 18. Furthermore, pressure gauges 35 and 36 are provided at the bottom and top of the riser 11, respectively. Then, the controller 37 monitors the in-furnace differential pressure detected by the pressure gauges 35 and 36, and opens the valve when the detected in-furnace differential pressure exceeds a preset appropriate range. Then, the fluid medium is extracted from the fluid medium extraction unit 18.
This is because the amount of fluid medium in the furnace may increase due to the dried sludge dried to a moisture content of 60 to 30%. This is monitored by the pressure difference in the furnace, and the fluid medium increases excessively. By extracting the fluid medium from the lower part of the riser, the pressure difference in the furnace can be lowered to an appropriate range, and stable operation becomes possible.

また、ライザ11下部より抜き出した流動媒体(汚泥を含む)を粒径分離する流動媒体分離器19を設ける。この流動媒体分離器19は、篩分けにより分離する構成が好ましく、この場合、篩目を4〜15mmに設定するとよい。そして篩い上に残った流動媒体を循環流動層炉10内に戻すようにする。篩目を通過した流動媒体は、流動媒体ホッパ29に貯留しておく。
ライザ11下部より抜き出した流動媒体には、粒子径が大きいものや燃焼が完了していないものも含まれる。そこで、篩分けによって粒径分離することにより、未燃分を多く含む汚泥粒子が篩上に残る。これを循環流動層炉10に戻すことにより、未燃分発生量を低下することが可能となる。
In addition, a fluid medium separator 19 for separating the particle size of the fluid medium (including sludge) extracted from the lower portion of the riser 11 is provided. The fluid medium separator 19 is preferably separated by sieving, and in this case, the sieve mesh may be set to 4 to 15 mm. The fluid medium remaining on the sieve is returned to the circulating fluidized bed furnace 10. The fluid medium that has passed through the sieve mesh is stored in the fluid medium hopper 29.
The fluid medium extracted from the lower portion of the riser 11 includes those having a large particle diameter and those in which combustion has not been completed. Thus, by separating the particles by sieving, sludge particles containing a large amount of unburned matter remain on the sieve. By returning this to the circulating fluidized bed furnace 10, the amount of unburned matter generated can be reduced.

さらに、シールポット16下部に流動媒体抜き出し部37を設けてもよい。シールポット16に存在する粒子は、ライザ11にて吹き上げられた粒子であるため、粒子径は小さい。よって、シールポット16から粒子を抜き出すことで未燃分を抜き出すことがなくなる。未燃分を含む粒子径の大きいものは、ライザ11側で小さくなるまで流動する。これにより、流動媒体が増加したときに、シールポット16下部から流動媒体を抜き出すことにより未燃分の抜き出しを防止できる。   Further, a fluid medium extraction part 37 may be provided at the lower part of the seal pot 16. Since the particles present in the seal pot 16 are particles blown up by the riser 11, the particle diameter is small. Therefore, the unburned portion is not extracted by extracting the particles from the seal pot 16. Those having a large particle size including unburned components flow until they become smaller on the riser 11 side. Thereby, when a fluid medium increases, it can prevent extraction of an unburned part by extracting a fluid medium from seal pot 16 lower part.

本発明によれば、流動媒体が排ガスに同伴して排出されてしまう場合でも、新たな流動媒体を補充することなく炉内の差圧を適正に維持し、安定運転が可能であるため、下水汚泥、し尿処理汚泥、廃水処理汚泥等の各種汚泥を処理する循環流動層炉を備えたシステム全般に好適に適用可能である。   According to the present invention, even when the fluid medium is exhausted along with the exhaust gas, it is possible to maintain the differential pressure in the furnace properly without replenishing a new fluid medium, and stable operation is possible. The present invention can be suitably applied to all systems equipped with a circulating fluidized bed furnace for treating various types of sludge such as sludge, human waste treatment sludge, wastewater treatment sludge and the like.

本発明の実施例1に係る処理システムの全体構成図である。1 is an overall configuration diagram of a processing system according to Embodiment 1 of the present invention. 本発明の実施例2に係る処理システムの全体構成図である。It is a whole block diagram of the processing system which concerns on Example 2 of this invention. 本発明の実施例3に係る処理システムの全体構成図である。It is a whole block diagram of the processing system which concerns on Example 3 of this invention. 汚泥の加熱試験結果を示す図である。It is a figure which shows the heating test result of sludge. 加熱試験装置を示す概略図である。It is the schematic which shows a heating test apparatus.

符号の説明Explanation of symbols

2 乾燥機
3、5 脱水汚泥
4 乾燥汚泥
10 循環流動層炉
11 ライザ
14 サイクロン
15 シールポット
18、37 流動媒体抜き出し部
19 流動媒体分離器
22 空気予熱器
23 廃熱ボイラ
24 ガス冷却塔
25 バグフィルタ
35、36 圧力計
37 コントローラ
2 Dryer 3, 5 Dewatered sludge 4 Dry sludge 10 Circulating fluidized bed furnace 11 Riser 14 Cyclone 15 Seal pot 18, 37 Fluidized medium extraction part 19 Fluidized medium separator 22 Air preheater 23 Waste heat boiler 24 Gas cooling tower 25 Bag filter 35, 36 Pressure gauge 37 Controller

Claims (9)

汚泥を乾燥機で乾燥処理した後、乾燥汚泥を循環流動層炉に投入して流動媒体と混合しながら燃焼させる汚泥処理方法において、
前記乾燥機にて、含水率60〜30%の乾燥汚泥が得られるように前記汚泥を乾燥処理することにより、前記循環流動層炉に投入された該乾燥汚泥の少なくとも一部が、塊状の汚泥粒子の状態で流動媒体とともに炉内を循環するようにしたことを特徴とする汚泥処理方法。
In the sludge treatment method in which the sludge is dried with a dryer, and then the dried sludge is put into a circulating fluidized bed furnace and burned while being mixed with a fluid medium.
By drying the sludge so as to obtain a dried sludge having a water content of 60 to 30% in the dryer, at least a part of the dried sludge put into the circulating fluidized bed furnace is a lump sludge. A sludge treatment method characterized by circulating in a furnace together with a fluid medium in the form of particles.
前記汚泥の一部を前記乾燥機で乾燥処理した後、乾燥汚泥を前記循環流動層炉に投入し、残りの汚泥を乾燥処理せずに前記循環流動層炉に直接投入し、これらの汚泥を前記循環流動層炉にて同時に燃焼処理することを特徴とする請求項1記載の汚泥処理方法。   After drying a part of the sludge with the dryer, the dried sludge is put into the circulating fluidized bed furnace, and the remaining sludge is directly fed into the circulating fluidized bed furnace without drying, The sludge treatment method according to claim 1, wherein combustion treatment is performed simultaneously in the circulating fluidized bed furnace. 前記循環流動層炉の炉内差圧を検出し、該炉内差圧が、予め設定された適正範囲を超えたときに、前記循環流動層炉から流動媒体を抜き出すことを特徴とする請求項1若しくは2記載の汚泥処理方法。   The in-furnace differential pressure of the circulating fluidized bed furnace is detected, and when the in-furnace differential pressure exceeds a preset appropriate range, the fluid medium is extracted from the circulating fluidized bed furnace. The sludge treatment method according to 1 or 2. 前記循環流動層炉の炉内差圧を検出し、該炉内差圧が、予め設定された適正範囲を超えたときに、前記循環流動層炉のライザ下部から流動媒体を抜き出し、
該抜き出した流動媒体を粒径分離し、大径側粒子を前記循環流動層炉に返送することを特徴とする請求項1若しくは2記載の汚泥処理方法。
Detecting the in-furnace differential pressure of the circulating fluidized bed furnace, when the in-furnace differential pressure exceeds a preset appropriate range, withdrawing the fluid medium from the lower part of the riser of the circulating fluidized bed furnace,
The sludge treatment method according to claim 1 or 2, wherein the extracted fluidized medium is subjected to particle size separation, and the large-diameter side particles are returned to the circulating fluidized bed furnace.
汚泥を含水率60〜30%となるように乾燥処理する乾燥機と、
前記乾燥機からの乾燥汚泥が投入され、該乾燥汚泥を流動媒体と混合しながら燃焼させるとともに、該乾燥汚泥の少なくとも一部が塊状の汚泥粒子の状態で流動媒体とともに炉内を循環する循環流動層炉と、を備えたことを特徴とする循環流動層炉を備えた汚泥処理システム。
A drier for drying the sludge so as to have a moisture content of 60 to 30%;
A circulating flow in which the dried sludge from the dryer is charged and combusted while mixing the dried sludge with a fluid medium, and at least a portion of the dried sludge is circulated in the furnace together with the fluid medium in the form of massive sludge particles. A sludge treatment system comprising a circulating fluidized bed furnace.
前記乾燥機は、前記循環流動層炉からの燃焼排ガスの廃熱を熱源としており、
前記汚泥の一部を前記乾燥機に投入し、該乾燥機からの乾燥汚泥を前記循環流動層炉に投入する経路と、他の汚泥を前記循環流動層炉に直接投入する経路とを設けたことを特徴とする請求項5記載の循環流動層炉を備えた汚泥処理システム。
The dryer uses the waste heat of combustion exhaust gas from the circulating fluidized bed furnace as a heat source,
A part of the sludge was charged into the dryer, a path for feeding the dried sludge from the dryer into the circulating fluidized bed furnace, and a path for directly feeding other sludge into the circulating fluidized bed furnace were provided. A sludge treatment system comprising the circulating fluidized bed furnace according to claim 5.
前記循環流動層炉のライザ下部から流動媒体を抜き出す流動媒体抜き出し手段と、前記循環流動層炉のライザ炉頂部と炉底部の差圧を検出する炉内差圧検出手段と備え、
前記炉内差圧検出手段にて検出された炉内差圧が、予め設定された適正範囲を超えたときに、前記流動媒体抜き出し手段によりライザ下部から流動媒体を抜き出すことを特徴とする請求項5若しくは6記載の循環流動層炉を備えた汚泥処理システム。
A fluid medium extraction means for extracting a fluid medium from a lower part of the riser of the circulating fluidized bed furnace, and an in-furnace differential pressure detection means for detecting a differential pressure between a riser top and a furnace bottom of the circulating fluidized bed furnace,
The fluid medium is withdrawn from the lower part of the riser by the fluid medium withdrawing means when the in-furnace differential pressure detected by the in-furnace differential pressure detecting means exceeds a preset appropriate range. A sludge treatment system comprising the circulating fluidized bed furnace according to 5 or 6.
前記動媒体抜き出し手段によりライザ下部から抜き出した流動媒体を粒径分離する分離器を備え、該分離器により分離された大径側粒子を、前記循環流動層炉に返送する返送経路を設けたことを特徴とする請求項7記載の循環流動層炉を備えた汚泥処理システム。   Provided with a separator that separates the particle size of the fluid medium extracted from the lower part of the riser by the moving medium extraction means, and provided a return path for returning the large-diameter side particles separated by the separator to the circulating fluidized bed furnace. A sludge treatment system comprising the circulating fluidized bed furnace according to claim 7. 前記循環流動層炉のシールポット下部から流動媒体を抜き出す流動媒体抜き出し手段と、前記循環流動層炉のライザ炉頂部と炉底部の差圧を検出する炉内差圧検出手段と備え、
前記炉内差圧検出手段にて検出された炉内差圧が、予め設定された適正範囲を超えたときに、前記流動媒体抜き出し手段によりシールポット下部から流動媒体を抜き出すことを特徴とする請求項5若しくは6記載の循環流動層炉を備えた汚泥処理システム。
A fluid medium extraction means for extracting a fluid medium from a lower part of a seal pot of the circulating fluidized bed furnace, and an in-furnace differential pressure detecting means for detecting a differential pressure between a riser top and a furnace bottom of the circulating fluidized bed furnace,
When the in-furnace differential pressure detected by the in-furnace differential pressure detection means exceeds a preset appropriate range, the fluid medium is extracted from the lower part of the seal pot by the fluid medium extraction means. Item 7. A sludge treatment system comprising the circulating fluidized bed furnace according to item 5 or 6.
JP2008049487A 2008-02-29 2008-02-29 Sludge treatment method and sludge treatment system with circulating fluidized bed furnace Pending JP2009204282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008049487A JP2009204282A (en) 2008-02-29 2008-02-29 Sludge treatment method and sludge treatment system with circulating fluidized bed furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008049487A JP2009204282A (en) 2008-02-29 2008-02-29 Sludge treatment method and sludge treatment system with circulating fluidized bed furnace

Publications (1)

Publication Number Publication Date
JP2009204282A true JP2009204282A (en) 2009-09-10

Family

ID=41146741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008049487A Pending JP2009204282A (en) 2008-02-29 2008-02-29 Sludge treatment method and sludge treatment system with circulating fluidized bed furnace

Country Status (1)

Country Link
JP (1) JP2009204282A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018200150A (en) * 2017-05-29 2018-12-20 国立研究開発法人産業技術総合研究所 Combustion furnace for organic waste and processing system for organic waste using the combustion furnace
CN110436740A (en) * 2019-08-29 2019-11-12 浙江科技学院 A kind of sludge classification desiccation gasification coupling coal generating system and its process

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5948431U (en) * 1982-09-21 1984-03-30 バブコツク日立株式会社 Fluidized bed furnace pressure control device
JPS5989921A (en) * 1982-11-11 1984-05-24 Nippon Kokan Kk <Nkk> Sludge feeding method in sludge incinerator system with drying machine
JPH01121616A (en) * 1987-11-05 1989-05-15 Sanki Eng Co Ltd Control method for circulation particles volume and its control device in fluidized bed type-burner
JPH01212810A (en) 1988-02-22 1989-08-25 Ishikawajima Harima Heavy Ind Co Ltd Combustion device for combustible substance containing water highly
JP2001241611A (en) * 2000-02-29 2001-09-07 Mitsubishi Heavy Ind Ltd Method and apparatus for operation of fluidized bed incinerator
JP2002098313A (en) * 2000-09-22 2002-04-05 Nkk Corp Circulating fluidized bed combustion apparatus
JP2002303413A (en) * 2001-04-03 2002-10-18 Hitachi Zosen Corp Method and apparatus for burning waste

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5948431U (en) * 1982-09-21 1984-03-30 バブコツク日立株式会社 Fluidized bed furnace pressure control device
JPS5989921A (en) * 1982-11-11 1984-05-24 Nippon Kokan Kk <Nkk> Sludge feeding method in sludge incinerator system with drying machine
JPH01121616A (en) * 1987-11-05 1989-05-15 Sanki Eng Co Ltd Control method for circulation particles volume and its control device in fluidized bed type-burner
JPH01212810A (en) 1988-02-22 1989-08-25 Ishikawajima Harima Heavy Ind Co Ltd Combustion device for combustible substance containing water highly
JP2001241611A (en) * 2000-02-29 2001-09-07 Mitsubishi Heavy Ind Ltd Method and apparatus for operation of fluidized bed incinerator
JP2002098313A (en) * 2000-09-22 2002-04-05 Nkk Corp Circulating fluidized bed combustion apparatus
JP2002303413A (en) * 2001-04-03 2002-10-18 Hitachi Zosen Corp Method and apparatus for burning waste

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018200150A (en) * 2017-05-29 2018-12-20 国立研究開発法人産業技術総合研究所 Combustion furnace for organic waste and processing system for organic waste using the combustion furnace
CN110436740A (en) * 2019-08-29 2019-11-12 浙江科技学院 A kind of sludge classification desiccation gasification coupling coal generating system and its process
CN110436740B (en) * 2019-08-29 2024-04-16 浙江科技学院 Sludge grading drying gasification coupling coal-fired power generation system and process method thereof

Similar Documents

Publication Publication Date Title
KR101287262B1 (en) Method of disposing of organic waste of high water content and disposal apparatus therefor
JP5048573B2 (en) Sludge treatment method and treatment system
JP2013534180A (en) Sludge drying method and sludge drying equipment
JP2009028672A (en) Treatment method of high water-content waste and treatment apparatus
WO2008001747A1 (en) Cement burning apparatus and method of drying highly hydrous organic waste
CN104692603A (en) Integral treatment system for sludge
JP2011168445A (en) Method of calcining powdery calcium carbonate
TWI722316B (en) Sludge treatment method and cement manufacturing system
JP6565097B2 (en) Organic waste processing apparatus and processing method
JP2017006824A5 (en)
FI125977B (en) Method and apparatus for incinerating sludge
JP2006035189A (en) Method for treating organic sludge utilizing cement production process
JP2664831B2 (en) Combustible substance moisture content reduction device
JP2009220048A (en) Drying system and drying method for water-containing organic sludge
JP2009204282A (en) Sludge treatment method and sludge treatment system with circulating fluidized bed furnace
JPS59221512A (en) Sludge treatment device
JP2010194382A (en) Drying system and drying method of water-containing organic waste
WO2014053022A1 (en) Method and apparatus for drying particulate matter
CN203007102U (en) Fluidized-bed dryer for drying sludge by using narrow-sieved high-temperature-particle heat carriers
CN105627331A (en) Muddy substance drying and incineration method and system
KR101261970B1 (en) Sewage sludge processing equipment using fluidized bed combustor boiler
JP5425958B2 (en) Sludge treatment method and treatment system
JP2016079332A (en) Fluidized bed apparatus, and method for drying/sorting coal by using the same
JP3037457B2 (en) Drying and incineration of hydrated solids
JP3782425B2 (en) Method and system for drying and deodorizing organic sludge

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20110221

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130930

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140519

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140523

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140718