JP2014105612A - Waste heat recovery facility, waste heat recovery method and waste treatment furnace - Google Patents

Waste heat recovery facility, waste heat recovery method and waste treatment furnace Download PDF

Info

Publication number
JP2014105612A
JP2014105612A JP2012258305A JP2012258305A JP2014105612A JP 2014105612 A JP2014105612 A JP 2014105612A JP 2012258305 A JP2012258305 A JP 2012258305A JP 2012258305 A JP2012258305 A JP 2012258305A JP 2014105612 A JP2014105612 A JP 2014105612A
Authority
JP
Japan
Prior art keywords
heat exchanger
waste
heat
supplied
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012258305A
Other languages
Japanese (ja)
Other versions
JP6034154B2 (en
Inventor
Sukenori Hirai
祐則 平井
Shinjiro Shimizu
晋二郎 清水
Yuichi Yagawa
雄一 矢川
Hirokazu Hayashi
広和 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Environmental Service Co Ltd
Original Assignee
Kubota Environmental Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Environmental Service Co Ltd filed Critical Kubota Environmental Service Co Ltd
Priority to JP2012258305A priority Critical patent/JP6034154B2/en
Publication of JP2014105612A publication Critical patent/JP2014105612A/en
Application granted granted Critical
Publication of JP6034154B2 publication Critical patent/JP6034154B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/30Technologies for a more efficient combustion or heat usage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Abstract

PROBLEM TO BE SOLVED: To provide a waste heat recovery facility capable of effectively utilizing potential heat of exhaust gas, without decreasing a power generation amount.SOLUTION: A waste heat recovery facility 30 incorporated into a waste treatment furnace 1 including a waste heat boiler 8 includes: a heat exchanger 11 that is installed in a gas duct, in which pressurized supply water of a deaerator 25 supplied to the waste heat boiler 8 is supplied as a heated medium, and in which the heated medium heated by heat exchange with exhaust gas is circulated and supplied to the deaerator 25 as a deaeration heat source; and control mechanisms 32, 33 that adjust a water supply amount to the heat exchanger 11 so that exhaust gas discharged from the heat exchanger 11 is not less than a first predetermined temperature.

Description

本発明は、廃熱回収設備、廃熱回収方法及び廃棄物処理炉に関し、詳しくは廃熱ボイラを備えた廃棄物処理炉に組み込まれる廃熱回収設備、廃熱回収方法及び廃棄物処理炉に関する。   The present invention relates to a waste heat recovery facility, a waste heat recovery method, and a waste treatment furnace, and more particularly relates to a waste heat recovery facility, a waste heat recovery method, and a waste treatment furnace incorporated in a waste treatment furnace equipped with a waste heat boiler. .

規模が大きなゴミ焼却炉や溶融炉等の廃棄物処理設備には廃熱ボイラが設置され、廃熱ボイラで発生した蒸気で発電する発電設備が組み込まれている。そして、設備を稼動するために必要な電力が自己発電電力で賄われ、余剰電力があれば電力会社に売電されている。   Waste treatment facilities such as large-scale waste incinerators and melting furnaces are provided with waste heat boilers, and power generation facilities that generate electricity using steam generated in the waste heat boilers are incorporated. Electric power necessary to operate the facilities is covered by self-generated power, and if there is surplus power, it is sold to an electric power company.

廃棄物処理設備で発生した高温の排ガスは、煙道に設けた減温塔で冷却された後にバグフィルタ等の集塵機で除塵され、さらに必要に応じて洗煙塔で酸性ガス成分が除去された後に煙突から排気される。   The high-temperature exhaust gas generated in the waste treatment facility was cooled by a temperature-reduction tower provided in the flue, then removed by a dust collector such as a bag filter, and acid gas components were removed by a smoke-wash tower as necessary. Later exhausted from the chimney.

廃熱ボイラで発生した蒸気は過熱器で過熱された後に高圧蒸気溜めに蓄積され、必要量が高圧蒸気溜めから蒸気タービンに供給されて発電され、蒸気タービンからの排蒸気が復水器で復水されて復水タンクに回収され、その後、復水タンクから脱気器に給水されて脱気され、所定温度に加熱されたボイラ給水としてエコノマイザに循環給水される。   The steam generated in the waste heat boiler is superheated by the superheater and then accumulated in the high-pressure steam reservoir. The required amount is supplied from the high-pressure steam reservoir to the steam turbine for power generation, and the exhaust steam from the steam turbine is recovered by the condenser. Water is collected in the condensate tank, then supplied to the deaerator from the condensate tank, degassed, and circulated and supplied to the economizer as boiler feed water heated to a predetermined temperature.

そして、暖房設備等の様々な設備の熱源として蒸気を利用するために、高圧蒸気溜めに蓄積された蒸気の一部が低圧蒸気溜めに蓄積され、低圧蒸気溜めに蓄積された蒸気の一部、または蒸気タービンの途中からの抽気が脱気器の加熱源として供給されている。   And, in order to use steam as a heat source of various facilities such as heating facilities, a part of the steam accumulated in the high-pressure steam reservoir is accumulated in the low-pressure steam reservoir, a part of the steam accumulated in the low-pressure steam reservoir, Or the extraction from the middle of a steam turbine is supplied as a heating source of a deaerator.

特許文献1には、蒸気タービンからの抽気を抽気移送管を介して排気復水タンクに導き、復水移送管の途中に第1種吸収式ヒートポンプを設け、この第1種吸収式ヒートポンプの駆動熱源として、蒸気タービンの抽気を使用するとともに、その廃熱回収の対象となる廃熱熱源として、排気蒸気取出管の途中から取り出された排気蒸気を使用し、かつ排気復水タンクからの復水を、吸収器および凝縮器に導いて昇温させる発電設備が提案されている。   In Patent Document 1, extraction from a steam turbine is guided to an exhaust condensate tank through an extraction transfer pipe, a first type absorption heat pump is provided in the middle of the condensate transfer pipe, and the first type absorption heat pump is driven. The steam turbine bleed air is used as a heat source, the exhaust steam taken from the middle of the exhaust steam extraction pipe is used as the waste heat heat source to be recovered, and the condensate from the exhaust condensate tank is used. A power generation facility has been proposed that raises the temperature by introducing it to an absorber and a condenser.

当該発電設備によれば、復水タンクから脱気器に送られる復水の温度が高くなり、脱気器において、蒸気タービンの抽気により復水の温度を上昇させるのに必要な抽気量が減少する。すなわち、抽気箇所以降の蒸気タービン内を流れる蒸気量を増やすことができるので、発電量を増加させることができる。   According to the power generation facility, the temperature of the condensate sent from the condensate tank to the deaerator increases, and the amount of bleed required to raise the temperature of the condensate by the bleed of the steam turbine is reduced in the deaerator. To do. That is, since the amount of steam flowing in the steam turbine after the extraction location can be increased, the amount of power generation can be increased.

特開平08−021210号公報Japanese Patent Application Laid-Open No. 08-021210

しかし、上述した従来の廃棄物処理設備は、蒸気タービンの抽気等を脱気器の熱源に用いる必要があり、発電に供する蒸気量が少なくなるという問題があった。さらに、燃焼炉で発生した高温の排ガスを煙道に設けた減温塔で冷却し、減温した排ガスをその下流側に設置した集塵機で除塵するように構成されていたため、排ガスの保有熱を有効に利用するという観点で更なる改良の余地もあった。   However, the above-described conventional waste treatment facility has a problem in that it is necessary to use steam turbine bleed air or the like as a heat source for the deaerator, and the amount of steam provided for power generation is reduced. Furthermore, the high-temperature exhaust gas generated in the combustion furnace is cooled by a temperature reducing tower provided in the flue, and the temperature-reduced exhaust gas is removed by a dust collector installed on the downstream side. There was room for further improvement in terms of effective use.

本発明の目的は、上述した問題点に鑑み、発電量の低下を招くことなく、排ガスの保有熱を有効に活用できる廃熱回収設備、廃熱回収方法及び廃棄物処理炉を提供する点にある。   An object of the present invention is to provide a waste heat recovery facility, a waste heat recovery method, and a waste treatment furnace capable of effectively utilizing the retained heat of exhaust gas without causing a decrease in the amount of power generation in view of the above-described problems. is there.

上述の目的を達成するため、本発明による廃熱回収設備の第一特徴構成は、特許請求の範囲の請求項1に記載した通り、廃熱ボイラを備えた廃棄物処理炉に組み込まれる廃熱回収設備であって、煙道に設置され、前記廃熱ボイラへ供給される脱気器の加圧給水が被加熱媒体として供給され、排ガスとの熱交換により加熱された被加熱媒体が脱気熱源として前記脱気器に循環供給される熱交換器と、前記熱交換器から排出された排ガスが第1の所定温度を下回らないように、前記熱交換器への給水量を調整する制御機構と、を備えている点にある。   In order to achieve the above-mentioned object, the first characteristic configuration of the waste heat recovery facility according to the present invention is the waste heat incorporated in the waste treatment furnace equipped with the waste heat boiler as described in claim 1 of the claims. A recovery facility that is installed in a flue and is supplied with pressurized feed water of a deaerator supplied to the waste heat boiler as a heated medium, and the heated medium heated by heat exchange with the exhaust gas is deaerated. A heat exchanger that is circulated and supplied to the deaerator as a heat source, and a control mechanism that adjusts the amount of water supplied to the heat exchanger so that the exhaust gas discharged from the heat exchanger does not fall below a first predetermined temperature. It is in the point equipped with.

廃熱ボイラを経て煙道に流下する排ガスの保有熱を熱交換器で効率的に回収でき、回収された熱がボイラ水の脱気用の熱源に用いられるので、脱気のための蒸気が不要となり、発電効率を向上させることができる。しかも、減温塔を設けなくても熱交換器で十分に減温された排ガスをそのまま集塵機に向けて流下させることができるようになる。   The retained heat of the exhaust gas flowing down to the flue through the waste heat boiler can be efficiently recovered with a heat exchanger, and the recovered heat is used as a heat source for deaeration of boiler water. It becomes unnecessary and power generation efficiency can be improved. In addition, the exhaust gas that has been sufficiently reduced in temperature by the heat exchanger can be allowed to flow down toward the dust collector without providing a temperature reducing tower.

また、廃棄物処理炉で処理される廃棄物の性状は様々に変動するため、熱交換器に流入する排ガス量も変動する。廃棄物の燃焼状態が大きく低下して排ガス量が低下しても、熱交換器から排出された排ガスが所定温度を下回らないように、制御機構によって熱交換器への給水量が調整されるので、熱交換器や熱交換器の下流側の煙道や煙道に配置された各処理設備での低温腐食の発生を未然に防止することができる。   Moreover, since the property of the waste processed in the waste processing furnace varies variously, the amount of exhaust gas flowing into the heat exchanger also varies. Even if the combustion state of the waste is greatly reduced and the amount of exhaust gas is reduced, the amount of water supplied to the heat exchanger is adjusted by the control mechanism so that the exhaust gas discharged from the heat exchanger does not fall below a predetermined temperature. Further, it is possible to prevent the occurrence of low-temperature corrosion in the heat exchanger and the flue on the downstream side of the heat exchanger and in each treatment facility disposed in the flue.

さらに、集塵機の前段の減温塔を無くすために伝熱面積を大きくしたエコノマイザを備え、廃熱を効率的に回収するいわゆる低温エコを採用した廃棄物処理炉では、廃棄物の燃焼状態が大きく低下して排ガス量が低下すると、エコノマイザで必要以上に吸熱されて出口温度が低下するため、低温腐食が発生する虞もある。しかし、上述の構成によれば、いわゆる低温エコではない通常のエコノマイザを用いても、減温塔が不要になるばかりか、制御機構によって熱交換器への給水量が調整されるので、低温腐食の発生を未然に防止することができる。   In addition, waste treatment furnaces equipped with an economizer with a large heat transfer area to eliminate the temperature-decreasing tower in front of the dust collector and adopting the so-called low-temperature eco that efficiently recovers waste heat has a large combustion state of waste. If the amount of exhaust gas decreases and the amount of exhaust gas decreases, the economizer absorbs heat more than necessary and the outlet temperature decreases, which may cause low-temperature corrosion. However, according to the above-described configuration, even if a normal economizer that is not so-called low-temperature ecology is used, not only a temperature-decreasing tower is unnecessary, but also the amount of water supplied to the heat exchanger is adjusted by the control mechanism. Can be prevented in advance.

同第二の特徴構成は、同請求項2に記載した通り、上述の第一特徴構成に加えて、前記制御機構は、前記熱交換器から排出される被加熱媒体が所定圧力以上になるように、被加熱媒体の排出量を調整するように構成されている点にある。   In the second feature configuration, as described in claim 2, in addition to the first feature configuration described above, the control mechanism is configured so that the heated medium discharged from the heat exchanger has a predetermined pressure or more. In addition, it is configured to adjust the discharge amount of the heated medium.

廃熱を回収する被加熱媒体としてボイラ給水である加圧給水が用いられ、制御機構によって、被加熱媒体が所定圧力以上になるように被加熱媒体の排出量が調整されるので、熱伝達率が向上して効率的に脱気することができる。   Pressurized feed water, which is boiler feed water, is used as the heated medium for recovering waste heat, and the discharge rate of the heated medium is adjusted by the control mechanism so that the heated medium becomes equal to or higher than the predetermined pressure. Can be efficiently degassed.

同第三の特徴構成は、同請求項3に記載した通り、上述の第一または第二特徴構成に加えて、前記熱交換器がエコノマイザの下流側煙道に設置され、前記エコノマイザへ供給される脱気器の加圧給水が被加熱媒体として分岐供給される点にある。   In the third feature configuration, as described in claim 3, in addition to the first or second feature configuration described above, the heat exchanger is installed in a downstream flue of an economizer and supplied to the economizer. The pressurized water supply of the deaerator is branched and supplied as the medium to be heated.

煙道に沿ってエコノマイザと熱交換器が順に配置され、脱気器で脱気された加圧給水がエコノマイザと熱交換器にそれぞれ供給される。エコノマイザで加熱された加圧給水が廃熱ボイラに供給され、熱交換器で加熱された加圧給水が脱気器に循環供給され、さらに熱交換器を通過して減温された排ガスが後段の排ガス処理設備に供給される。通常、エコノマイザを通過した排ガスは、減温塔を経てバグフィルタ等の集塵機に送られるが、上述の構成によれば、熱交換器で十分に減温されるため、減温塔を設ける必要が無く、しかも廃熱が効率的に回収できるようになる。   An economizer and a heat exchanger are arranged in this order along the flue, and pressurized water degassed by the deaerator is supplied to the economizer and the heat exchanger, respectively. Pressurized feed water heated by the economizer is supplied to the waste heat boiler, pressurized feed water heated by the heat exchanger is circulated and supplied to the deaerator, and the exhaust gas reduced in temperature after passing through the heat exchanger Supplied to the exhaust gas treatment facility. Normally, exhaust gas that has passed through the economizer is sent to a dust collector such as a bag filter through a temperature reducing tower. However, according to the above configuration, the temperature is sufficiently reduced by a heat exchanger, so it is necessary to provide a temperature reducing tower. In addition, waste heat can be recovered efficiently.

同第四の特徴構成は、同請求項4に記載した通り、上述の第一から第三の何れかの特徴構成に加えて、各煙道に前記熱交換器が設置された複数の廃棄物処理炉が併設されるとともに、前記脱気器が共用されるように構成され、前記制御機構は、他の廃棄物処理炉が運転されている場合に、運転を再開する廃棄物処理炉に備えた制御対象熱交換器に前記脱気器から加圧給水を供給して排ガスを加熱する点にある。   In the fourth feature configuration, as described in claim 4, in addition to any of the first to third feature configurations described above, a plurality of wastes in which the heat exchanger is installed in each flue A processing furnace is also provided, and the deaerator is shared. The control mechanism is provided for a waste processing furnace that resumes operation when another waste processing furnace is in operation. In other words, the pressurized water is supplied from the deaerator to the controlled heat exchanger and the exhaust gas is heated.

定期点検等で停止された廃棄物処理炉を再度立ち上げる際には、化石燃料を用いて炉を所定の燃焼状態に移行させることになる。その間、比較的低温で高湿の排ガスが煙道に流出するため、集塵機で捕捉された潮解性の物質が湿気を含み、例えば集塵機のフィルタに目詰まりが生じたり、低温腐食が生じたりする虞がある。そのため、従来電気ヒータ等の熱源と当該熱源で加熱された空気を集塵機の上流側煙道に導く送風ファンを備えて排ガスを加熱する必要があったが、脱気器からの加圧給水により制御対象熱交換器を流れる排ガスを加熱することができると、電気ヒータに要する電力を低減することができるようになる。他の廃棄物処理炉が運転されている場合には、脱気器からの加圧給水はある程度の高温、例えば約143℃程度に加熱されているので、熱交換器で放熱された加圧給水を脱気器に戻しても不都合は生じない。   When the waste treatment furnace that has been stopped by regular inspection or the like is started up again, the furnace is shifted to a predetermined combustion state using fossil fuel. In the meantime, the relatively low temperature and high humidity exhaust gas flows into the flue, so that the deliquescent material captured by the dust collector contains moisture, and for example, the filter of the dust collector may become clogged or low temperature corrosion may occur. There is. Therefore, it has been necessary to heat the exhaust gas with a heat source such as an electric heater and a blower fan that guides the air heated by the heat source to the upstream flue of the dust collector, but it is controlled by pressurized water supplied from the deaerator. If the exhaust gas flowing through the target heat exchanger can be heated, the power required for the electric heater can be reduced. When other waste treatment furnaces are in operation, the pressurized water supplied from the deaerator is heated to a certain high temperature, for example, about 143 ° C., so that the pressurized water is radiated by the heat exchanger. Returning to the deaerator will not cause any inconvenience.

同第五の特徴構成は、同請求項5に記載した通り、上述の第四特徴構成に加えて、前記制御機構は、前記熱交換器から排出された排ガスが第2の所定温度を上回るように、前記制御対象熱交換器への給水量を調整する点にある。   In the fifth feature configuration, as described in claim 5, in addition to the fourth feature configuration described above, the control mechanism is configured so that the exhaust gas discharged from the heat exchanger exceeds a second predetermined temperature. In addition, the amount of water supplied to the heat exchanger to be controlled is adjusted.

このとき、制御機構によって、制御対象熱交換器から排出された排ガスが第2の所定温度を上回るように制御対象熱交換器への給水量が調整される結果、集塵機で捕捉された潮解性の物質が吸湿して不都合な事態を招くようなことが確実に回避できる。   At this time, the amount of water supplied to the control target heat exchanger is adjusted by the control mechanism so that the exhaust gas discharged from the control target heat exchanger exceeds the second predetermined temperature. As a result, the deliquescence captured by the dust collector It can be surely avoided that the substance absorbs moisture and causes an unfavorable situation.

本発明による廃熱回収方法の特徴構成は、同請求項6に記載した通り、廃熱ボイラを備えた廃棄物処理炉の廃熱回収方法であって、煙道に設置され、前記廃熱ボイラへ供給される脱気器の加圧給水が被加熱媒体として供給され、排ガスとの熱交換により加熱された被加熱媒体が脱気熱源として前記脱気器に循環供給される熱交換器に対して、前記熱交換器から排出された排ガスが第1の所定温度を下回らないように、前記熱交換器への給水量を調整する点にある。   The characteristic configuration of the waste heat recovery method according to the present invention is a waste heat recovery method for a waste treatment furnace equipped with a waste heat boiler as described in claim 6, wherein the waste heat recovery method is installed in a flue and the waste heat boiler For the heat exchanger in which the pressurized feed water of the deaerator supplied to is supplied as a heated medium, and the heated medium heated by heat exchange with the exhaust gas is circulated and supplied to the deaerator as a deaeration heat source Thus, the amount of water supplied to the heat exchanger is adjusted so that the exhaust gas discharged from the heat exchanger does not fall below the first predetermined temperature.

本発明による廃棄物処理炉の特徴構成は、同請求項7に記載した通り、廃熱ボイラを備えた廃棄物処理炉であって、煙道に設置され、前記廃熱ボイラへ供給される脱気器の加圧給水が被加熱媒体として供給され、排ガスとの熱交換により加熱された被加熱媒体が脱気熱源として前記脱気器に循環供給される熱交換器と、
前記熱交換器から排出された排ガスが第1の所定温度を下回らないように、前記熱交換器への給水量を調整する制御機構と、を含む廃熱回収設備を備えている点にある。
The characteristic configuration of the waste treatment furnace according to the present invention is a waste treatment furnace equipped with a waste heat boiler as described in claim 7, which is installed in a flue and supplied to the waste heat boiler. A heat exchanger in which pressurized feed water of an air supply is supplied as a heated medium, and the heated medium heated by heat exchange with exhaust gas is circulated and supplied to the degasser as a degassing heat source;
A waste heat recovery facility including a control mechanism that adjusts the amount of water supplied to the heat exchanger so that the exhaust gas discharged from the heat exchanger does not fall below a first predetermined temperature.

以上説明した通り、本発明によれば、発電量の低下を招くことなく、排ガスの保有熱を有効に活用できる廃熱回収設備、廃熱回収方法及び廃棄物処理炉を提供することができるようになった。   As described above, according to the present invention, it is possible to provide a waste heat recovery facility, a waste heat recovery method, and a waste treatment furnace that can effectively utilize the retained heat of exhaust gas without causing a decrease in the amount of power generation. Became.

本発明による廃熱回収設備が組み込まれた廃棄物処理炉の説明図Explanatory diagram of a waste treatment furnace incorporating waste heat recovery equipment according to the present invention 熱交換器の制御装置により実行される制御手順のフローチャートFlow chart of control procedure executed by control device of heat exchanger 本発明による廃熱回収設備を備える廃棄物処理設備の運転態様の説明図Explanatory drawing of an operation mode of a waste treatment facility provided with a waste heat recovery facility according to the present invention 本発明による熱交換器の機械的サイズを算出するためのモデルの説明図Explanatory drawing of the model for calculating the mechanical size of the heat exchanger according to the present invention 本発明による廃熱回収設備を備える廃棄物処理設備の運転再開時のフローチャートFlowchart at the time of resuming operation of a waste treatment facility equipped with a waste heat recovery facility according to the present invention

以下、本発明による廃熱回収設備、廃熱回収方法及び廃棄物処理炉について説明する。
図1には、廃棄物処理炉の一例として同一構造の2基のストーカ式のゴミ焼却炉1,1’が併設された廃棄物処理設備が示されている。
Hereinafter, a waste heat recovery facility, a waste heat recovery method, and a waste treatment furnace according to the present invention will be described.
FIG. 1 shows a waste treatment facility provided with two stoker-type garbage incinerators 1 and 1 ′ having the same structure as an example of a waste treatment furnace.

ホッパー2に投入された都市ゴミ等の処理対象物が、ホッパー2下部のプッシャー機構3により炉内に装入され、ストーカ機構4で攪拌及び押圧搬送されつつ一次燃焼され、燃焼ガスがその上方空間の二次燃焼部5で約950℃前後の温度で完全燃焼される。   An object to be treated such as municipal waste thrown into the hopper 2 is charged into the furnace by the pusher mechanism 3 below the hopper 2 and is primarily burned while being stirred and pressed by the stalker mechanism 4, and the combustion gas is in the space above it. Is completely burned at a temperature of about 950 ° C. in the secondary combustion section 5.

ストーカ機構4の下方に備えた一次燃焼空気供給機構6から一次燃焼空気が供給されてストーカ上で廃棄物が一次燃焼し、気化した可燃性ガスと一次燃焼で寄与しなかった空気が二次燃焼部5で二次燃焼する。二次燃焼部5の側壁には、二次燃焼部で未燃焼ガスと空気とを攪拌して完全燃焼させるための攪拌用ガスを供給するガス噴射ノズル群で構成されたガス供給機構7が設置されている。   The primary combustion air is supplied from the primary combustion air supply mechanism 6 provided below the stalker mechanism 4 so that the waste is primarily burned on the stoker, and the vaporized combustible gas and the air that has not contributed to the primary combustion are secondary combustion. Secondary combustion is performed in part 5. Installed on the side wall of the secondary combustion section 5 is a gas supply mechanism 7 composed of a gas injection nozzle group for supplying a stirring gas for stirring the unburned gas and air completely in the secondary combustion section. Has been.

二次燃焼部5の上部には廃熱ボイラ8及び過熱器9が設置されている。廃熱ボイラ8及び過熱器9を通過した排ガスは、煙道に沿って上流側から順に配置されたエコノマイザ10、熱交換器11、集塵機の一例であるバグフィルタ12等を経て煙突15から排気される。   A waste heat boiler 8 and a superheater 9 are installed above the secondary combustion unit 5. The exhaust gas that has passed through the waste heat boiler 8 and the superheater 9 is exhausted from the chimney 15 through an economizer 10, a heat exchanger 11, a bag filter 12 that is an example of a dust collector, and the like arranged in order from the upstream side along the flue. The

エコノマイザ10で加熱されたボイラ給水が廃熱ボイラ8に供給されて蒸気が生成され、廃熱ボイラ8で生成された蒸気は、過熱器9で過熱されて高圧の蒸気溜め27に蓄積され、蒸気溜め27に蓄積された高温高圧の蒸気が発電設備20の蒸気タービン21に供給され、蒸気タービン21から抽気された中圧の蒸気が脱気用の熱源として脱気器25に供給されている。   The boiler feed water heated by the economizer 10 is supplied to the waste heat boiler 8 to generate steam, and the steam generated by the waste heat boiler 8 is superheated by the superheater 9 and accumulated in the high-pressure steam reservoir 27, The high-temperature and high-pressure steam accumulated in the reservoir 27 is supplied to the steam turbine 21 of the power generation facility 20, and the medium-pressure steam extracted from the steam turbine 21 is supplied to the deaerator 25 as a heat source for deaeration.

発電設備20には、蒸気タービン21と蒸気タービン21で回転駆動される発電機22等が設けられている。蒸気タービン21から排出される蒸気は復水器23で凝縮されて復水タンク24に貯留され、さらに脱気器25に導かれて復水に含まれる溶存酸素が脱気される。   The power generation facility 20 includes a steam turbine 21 and a generator 22 that is rotationally driven by the steam turbine 21. The steam discharged from the steam turbine 21 is condensed in the condenser 23 and stored in the condensate tank 24, and further led to the deaerator 25 where the dissolved oxygen contained in the condensate is degassed.

高圧蒸気溜め27、発電設備20、復水器23、復水タンク24、脱気器25の各設備が2基のゴミ焼却炉1,1’で共用され、一方が停止しても継続的に発電可能に構成されている。本実施形態では2基の廃棄物処理炉が併設され、各廃熱ボイラ8で生成された蒸気を利用する発電設備20等が共用される例を示しているが、2基以上の複数の廃棄物処理炉が併設されて、それらに備えた廃熱ボイラ8で生成された蒸気を利用する発電設備20等が共用されるように構成されていてもよい。また、各廃棄物処理炉に発電設備20が個別に設置され、復水器23、復水タンク24、脱気器25の各設備が共用されていてもよい。   The high-pressure steam reservoir 27, the power generation facility 20, the condenser 23, the condensate tank 24, and the deaerator 25 are shared by the two garbage incinerators 1 and 1 ′, and continuously when one of them stops. It is configured to generate electricity. In this embodiment, two waste treatment furnaces are provided side by side, and an example in which the power generation equipment 20 using steam generated in each waste heat boiler 8 is shared is shown. A material processing furnace may be provided, and the power generation equipment 20 using steam generated by the waste heat boiler 8 provided for them may be shared. Moreover, the power generation equipment 20 may be individually installed in each waste treatment furnace, and each equipment of the condenser 23, the condensate tank 24, and the deaerator 25 may be shared.

給水ポンプ31によって脱気器25からエコノマイザ10へ供給される加圧給水が、被加熱媒体として熱交換器11に分岐供給される。給水ポンプ31とは別の給水ポンプによって脱気器25から熱交換器11に加圧給水が直接供給されるように構成されていてもよい。   The pressurized water supplied from the deaerator 25 to the economizer 10 by the water supply pump 31 is branched and supplied to the heat exchanger 11 as a heating medium. The pressurized water supply may be directly supplied from the deaerator 25 to the heat exchanger 11 by a water supply pump different from the water supply pump 31.

熱交換器11で排ガスとの熱交換により加熱された加圧給水は、脱気器25に脱気用の熱源として循環供給される。熱交換器11を通過して減温された排ガスは、後段のバグフィルタ12等の排ガス処理設備に供給される。   The pressurized feed water heated by heat exchange with the exhaust gas in the heat exchanger 11 is circulated and supplied to the deaerator 25 as a heat source for deaeration. The exhaust gas that has been reduced in temperature after passing through the heat exchanger 11 is supplied to an exhaust gas treatment facility such as a bag filter 12 in the subsequent stage.

本発明による廃熱回収設備30は、上述の熱交換器11と熱交換器11への加圧給水の供給量等を制御する制御機構32,33を備えて構成されている。   The waste heat recovery facility 30 according to the present invention includes the above-described heat exchanger 11 and control mechanisms 32 and 33 that control the amount of pressurized water supplied to the heat exchanger 11 and the like.

即ち、熱交換器11は煙道に設置され、廃熱ボイラ8へ供給される脱気器25の加圧給水が被加熱媒体として熱交換器11に供給され、排ガスとの熱交換により加熱された被加熱媒体が熱交換器11から脱気熱源として脱気器25に循環供給される。   That is, the heat exchanger 11 is installed in the flue, and the pressurized feed water of the deaerator 25 supplied to the waste heat boiler 8 is supplied to the heat exchanger 11 as a heating medium and heated by heat exchange with the exhaust gas. The heated medium is circulated and supplied from the heat exchanger 11 to the deaerator 25 as a deaeration heat source.

そして、制御機構32,33は、熱交換器11から排出された排ガスが第1の所定温度を下回らないように、熱交換器11への給水量を調整する。第1の所定温度とは、煙道に設置された設備が低温腐食する約130℃より高い温度であって、バグフィルタ12のろ布の損傷を招くような温度より低い温度であり、例えば140℃〜160℃の範囲に設定されている。   Then, the control mechanisms 32 and 33 adjust the amount of water supplied to the heat exchanger 11 so that the exhaust gas discharged from the heat exchanger 11 does not fall below the first predetermined temperature. The first predetermined temperature is a temperature higher than about 130 ° C. at which the equipment installed in the flue is cold-corroded and lower than a temperature causing damage to the filter cloth of the bag filter 12, for example, 140 It is set in the range of ° C to 160 ° C.

さらに、制御機構32,33は、熱交換器11から排出される被加熱媒体が所定圧力以上になるように、熱交換器11からの被加熱媒体の排出量を調整する。   Furthermore, the control mechanisms 32 and 33 adjust the discharge amount of the heated medium from the heat exchanger 11 so that the heated medium discharged from the heat exchanger 11 has a predetermined pressure or higher.

尚、所定圧力とは、熱伝達率が向上して効率的に脱気することができ、また、熱交換器11での被加熱媒体が蒸気化することを防止できる圧力以上であって、熱交換器11での被加熱媒体が噴破することを防止できる圧力以下の範囲の圧力であり、例えば3MPa〜4MPaの範囲に設定された圧力である。   Note that the predetermined pressure is equal to or higher than a pressure at which the heat transfer rate is improved so that the deaeration can be efficiently performed and the medium to be heated in the heat exchanger 11 can be prevented from being vaporized. It is the pressure below the pressure which can prevent that the to-be-heated medium in the exchanger 11 blows, for example, is the pressure set to the range of 3 MPa-4 MPa.

このような廃熱回収設備30を備えることにより、廃熱ボイラ8を経て煙道に流下する排ガスの保有熱を熱交換器11で効率的に回収でき、回収された熱がボイラ水の脱気用の熱源に用いることができるようになり、その結果、脱気のために蒸気タービン21から抽気する蒸気量を低減または不要にすることができ、発電効率を向上させることができる。しかも、減温塔を設けなくても熱交換器11で十分に減温された排ガスをそのままバグフィルタ12に流下させることができるようにもなる。   By providing such a waste heat recovery facility 30, the retained heat of the exhaust gas flowing down to the flue through the waste heat boiler 8 can be efficiently recovered by the heat exchanger 11, and the recovered heat is degassed from the boiler water. As a result, the amount of steam extracted from the steam turbine 21 for deaeration can be reduced or eliminated, and the power generation efficiency can be improved. In addition, the exhaust gas that has been sufficiently reduced in temperature by the heat exchanger 11 can be allowed to flow down to the bag filter 12 without being provided with a temperature reducing tower.

以下、制御機構32,33を詳述する。
脱気器25から熱交換器11へ被加熱媒体を供給する経路に給水バルブ機構32a(32)が備えられ、熱交換器11から脱気器25へ被加熱媒体を循環供給させる経路に排水バルブ機構32b(32)が備えられている。バルブ機構32(32a,32b)は、例えば電動式のダイヤフラムバルブで構成されている。各バルブ機構32(32a,32b)は、それぞれ制御装置33(33a,33b)からの信号によって駆動される電動式のアクチュエータで開度が調整される。
Hereinafter, the control mechanisms 32 and 33 will be described in detail.
A water supply valve mechanism 32a (32) is provided in a path for supplying a heated medium from the deaerator 25 to the heat exchanger 11, and a drain valve is provided in a path for circulating the heated medium from the heat exchanger 11 to the deaerator 25. A mechanism 32b (32) is provided. The valve mechanism 32 (32a, 32b) is composed of, for example, an electric diaphragm valve. The opening degree of each valve mechanism 32 (32a, 32b) is adjusted by an electric actuator driven by a signal from the control device 33 (33a, 33b).

制御装置33(33a,33b)は、各バルブ機構32(32a,32b)の設置箇所から離れた中央管理室に備えた制御盤に組み込まれ、熱交換器11から排出される排ガスの温度を計測する温度センサや熱交換器11から排水される加圧水の圧力を計測する圧力センサの計測値が入力される信号入力部、各バルブ機構32a,32bに対する制御信号を出力する信号出力部、信号入力部からの入力信号に基づいて信号出力部から出力する制御信号を生成するPID演算等のフィードバック演算を行なう制御演算部等を備えている。   The control device 33 (33a, 33b) is incorporated in a control panel provided in a central management room away from the installation location of each valve mechanism 32 (32a, 32b), and measures the temperature of exhaust gas discharged from the heat exchanger 11. A signal input unit to which a measured value of a pressure sensor that measures the pressure of the pressurized water drained from the temperature sensor or the heat exchanger 11 is input, a signal output unit that outputs a control signal to each of the valve mechanisms 32a and 32b, and a signal input unit A control calculation unit for performing feedback calculation such as PID calculation for generating a control signal output from the signal output unit based on an input signal from the signal output unit.

制御装置33(33a,33b)は、それらの計測値が所定の目標値になるように各バルブ機構32a,32bの開度を自動制御する。また、制御装置33(33a,33b)には、各バルブ機構32a,32bの開度を手動制御するための操作部も備えている。   The control device 33 (33a, 33b) automatically controls the opening degree of each valve mechanism 32a, 32b so that these measured values become a predetermined target value. The control device 33 (33a, 33b) also includes an operation unit for manually controlling the opening degree of each valve mechanism 32a, 32b.

制御装置33aは、熱交換器11の下流側煙道に設置された温度センサによって計測された排ガスの温度に基づいて、給水バルブ機構32aの開度を制御して、脱気器25から熱交換器11へ供給される被加熱媒体の給水量を調整する。   The control device 33a controls the opening degree of the water supply valve mechanism 32a based on the temperature of the exhaust gas measured by the temperature sensor installed in the downstream flue of the heat exchanger 11, and exchanges heat from the deaerator 25. The amount of water supplied to the heated medium supplied to the vessel 11 is adjusted.

焼却炉1で処理される廃棄物の性状は様々に変動するため、熱交換器11に流入する排ガス量も変動する。制御装置33aは、廃棄物の燃焼状態が大きく低下して排ガス量が減少した場合は、熱交換器11から排出された排ガスの温度が第1の所定温度を下回らないように、給水バルブ機構32aの開度を小さくして、脱気器25から熱交換器11へ供給される被加熱媒体の量を低減させる。   Since the property of the waste processed in the incinerator 1 varies variously, the amount of exhaust gas flowing into the heat exchanger 11 also varies. When the waste combustion state greatly decreases and the amount of exhaust gas decreases, the control device 33a prevents the temperature of the exhaust gas discharged from the heat exchanger 11 from falling below the first predetermined temperature. The amount of the heated medium supplied from the deaerator 25 to the heat exchanger 11 is reduced.

このように、制御装置33aによって熱交換器11への給水量が調整されて、排ガスの温度が第1の所定温度を下回らないように調整することで、熱交換器11の下流側の煙道や煙道に配置された各処理設備での低温腐食の発生を未然に防止することができる。   In this way, the amount of water supplied to the heat exchanger 11 is adjusted by the control device 33a, and the flue on the downstream side of the heat exchanger 11 is adjusted by adjusting the temperature of the exhaust gas so that it does not fall below the first predetermined temperature. Occurrence of low-temperature corrosion in each processing facility arranged in the flue and in the flue can be prevented.

尚、バグフィルタ12の前段の減温塔を無くすために伝熱面積を大きくしたエコノマイザを備え、廃熱を効率的に回収するいわゆる低温エコを採用した廃棄物処理炉では、廃棄物の燃焼状態が大きく低下して排ガス量が低下すると、エコノマイザで必要以上に吸熱されて出口温度が低下するため、低温腐食が発生する虞もある。しかし、上述の構成によれば、いわゆる低温エコではない通常のエコノマイザを用いても、減温塔が不要になるばかりか、制御装置33aによって熱交換器11への給水量が調整されるので、低温腐食の発生を未然に防止することができる。   In a waste treatment furnace equipped with an economizer having a large heat transfer area in order to eliminate the temperature reduction tower in front of the bag filter 12 and adopting a so-called low temperature eco that efficiently recovers waste heat, the combustion state of the waste When the amount of exhaust gas is greatly reduced and the amount of exhaust gas is reduced, heat is absorbed more than necessary by the economizer and the outlet temperature is lowered, which may cause low-temperature corrosion. However, according to the above-described configuration, even when using a normal economizer that is not so-called low-temperature eco, not only a temperature reduction tower is unnecessary, but also the amount of water supplied to the heat exchanger 11 is adjusted by the control device 33a. The occurrence of low temperature corrosion can be prevented in advance.

廃棄物の燃焼状態が大きく上昇して排ガス量が増加した場合には、制御装置33aは、熱交換器11から排出された排ガスの温度が第1の所定温度より高く設定された第3の所定温度を上回らないように、給水バルブ機構32aの開度を大きくして、脱気器25から熱交換器11へ供給される被加熱媒体の量を増加させる。尚、第3の所定温度とは、第1の所定温度より高い温度で、熱交換器11から排出される排ガスの温度がこれより上昇するとバグフィルタのろ布の焼損が発生する温度より僅かに低い温度である。   When the waste combustion state greatly increases and the amount of exhaust gas increases, the control device 33a sets the temperature of the exhaust gas discharged from the heat exchanger 11 to a third predetermined value set higher than the first predetermined temperature. The opening degree of the water supply valve mechanism 32a is increased so as not to exceed the temperature, and the amount of the heated medium supplied from the deaerator 25 to the heat exchanger 11 is increased. Note that the third predetermined temperature is higher than the first predetermined temperature, and slightly higher than the temperature at which the filter cloth of the bag filter burns out when the temperature of the exhaust gas discharged from the heat exchanger 11 rises above this temperature. The temperature is low.

このように、制御装置33aによって熱交換器11への給水量が調整されて、排ガスの温度が第3の所定温度を上回らないように調整できるので、バグフィルタのろ布の焼損の発生を未然に防止することができる。   In this way, the amount of water supplied to the heat exchanger 11 is adjusted by the control device 33a so that the temperature of the exhaust gas can be adjusted so as not to exceed the third predetermined temperature. Can be prevented.

制御装置33bは、被加熱媒体を熱交換器11から脱気器25へ循環供給する経路であって、排水バルブ機構32bの上流側に備えられた圧力センサによって計測された被加熱媒体の圧力に基づいて、例えば、当該圧力が所定圧力の範囲に入るように、排水バルブ機構32bの開度を制御して、排水バルブ機構32bの開度を制御して、熱交換器11から脱気器25へ循環供給される被加熱媒体の排出量を調整する。   The control device 33b circulates and supplies the heated medium from the heat exchanger 11 to the deaerator 25, and adjusts the pressure of the heated medium measured by a pressure sensor provided on the upstream side of the drain valve mechanism 32b. Based on, for example, the opening degree of the drain valve mechanism 32b is controlled so that the pressure falls within a predetermined pressure range, the opening degree of the drain valve mechanism 32b is controlled, and the deaerator 25 from the heat exchanger 11 is controlled. The discharge amount of the heated medium that is circulated and supplied to is adjusted.

制御装置33bは、圧力センサによって計測された圧力が、3MPa〜4MPaの範囲内の所定圧力以上であれば、排水バルブ機構32bの開度を維持し、前記圧力が3MPa未満であれば、排水バルブ機構32bの開度を小さくして被加熱媒体の排出量を低減させて、排水バルブ機構32bの上流側の被加熱媒体の圧力を上昇させる。制御装置33bは、前記圧力が4MPaより大きければ、排水バルブ機構32bの開度を大きくして被加熱媒体の排出量を増加させて、排水バルブ機構32bの上流側の被加熱媒体の圧力を低下させる。   The control device 33b maintains the opening degree of the drain valve mechanism 32b if the pressure measured by the pressure sensor is equal to or higher than a predetermined pressure in the range of 3 MPa to 4 MPa, and if the pressure is less than 3 MPa, the drain valve The opening degree of the mechanism 32b is reduced to reduce the discharge amount of the heated medium, and the pressure of the heated medium upstream of the drain valve mechanism 32b is increased. If the pressure is greater than 4 MPa, the control device 33b increases the discharge amount of the heated medium by increasing the opening degree of the drain valve mechanism 32b, and decreases the pressure of the heated medium upstream of the drain valve mechanism 32b. Let

図2には、制御装置33(33a、33b)による各バルブ機構32a,32bの制御ステップが示されている。
制御装置33aは、熱交換器11を通過した排ガスの温度が、熱交換器11の下流側煙道に備えられた設備の低温腐食を回避するために設定された第1の所定温度、例えば160℃より低下すると(S1,Y)、給水バルブ機構32aを閉塞或いは開度を小さくして熱交換器11へ供給される被加熱媒体の供給量を低減させて、排ガスの温度の低下を回避する(S2)。
FIG. 2 shows control steps of the valve mechanisms 32a and 32b by the control device 33 (33a and 33b).
The control device 33a has a first predetermined temperature, for example, 160, in which the temperature of the exhaust gas that has passed through the heat exchanger 11 is set in order to avoid low temperature corrosion of the equipment provided in the flue downstream of the heat exchanger 11. When the temperature falls below 0 ° C. (S 1, Y), the supply valve mechanism 32 a is closed or the opening degree is reduced to reduce the supply amount of the heated medium supplied to the heat exchanger 11, thereby avoiding a decrease in exhaust gas temperature. (S2).

排ガスの温度が第1の所定温度以上であり、第1所定温度より高く設定された第3の所定温度以下である場合は(S3,N)、給水バルブ機構32aの開度を維持する(S5)。排ガスの温度が第3の所定温度より高温である場合には(S3,Y)、給水バルブ機構32aの開度を大きくして熱交換器11へ供給される加圧水の供給量を増加させて、排ガスの温度を第3の所定温度以下に低下させる(S4)。   When the temperature of the exhaust gas is equal to or higher than the first predetermined temperature and equal to or lower than the third predetermined temperature set higher than the first predetermined temperature (S3, N), the opening degree of the water supply valve mechanism 32a is maintained (S5). ). When the temperature of the exhaust gas is higher than the third predetermined temperature (S3, Y), the amount of pressurized water supplied to the heat exchanger 11 is increased by increasing the opening of the water supply valve mechanism 32a, The temperature of the exhaust gas is lowered to a third predetermined temperature or less (S4).

制御装置33bは、熱交換器11から脱気器25へ供給される被加熱媒体(加圧水)の圧力が所定圧力範囲、例えば3MPaから4MPaの範囲に入っていれば(S6,Y)、排水バルブ機構32bの開度を維持する(S7)。   If the pressure of the medium to be heated (pressurized water) supplied from the heat exchanger 11 to the deaerator 25 is within a predetermined pressure range, for example, 3 MPa to 4 MPa (S6, Y), the controller 33b is a drain valve. The opening degree of the mechanism 32b is maintained (S7).

制御装置33bは、前記圧力が所定圧力範囲より高ければ(S8,Y)、所定圧力範囲に維持されるように、排水バルブ機構32bの開度を大きくして(S9)、熱交換器11から脱気器25への加圧水の供給量を増加させて、熱交換器の噴破を防止する。前記圧力が所定圧力範囲より低ければ(S8,N)、所定圧力範囲に維持されるように、排水バルブ機構32bの開度を小さくして(S10)、熱交換器11から脱気器25への加圧水の供給量を低減させて、熱交換器内で加圧水が蒸気化すること及び被加熱媒体が噴破することを防ぐ。   If the pressure is higher than the predetermined pressure range (S8, Y), the control device 33b increases the opening degree of the drain valve mechanism 32b so as to be maintained in the predetermined pressure range (S9). The amount of pressurized water supplied to the deaerator 25 is increased to prevent the heat exchanger from blowing up. If the pressure is lower than the predetermined pressure range (S8, N), the opening degree of the drain valve mechanism 32b is decreased (S10) so as to be maintained within the predetermined pressure range, and the heat exchanger 11 moves to the deaerator 25. The amount of pressurized water supplied is reduced to prevent the pressurized water from evaporating in the heat exchanger and the heated medium from being blown out.

ステップS2,S4では、例えば、現在の排ガス出口温度と排ガス出口目標温度との偏差等に基づき給水バルブ機構32aの開度目標値を算出してその目標値に制御するPID制御を行うことができる。例えば上述した低温腐食回避のための下限温度である第1の所定温度を排ガス出口目標温度に設定することができる。   In steps S2 and S4, for example, PID control can be performed in which the opening target value of the water supply valve mechanism 32a is calculated based on a deviation between the current exhaust gas outlet temperature and the exhaust gas outlet target temperature, and the target value is controlled. . For example, the first predetermined temperature, which is the lower limit temperature for avoiding the low temperature corrosion described above, can be set as the exhaust gas outlet target temperature.

ステップS9,S10では、例えば、現在の加圧水の圧力と、所定圧力範囲に設定された目標圧力との偏差等に基づきバルブ機構の開度目標値を算出してその目標値に制御するPID制御を行うことができる。   In steps S9 and S10, for example, PID control for calculating a target value of the opening degree of the valve mechanism based on a deviation between the current pressure of the pressurized water and the target pressure set in a predetermined pressure range and controlling the target value is performed. It can be carried out.

図1及び図2を用いた説明では、符合33a,33bで示した2つの別々のブロックで一つの制御装置33が構成されているが、各ブロックが合体した1つのブロックで一つの制御装置で構成されていてもよいし、各ブロックに対応した個別の制御装置で構成されていてもよい。   In the description using FIG. 1 and FIG. 2, one control device 33 is configured by two separate blocks indicated by reference numerals 33a and 33b. However, one control device is formed by one block in which each block is combined. It may be comprised, and may be comprised by the separate control apparatus corresponding to each block.

また、各ブロックが個別の制御装置で構成される場合には、制御装置を接続する信号線で互いの制御情報を送受信してもよい。例えば、制御装置33aは、制御装置33bから排水バルブ機構32bの絞り量を受信することにより、被加熱媒体の流量を獲得することができる   In addition, when each block is configured by an individual control device, the control information may be transmitted and received with a signal line connecting the control devices. For example, the control device 33a can obtain the flow rate of the heated medium by receiving the throttle amount of the drain valve mechanism 32b from the control device 33b.

以下、図3に基づいて、本発明による廃熱回収設備30を備える廃棄物処理設備の運転態様を説明する。
焼却炉1の二次燃焼部5には、ガス供給機構7によって攪拌用ガスが供給されている。約800℃〜1000℃の範囲で燃焼する二次燃焼部5に設置された廃熱ボイラ8及び過熱器9によって得られた4MPa,400℃の過熱蒸気が、蒸気溜め27を介して蒸気タービン21に供給され、発電機22が駆動される。
Hereinafter, based on FIG. 3, the driving | running aspect of a waste treatment facility provided with the waste heat recovery equipment 30 by this invention is demonstrated.
A gas for stirring is supplied to the secondary combustion section 5 of the incinerator 1 by a gas supply mechanism 7. The 4 MPa, 400 ° C. superheated steam obtained by the waste heat boiler 8 and the superheater 9 installed in the secondary combustion section 5 that burns in the range of about 800 ° C. to 1000 ° C. is supplied to the steam turbine 21 via the steam reservoir 27. And the generator 22 is driven.

蒸気タービン21からの排蒸気は、復水器23で凝縮され、復水タンク24に回収される。その後、復水タンク24に回収された約60℃の復水は、脱気器25に給水されて脱気され、143℃に加熱されたボイラ給水としてエコノマイザ10及び熱交換器11に供給される。   The exhaust steam from the steam turbine 21 is condensed in the condenser 23 and collected in the condensate tank 24. Thereafter, the condensate of about 60 ° C. collected in the condensate tank 24 is supplied to the deaerator 25 and degassed, and supplied to the economizer 10 and the heat exchanger 11 as boiler feed water heated to 143 ° C. .

エコノマイザ10に供給されたボイラ給水は200℃に加熱された後、廃熱ボイラ8に供給される。熱交換器11に供給されたボイラ給水は、圧力3MPa〜4MPa、温度160℃程度に加熱された後、脱気器25へ循環供給される。   The boiler feed water supplied to the economizer 10 is heated to 200 ° C. and then supplied to the waste heat boiler 8. The boiler feed water supplied to the heat exchanger 11 is heated to a pressure of 3 MPa to 4 MPa and a temperature of about 160 ° C., and then circulated and supplied to the deaerator 25.

廃熱ボイラ8及び過熱器9で熱交換されて約350℃程度に減温された排ガスは、エコノマイザ10で210℃〜180℃の範囲に減温され、さらに熱交換器11で180℃〜160℃の範囲に減温された後に、バグフィルタ12で除塵され、さらに洗煙装置等で酸性ガス成分が除去された後に煙突15から排気される。   The exhaust gas heat-exchanged by the waste heat boiler 8 and the superheater 9 and reduced in temperature to about 350 ° C. is reduced in the range of 210 ° C. to 180 ° C. by the economizer 10 and further 180 ° C. to 160 ° C. by the heat exchanger 11. After the temperature is reduced to the range of ° C., the dust is removed by the bag filter 12, and the acid gas component is removed by a smoke washing device or the like and then exhausted from the chimney 15.

図4(a)には、一般的なエコノマイザを用いて、350℃の排ガスにより143℃のボイラ給水が200℃に予熱され、排ガスが210℃に減温される場合の例が示されている。図4(b)には、高効率低温エコノマイザを用いて、350℃の排ガスにより143℃のボイラ給水が約210℃に予熱され、排ガスが180℃に減温される場合の例が示されている。   FIG. 4 (a) shows an example in which a boiler feed water at 143 ° C. is preheated to 200 ° C. and the exhaust gas is reduced to 210 ° C. by using a general economizer with 350 ° C. exhaust gas. . FIG. 4B shows an example in which a boiler feed water of 143 ° C. is preheated to about 210 ° C. and the exhaust gas is reduced to 180 ° C. by 350 ° C. exhaust gas using a high efficiency low temperature economizer. Yes.

前者によれば、エコノマイザとその後段のバグフィルタとの間に減温塔、例えば排ガスに水を噴霧して減温させる減温塔を設置して排ガス温度を減温させる必要があるが、後者によれば減温塔を設ける必要がなく、廃熱が効率的に回収できる。   According to the former, it is necessary to install a temperature reducing tower, for example, a temperature reducing tower that sprays water on the exhaust gas to reduce the temperature between the economizer and the subsequent bag filter. Therefore, it is not necessary to provide a temperature reducing tower, and waste heat can be efficiently recovered.

図4(c)には、エコノマイザの後段に本発明の廃熱回収設備の熱交換器を配置して、350℃の排ガスにより143℃のボイラ給水がエコノマイザで約200℃に予熱され、排ガスが210℃に減温され、さらに210℃の排ガスにより143℃のボイラ給水が熱交換器で約160℃に予熱され、排ガスが180℃に減温される例が示されている。   In FIG. 4 (c), the heat exchanger of the waste heat recovery equipment of the present invention is arranged after the economizer, and the boiler feed water at 143 ° C. is preheated to about 200 ° C. by the economizer by the exhaust gas at 350 ° C. An example is shown in which the temperature is reduced to 210 ° C., the boiler feed water at 143 ° C. is preheated to about 160 ° C. by the heat exchanger and the exhaust gas is reduced to 180 ° C. by the exhaust gas at 210 ° C.

吸収熱量Q,総括伝熱係数K,伝熱面積A,温度T,対数平均温度差ΔT,比熱C,流量W,排ガスの熱交換器への入口温度Tg1,出口温度Tg2,熱媒体の入口温度Tw2,出口温度Tw1とすると、以下の近似式が成立する。
[数式1]
Q=KAΔT
[数式2]
Q={WCT(出口)-WCT(入口)}∝(T(出口)-T(入口))
[数式3]
ΔT={(Tg1-Tw1)-(Tg2-Tw2)}/{ln(Tg1-Tw1)-ln(Tg2-Tw2)}
ここに、K及びWCは略一定と仮定している。
Heat absorption Q, overall heat transfer coefficient K, heat transfer area A, temperature T, logarithmic mean temperature difference ΔT, specific heat C, flow rate W, exhaust gas heat exchanger inlet temperature Tg1, outlet temperature Tg2, heat medium inlet temperature Assuming Tw2 and outlet temperature Tw1, the following approximate expression is established.
[Formula 1]
Q = KAΔT
[Formula 2]
Q = {WCT (exit)-WCT (entrance)} ∝ (T (exit)-T (entrance))
[Formula 3]
ΔT = {(Tg1-Tw1)-(Tg2-Tw2)} / {ln (Tg1-Tw1) -ln (Tg2-Tw2)}
Here, K and WC are assumed to be substantially constant.

図4(a),(b),(c)それぞれの場合の対数温度差ΔTを求めて、数式2からQを求め、数式1にQ及びΔTを代入してKAを求めると、図4(a)ではKA=1.359、図4(b)ではKA=2.218、図4(c)では前段がKA=1.359、後段がKA=0.662と求まる。これらの値は伝熱部の総面積に相当する値となる。   When the logarithmic temperature difference ΔT in each of FIGS. 4A, 4B, and 4C is obtained, Q is obtained from Equation 2, and Q and ΔT are substituted into Equation 1 to obtain KA. In a), KA = 1.359, in FIG. 4B, KA = 2.218, in FIG. 4C, the front stage has KA = 1.359 and the rear stage has KA = 0.622. These values correspond to the total area of the heat transfer section.

図4(a)の基本的なエコノマイザの伝熱面積を基準にすると、図4(b)の高効率低温エコノマイザでは、伝熱面積が約1.63倍と大型になり、図4(c)の本発明の熱交換器と従来のエコノマイザを結合した場合には、伝熱面積が約1.48倍となる。つまり、図4(b)の高効率低温エコノマイザよりは小さな伝熱面積で排ガス温度を同等に減温することができるのである。   Based on the heat transfer area of the basic economizer in FIG. 4 (a), the heat transfer area is about 1.63 times larger in the high-efficiency low-temperature economizer in FIG. 4 (b), and FIG. When the heat exchanger of the present invention and the conventional economizer are combined, the heat transfer area is about 1.48 times. That is, the exhaust gas temperature can be reduced equally with a smaller heat transfer area than the high-efficiency low-temperature economizer of FIG.

廃棄物処理炉の一例としてストーカ式の焼却炉1、1’が2基併設された廃棄物処理設備では、焼却炉1’も上述した焼却炉1についての説明と同様の運転がなされている。尚、焼却炉が1基のみ備えられた廃棄物処理設備でもあっても、上述の焼却炉1について運転と同様の運転が可能である。   In a waste treatment facility in which two stoker-type incinerators 1, 1 ′ are provided as an example of a waste treatment furnace, the incinerator 1 ′ is also operated in the same manner as described above for the incinerator 1. In addition, even if it is a waste treatment facility provided with only one incinerator, the above-described incinerator 1 can be operated similarly to the operation.

廃棄物処理設備の定期点検時に2基の焼却炉の双方が同時に停止されることはなく、少なくとも何れか一方が運転される。廃棄物処理設備に搬入される都市ゴミを常時焼却処理する必要があり、またそのため発電設備20を稼動させる必要があるためである。   At the time of regular inspection of the waste treatment facility, both of the two incinerators are not shut down at the same time, and at least one of them is operated. This is because it is necessary to always incinerate municipal waste carried into the waste treatment facility, and it is therefore necessary to operate the power generation facility 20.

定期点検等で停止された焼却炉を再度立ち上げる際には、助燃バーナに化石燃料を供給して炉を所定の燃焼状態に移行させる立上げ運転が必要になる。その間、比較的低温で高湿の排ガスが煙道に流出するために、バグフィルタ12で捕捉された潮解性の物質が湿気を含み、フィルタに目詰まりが生じたり、低温腐食が発生する虞がある。   When the incinerator that has been stopped due to periodic inspection or the like is started up again, a start-up operation is required in which fossil fuel is supplied to the auxiliary burner and the furnace is shifted to a predetermined combustion state. In the meantime, since the exhaust gas with relatively low temperature and high humidity flows into the flue, the deliquescent substance captured by the bag filter 12 contains moisture, and the filter may be clogged or low temperature corrosion may occur. is there.

そのため、図1に示すように、ゴミ焼却炉1には、電気ヒータH等の加熱源と誘引送風機19が設けられている。誘引送風機19で煙道の下流側の排ガスを誘引して電気ヒータHで加熱して、バグフィルタの上流側に供給することで、上述の不都合を回避している。   Therefore, as shown in FIG. 1, the waste incinerator 1 is provided with a heating source such as an electric heater H and an induction blower 19. The above-mentioned inconvenience is avoided by attracting the exhaust gas downstream of the flue with the induction blower 19 and heating it with the electric heater H and supplying it to the upstream side of the bag filter.

しかし、本発明による廃熱回収設備30を用いれば、このような立上げ運転時の排ガス加熱用の電力を低減するために、稼働中のゴミ焼却炉の熱交換器11で加熱されている加圧給水の保有熱で、立上げ運転するゴミ焼却炉の排ガスを加熱することができる。   However, if the waste heat recovery facility 30 according to the present invention is used, in order to reduce the electric power for heating the exhaust gas during the start-up operation, the heat that is heated by the heat exchanger 11 of the waste incinerator in operation is added. The stored heat of the pressurized water can be used to heat the exhaust gas from the waste incinerator that is in operation.

即ち、各煙道に熱交換器11が設置され、各熱交換器11を制御する制御機構32,33をそれぞれに備えた複数の廃棄物処理炉1,1’が併設されるとともに、脱気器25が共用されるように構成された廃棄物処理設備では、その廃棄物処理設備に組み込まれた廃熱回収設備30の制御機構32,33は、他の廃棄物処理炉1’が運転されていることを前提として、運転を再開する廃棄物処理炉1に備えた熱交換器11に脱気器25から加圧給水を供給して排ガスを加熱するように構成されている。   That is, a heat exchanger 11 is installed in each flue, and a plurality of waste treatment furnaces 1 and 1 ′ each equipped with a control mechanism 32 and 33 for controlling each heat exchanger 11 are provided along with deaeration. In the waste treatment facility configured to share the container 25, the control mechanisms 32 and 33 of the waste heat recovery facility 30 incorporated in the waste treatment facility operate the other waste treatment furnace 1 ′. Assuming that the waste gas is supplied to the heat exchanger 11 provided in the waste treatment furnace 1 whose operation is restarted, pressurized exhaust water is supplied from the deaerator 25 to heat the exhaust gas.

具体的に、制御機構32a,33aは、給水ポンプ31を駆動して、脱気器25から熱交換器11に加圧給水を供給して、煙道を流下して熱交換器11に流入する排ガスを加熱する。制御装置33aは熱交換器11の出口部の排ガス温度が第2の所定温度を上回るように、バルブ機構32aを制御して熱交換器への給水量を調整する。尚、このとき、バルブ機構32bは開放されていてもよいし、所定の開度に調整されていてもよい。   Specifically, the control mechanisms 32 a and 33 a drive the feed water pump 31 to supply pressurized feed water from the deaerator 25 to the heat exchanger 11, flow down the flue, and flow into the heat exchanger 11. Heat the exhaust gas. The controller 33a controls the valve mechanism 32a so as to adjust the amount of water supplied to the heat exchanger so that the exhaust gas temperature at the outlet of the heat exchanger 11 exceeds the second predetermined temperature. At this time, the valve mechanism 32b may be opened or adjusted to a predetermined opening degree.

熱交換器11で排ガスを所定温度に加熱するために使われる熱量「Q(給)」は、本来蒸気タービンに供給される熱量であり、電気ヒータHで排ガスを所定温度に加熱するために必要な熱量「Q(電)」と等価である。
[数式4]
Q(給)=Q(電)
The amount of heat “Q (supply)” used to heat the exhaust gas to a predetermined temperature in the heat exchanger 11 is the amount of heat originally supplied to the steam turbine, and is necessary for heating the exhaust gas to the predetermined temperature with the electric heater H. It is equivalent to the amount of heat “Q (electricity)”.
[Formula 4]
Q (supply) = Q (electricity)

熱量「Q(給)」が蒸気タービンに供給される場合の発電量「Q(発)」は、蒸気タービン機械効率「η(機械)」と発電機効率「η(発電機)」を考慮すれば、次式で表される。
[数式5]
Q(発)=Q(給)×η(機械)×η(発電機)
The power generation amount “Q (power generation)” when the heat amount “Q (supply)” is supplied to the steam turbine takes into account the steam turbine machine efficiency “η (machine)” and the generator efficiency “η (generator)”. For example, it is expressed by the following formula.
[Formula 5]
Q (departure) = Q (supply) x η (machine) x η (generator)

「η(機械)」、「η(発電機)」は共に1より小さく、η(機械)×η(発電機)=0.95程度となるので、次式が成り立つ。
[数式6]
Q(発)<Q(給)
Since “η (machine)” and “η (generator)” are both smaller than 1 and η (machine) × η (generator) = 0.95, the following equation holds.
[Formula 6]
Q (Departure) <Q (Salary)

数式4,6から次式が成り立ち、本来発電のために蒸気タービンに供給される熱量で発電される電力Q(発)よりも、電気ヒータで加熱に使用される電力Q(電)の方が大きくなること、つまり、本来発電のために蒸気タービンに供給される熱量で排ガスを加熱した方が、電気ヒータで排ガスを加熱するよりも効率がよいことが示されるのである。
[数式7]
Q(発)<Q(給)=Q(電)
The following equation is established from Equations 4 and 6, and the electric power Q (electricity) used for heating by the electric heater is more than the electric power Q (electricity) generated by the amount of heat originally supplied to the steam turbine for electric power generation. That is, it means that heating the exhaust gas with the amount of heat originally supplied to the steam turbine for power generation is more efficient than heating the exhaust gas with an electric heater.
[Formula 7]
Q (departure) <Q (supply) = Q (electricity)

このように、他の焼却炉1’が運転されている場合には、他の焼却炉1’の廃熱回収設備30によって脱気器25の加圧給水は十分な温度に維持されているため、立上げ時の焼却炉1の熱交換器11から排出された低温の加圧給水を脱気器25に戻しても特段の不都合は生じない。   As described above, when the other incinerator 1 ′ is operated, the pressurized water supply to the deaerator 25 is maintained at a sufficient temperature by the waste heat recovery facility 30 of the other incinerator 1 ′. Even if the low-temperature pressurized feed water discharged from the heat exchanger 11 of the incinerator 1 at the time of start-up is returned to the deaerator 25, no particular inconvenience occurs.

図5に示すように、熱交換器11から排出される排ガスの温度が第2の所定温度より低い場合には(SA1,Y)、制御装置33aは給水バルブ機構32aの開度をより大きくして、脱気器25から熱交換器11に供給される加圧給水の供給量を増加することにより(SA2)、排ガスへの伝熱量を上げる。   As shown in FIG. 5, when the temperature of the exhaust gas discharged from the heat exchanger 11 is lower than the second predetermined temperature (SA1, Y), the control device 33a increases the opening of the water supply valve mechanism 32a. Thus, by increasing the supply amount of the pressurized water supplied from the deaerator 25 to the heat exchanger 11 (SA2), the heat transfer amount to the exhaust gas is increased.

排ガスの温度が第2の所定温度より高い場合には(SA1,N)、制御装置33aは給水バルブ機構32aの開度を絞って、脱気器25から熱交換器11に供給される加圧給水の供給量を減少することにより(SA3)、排ガスへの伝熱量を下げる。   When the temperature of the exhaust gas is higher than the second predetermined temperature (SA1, N), the controller 33a reduces the opening of the water supply valve mechanism 32a and pressurizes the heat supplied from the deaerator 25 to the heat exchanger 11. By reducing the amount of water supply (SA3), the amount of heat transferred to the exhaust gas is reduced.

炉の立上げが終了した後は、給水バルブ機構32aを閉塞し、その後、図2に示した排ガスの保有熱を回収する制御に移行させる。   After the start-up of the furnace is completed, the water supply valve mechanism 32a is closed, and then the control is performed to recover the retained heat of the exhaust gas shown in FIG.

第2の所定温度とは、バグフィルタで捕捉された潮解性の物質が、熱交換器から排出された排ガスの水分を吸湿して不都合な事態を招くようなことを回避するできる温度であり、少なくとも100℃以上、好ましくは110℃に設定されている。   The second predetermined temperature is a temperature at which deliquescent substances captured by the bag filter can avoid a situation in which the moisture of the exhaust gas discharged from the heat exchanger absorbs moisture and causes an unfavorable situation, It is set to at least 100 ° C. or more, preferably 110 ° C.

排ガスによる低温腐食の発生を回避する必要がある場合には、補助的に電気ヒータHを用いて、排ガス温度を第1の所定温度以上に加熱することが好ましい。このときの電気ヒータHの制御も制御機構32a,33aで行なうことが好ましい。   When it is necessary to avoid the occurrence of low-temperature corrosion due to the exhaust gas, it is preferable to use the electric heater H as an auxiliary to heat the exhaust gas temperature to the first predetermined temperature or higher. Control of the electric heater H at this time is also preferably performed by the control mechanisms 32a and 33a.

上述した例では、複数の廃棄物処理炉1,1’のそれぞれの煙道に熱交換器11が設置され、各熱交換器11を制御する制御機構32,33をそれぞれに備えられた構成を説明したが、制御機構32,33を構成する制御装置33a,33bを一つ設けて、その一つの制御装置33a,33bが、各熱交換器11を制御するように構成してもよい。この場合、立上げ中の廃棄物処理炉の熱交換器11に対しては、排ガスの加熱制御を行い、運転中の廃棄物処理炉の熱交換器11二対しては、脱気器への熱源を供給する制御を行なうことになる。   In the above-described example, the heat exchanger 11 is installed in each flue of the plurality of waste treatment furnaces 1 and 1 ′, and the control mechanisms 32 and 33 for controlling the heat exchangers 11 are respectively provided. Although explained, one control device 33a, 33b which constitutes control mechanism 32, 33 may be provided, and the one control device 33a, 33b may be constituted so that each heat exchanger 11 may be controlled. In this case, heating control of the exhaust gas is performed on the heat exchanger 11 of the waste treatment furnace being started up, and the heat exchanger 11 of the waste treatment furnace being operated is connected to the deaerator. Control to supply the heat source is performed.

上述した実施形態では、何れも廃熱ボイラ8の下流側の煙道にエコノマイザ10を備えた構成を説明したが、エコノマイザ10を備えることなく、廃熱ボイラ8の下流側の煙道に熱交換器11のみを備えた構成でもよい。   In the above-described embodiments, the configuration in which the economizer 10 is provided in the flue downstream of the waste heat boiler 8 has been described, but heat exchange is performed in the flue downstream of the waste heat boiler 8 without providing the economizer 10. The structure provided only with the container 11 may be sufficient.

つまり、本発明による廃棄物処理炉は、煙道に設置され、廃熱ボイラ8へ供給される脱気器25の加圧給水が被加熱媒体として供給され、排ガスとの熱交換により加熱された被加熱媒体が脱気熱源として脱気器25に循環供給される熱交換器11と、熱交換器11から排出された排ガスが第1の所定温度を下回らないように、熱交換器11への給水量を調整する制御機構とを含む廃熱回収設備を備えている。   In other words, the waste treatment furnace according to the present invention is installed in a flue and supplied with the pressurized feed water of the deaerator 25 supplied to the waste heat boiler 8 as a heated medium and heated by heat exchange with the exhaust gas. The heat exchanger 11 in which the heated medium is circulated and supplied to the deaerator 25 as a deaeration heat source, and the exhaust gas discharged from the heat exchanger 11 is supplied to the heat exchanger 11 so that it does not fall below the first predetermined temperature. And a waste heat recovery facility including a control mechanism for adjusting the amount of water supply.

上述した実施形態では、制御装置33によって各バルブ機構32a,32bが自動制御されて熱交換器11への加圧給水の供給量や熱交換器11の圧力が調整される例を説明したが、本発明による廃熱回収方法は、制御装置33による自動制御に限らず、熱交換器11の排ガス出口温度に基づいて排ガスが第1の所定温度を下回らないようにバルブ機構32aを手動調整し、熱交換器11の圧力が所定圧力以上になるようにバルブ機構32bを手動調整するものであってもよい。   In embodiment mentioned above, although each valve mechanism 32a, 32b was automatically controlled by the control apparatus 33, the supply amount of the pressurized water supply to the heat exchanger 11 and the pressure of the heat exchanger 11 were demonstrated, The waste heat recovery method according to the present invention is not limited to automatic control by the controller 33, but manually adjusts the valve mechanism 32a so that the exhaust gas does not fall below the first predetermined temperature based on the exhaust gas outlet temperature of the heat exchanger 11. The valve mechanism 32b may be manually adjusted so that the pressure of the heat exchanger 11 is equal to or higher than a predetermined pressure.

つまり、廃熱ボイラを備えた廃棄物処理炉の廃熱回収方法は、煙道に設置され、前記廃熱ボイラへ供給される脱気器の加圧給水が被加熱媒体として供給され、排ガスとの熱交換により加熱された被加熱媒体が脱気熱源として前記脱気器に循環供給される熱交換器に対して、前記熱交換器から排出された排ガスが第1の所定温度を下回らないように、前記熱交換器への給水量を調整するように構成されていればよい。   In other words, a waste heat recovery method for a waste treatment furnace equipped with a waste heat boiler is installed in a flue and is supplied with pressurized feed water of a deaerator supplied to the waste heat boiler as a heated medium. With respect to the heat exchanger in which the heated medium heated by the heat exchange is circulated and supplied to the deaerator as a deaeration heat source, the exhaust gas discharged from the heat exchanger does not fall below the first predetermined temperature. In addition, it may be configured to adjust the amount of water supplied to the heat exchanger.

同様に、炉の立上げ時に、給水ポンプ31を手動で起動して、脱気器25から熱交換器11に加圧給水を供給して、煙道を流下して熱交換器11に流入する排ガスを加熱してもよい。このとき、熱交換器11の出口部の排ガス温度が第2の所定温度を上回るようにバルブ機構32aを手動調整すればよい。   Similarly, at the time of start-up of the furnace, the feed water pump 31 is manually started to supply pressurized feed water from the deaerator 25 to the heat exchanger 11 and flow down into the flue and flow into the heat exchanger 11. The exhaust gas may be heated. At this time, the valve mechanism 32a may be manually adjusted so that the exhaust gas temperature at the outlet of the heat exchanger 11 exceeds the second predetermined temperature.

上述した実施形態では、廃熱回収設備がストーカ式の焼却炉に組み込まれる例を説明したが、焼却炉は、ストーカ式に限らず、流動床式やロータリーキルン式等の他の方式の焼却炉であってもよい。また、廃棄物処理炉は、焼却炉に限らず、廃熱ボイラで発生した蒸気で発電する発電設備を備えた処理炉であればよく、例えばコークスベッド式溶融炉や表面溶融炉等の溶融炉であってもよい。   In the above-described embodiment, the example in which the waste heat recovery facility is incorporated in the stoker-type incinerator has been described. However, the incinerator is not limited to the stoker-type, and other types of incinerators such as a fluidized bed type and a rotary kiln type. There may be. In addition, the waste treatment furnace is not limited to an incinerator, and may be any treatment furnace equipped with a power generation facility that generates power using steam generated in a waste heat boiler. For example, a melting furnace such as a coke bed melting furnace or a surface melting furnace It may be.

上述した実施形態は、本発明の一具体例であり、当該記載により本発明の範囲が限定されるものではなく、廃熱回収設備の各部の具体的構成は本発明の作用効果が奏される範囲で適宜変更設計可能であることはいうまでもない。   The embodiment described above is a specific example of the present invention, and the scope of the present invention is not limited by the description, and the specific configuration of each part of the waste heat recovery facility exhibits the effects of the present invention. Needless to say, the design can be changed as appropriate within the range.

1:焼却炉(廃棄物処理炉)
5:二次燃焼部
7:ガス供給機構
8:廃熱ボイラ
10:エコノマイザ
11:熱交換器
20:発電設備
21:蒸気タービン
22:発電機
23:復水器
25:脱気器
30:廃熱回収設備
31:給水ポンプ
32,32a,32b:制御機構(バルブ機構)
33,33a,33b:制御機構(制御装置)
1: Incinerator (waste treatment furnace)
5: Secondary combustion section 7: Gas supply mechanism 8: Waste heat boiler 10: Economizer 11: Heat exchanger 20: Power generation facility 21: Steam turbine 22: Generator 23: Condenser 25: Deaerator 30: Waste heat Recovery equipment 31: water supply pumps 32, 32a, 32b: control mechanism (valve mechanism)
33, 33a, 33b: Control mechanism (control device)

Claims (7)

廃熱ボイラを備えた廃棄物処理炉に組み込まれる廃熱回収設備であって、
煙道に設置され、前記廃熱ボイラへ供給される脱気器の加圧給水が被加熱媒体として供給され、排ガスとの熱交換により加熱された被加熱媒体が脱気熱源として前記脱気器に循環供給される熱交換器と、
前記熱交換器から排出された排ガスが第1の所定温度を下回らないように、前記熱交換器への給水量を調整する制御機構と、
を備えている廃熱回収設備。
A waste heat recovery facility incorporated in a waste treatment furnace equipped with a waste heat boiler,
Pressurized water supply of a deaerator installed in a flue and supplied to the waste heat boiler is supplied as a heated medium, and the heated medium heated by heat exchange with exhaust gas is used as the deaerated heat source. A heat exchanger circulated and supplied to
A control mechanism that adjusts the amount of water supplied to the heat exchanger so that the exhaust gas discharged from the heat exchanger does not fall below a first predetermined temperature;
Waste heat recovery equipment equipped with.
前記制御機構は、前記熱交換器から排出される被加熱媒体が所定圧力以上になるように、被加熱媒体の排出量を調整するように構成されている請求項1記載の廃熱回収設備。   The waste heat recovery facility according to claim 1, wherein the control mechanism is configured to adjust a discharge amount of the heated medium so that the heated medium discharged from the heat exchanger has a predetermined pressure or more. 前記熱交換器がエコノマイザの下流側煙道に設置され、前記エコノマイザへ供給される脱気器の加圧給水が被加熱媒体として分岐供給される請求項1または2記載の廃熱回収設備。   The waste heat recovery facility according to claim 1 or 2, wherein the heat exchanger is installed in a flue downstream of an economizer, and the pressurized feed water of a deaerator supplied to the economizer is branched and supplied as a medium to be heated. 各煙道に前記熱交換器が設置された複数の廃棄物処理炉が併設されるとともに、前記脱気器が共用されるように構成され、
前記制御機構は、他の廃棄物処理炉が運転されている場合に、運転を再開する廃棄物処理炉に備えた制御対象熱交換器に前記脱気器から加圧給水を供給して排ガスを加熱する請求項1から3の何れかに記載の廃熱回収設備。
A plurality of waste treatment furnaces provided with the heat exchangers are provided in each flue, and the deaerator is configured to be shared,
When the other waste treatment furnace is in operation, the control mechanism supplies the pressurized feed water from the deaerator to the heat exchanger to be controlled provided in the waste treatment furnace that resumes operation to generate exhaust gas. The waste heat recovery facility according to any one of claims 1 to 3, which is heated.
前記制御機構は、前記熱交換器から排出された排ガスが第2の所定温度を上回るように、前記制御対象熱交換器への給水量を調整する請求項4記載の廃熱回収設備。   The waste heat recovery facility according to claim 4, wherein the control mechanism adjusts the amount of water supplied to the control target heat exchanger so that the exhaust gas discharged from the heat exchanger exceeds a second predetermined temperature. 廃熱ボイラを備えた廃棄物処理炉の廃熱回収方法であって、
煙道に設置され、前記廃熱ボイラへ供給される脱気器の加圧給水が被加熱媒体として供給され、排ガスとの熱交換により加熱された被加熱媒体が脱気熱源として前記脱気器に循環供給される熱交換器に対して、
前記熱交換器から排出された排ガスが第1の所定温度を下回らないように、前記熱交換器への給水量を調整する廃熱回収方法。
A waste heat recovery method for a waste treatment furnace equipped with a waste heat boiler,
Pressurized water supply of a deaerator installed in a flue and supplied to the waste heat boiler is supplied as a heated medium, and the heated medium heated by heat exchange with exhaust gas is used as the deaerated heat source. For heat exchangers circulated to
A waste heat recovery method for adjusting an amount of water supplied to the heat exchanger so that exhaust gas discharged from the heat exchanger does not fall below a first predetermined temperature.
廃熱ボイラを備えた廃棄物処理炉であって、
煙道に設置され、前記廃熱ボイラへ供給される脱気器の加圧給水が被加熱媒体として供給され、排ガスとの熱交換により加熱された被加熱媒体が脱気熱源として前記脱気器に循環供給される熱交換器と、
前記熱交換器から排出された排ガスが第1の所定温度を下回らないように、前記熱交換器への給水量を調整する制御機構と、
を含む廃熱回収設備を備えている廃棄物処理炉。
A waste treatment furnace equipped with a waste heat boiler,
Pressurized water supply of a deaerator installed in a flue and supplied to the waste heat boiler is supplied as a heated medium, and the heated medium heated by heat exchange with exhaust gas is used as the deaerated heat source. A heat exchanger circulated and supplied to
A control mechanism that adjusts the amount of water supplied to the heat exchanger so that the exhaust gas discharged from the heat exchanger does not fall below a first predetermined temperature;
Waste treatment furnace equipped with waste heat recovery equipment.
JP2012258305A 2012-11-27 2012-11-27 Waste heat recovery equipment, waste heat recovery method and waste treatment furnace Active JP6034154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012258305A JP6034154B2 (en) 2012-11-27 2012-11-27 Waste heat recovery equipment, waste heat recovery method and waste treatment furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012258305A JP6034154B2 (en) 2012-11-27 2012-11-27 Waste heat recovery equipment, waste heat recovery method and waste treatment furnace

Publications (2)

Publication Number Publication Date
JP2014105612A true JP2014105612A (en) 2014-06-09
JP6034154B2 JP6034154B2 (en) 2016-11-30

Family

ID=51027339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012258305A Active JP6034154B2 (en) 2012-11-27 2012-11-27 Waste heat recovery equipment, waste heat recovery method and waste treatment furnace

Country Status (1)

Country Link
JP (1) JP6034154B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105090997A (en) * 2015-07-29 2015-11-25 季栋梁 Method for treating high-concentration salty waste water and waste residue at low cost, and device thereof
CN106247371A (en) * 2014-08-28 2016-12-21 国电龙源电力技术工程有限责任公司 A kind of coal steam-electric plant smoke comprehensive waste-heat utilizing device
JP2017087857A (en) * 2015-11-05 2017-05-25 三浦工業株式会社 Marine boiler system
CN106931424A (en) * 2017-03-29 2017-07-07 中国能源建设集团广东省电力设计研究院有限公司 Thermal power generation system and its heat energy apparatus, flue gas waste heat utilization device
JP2017138059A (en) * 2016-02-03 2017-08-10 三井造船環境エンジニアリング株式会社 Garbage incineration facility and power generation system
CN107062194A (en) * 2017-04-19 2017-08-18 大唐贵州发耳发电有限公司 A kind of thermal power plant flue gas waste heat recovery apparatus
CN107062195A (en) * 2017-05-24 2017-08-18 广东理文造纸有限公司 Oxygen-eliminating device draining residual neat recovering system
JP2018189007A (en) * 2017-04-28 2018-11-29 三菱日立パワーシステムズ株式会社 Power generation plant and method for operating the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109708480A (en) * 2019-01-09 2019-05-03 苏州中材建设有限公司 The mating afterheat generating system of new type nonaqueous cement production line

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53352A (en) * 1976-06-25 1978-01-05 Hitachi Ltd Combined plant
JPS5337309B1 (en) * 1970-09-14 1978-10-07
JPS55116010A (en) * 1979-02-27 1980-09-06 Hitachi Ltd Method of controlling water level of steam condensation system
JPH0681610A (en) * 1992-08-31 1994-03-22 Mitsubishi Heavy Ind Ltd Composite electric power plant
JPH0821210A (en) * 1994-07-06 1996-01-23 Hitachi Zosen Corp Power generating facility in incinerator
JP2000110511A (en) * 1998-10-08 2000-04-18 Kawasaki Heavy Ind Ltd Cogeneration method and its system
JP2006017007A (en) * 2004-06-30 2006-01-19 Mitsubishi Heavy Ind Ltd Marine steam turbine plant
JP2009162452A (en) * 2008-01-09 2009-07-23 Takuma Co Ltd Operating method for waste disposal facility with power generation facility
US20100199670A1 (en) * 2009-02-06 2010-08-12 Siemens Energy, Inc. Power Generation Plant Having Inert Gas Deaerator and Associated Methods
JP2011237048A (en) * 2010-05-06 2011-11-24 Takuma Co Ltd System for recovering low-temperature heat from exhaust gas posterior to exhaust gas treatment equipment of waste incineration treatment facility
JP4838318B2 (en) * 2005-11-04 2011-12-14 パーソンズ ブリンカーホフ リミテッド Power generation method and power plant
JP2012189008A (en) * 2011-03-11 2012-10-04 Hitachi Ltd Thermal power generating plant

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337309B1 (en) * 1970-09-14 1978-10-07
JPS53352A (en) * 1976-06-25 1978-01-05 Hitachi Ltd Combined plant
JPS55116010A (en) * 1979-02-27 1980-09-06 Hitachi Ltd Method of controlling water level of steam condensation system
JPH0681610A (en) * 1992-08-31 1994-03-22 Mitsubishi Heavy Ind Ltd Composite electric power plant
JPH0821210A (en) * 1994-07-06 1996-01-23 Hitachi Zosen Corp Power generating facility in incinerator
JP2000110511A (en) * 1998-10-08 2000-04-18 Kawasaki Heavy Ind Ltd Cogeneration method and its system
JP2006017007A (en) * 2004-06-30 2006-01-19 Mitsubishi Heavy Ind Ltd Marine steam turbine plant
JP4838318B2 (en) * 2005-11-04 2011-12-14 パーソンズ ブリンカーホフ リミテッド Power generation method and power plant
JP2009162452A (en) * 2008-01-09 2009-07-23 Takuma Co Ltd Operating method for waste disposal facility with power generation facility
US20100199670A1 (en) * 2009-02-06 2010-08-12 Siemens Energy, Inc. Power Generation Plant Having Inert Gas Deaerator and Associated Methods
JP2011237048A (en) * 2010-05-06 2011-11-24 Takuma Co Ltd System for recovering low-temperature heat from exhaust gas posterior to exhaust gas treatment equipment of waste incineration treatment facility
JP2012189008A (en) * 2011-03-11 2012-10-04 Hitachi Ltd Thermal power generating plant

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106247371A (en) * 2014-08-28 2016-12-21 国电龙源电力技术工程有限责任公司 A kind of coal steam-electric plant smoke comprehensive waste-heat utilizing device
CN105090997A (en) * 2015-07-29 2015-11-25 季栋梁 Method for treating high-concentration salty waste water and waste residue at low cost, and device thereof
CN105090997B (en) * 2015-07-29 2018-03-13 季栋梁 A kind of highly concentrated brine waste, waste residue low-cost processes method and its device
JP2017087857A (en) * 2015-11-05 2017-05-25 三浦工業株式会社 Marine boiler system
JP2017138059A (en) * 2016-02-03 2017-08-10 三井造船環境エンジニアリング株式会社 Garbage incineration facility and power generation system
CN106931424A (en) * 2017-03-29 2017-07-07 中国能源建设集团广东省电力设计研究院有限公司 Thermal power generation system and its heat energy apparatus, flue gas waste heat utilization device
CN107062194A (en) * 2017-04-19 2017-08-18 大唐贵州发耳发电有限公司 A kind of thermal power plant flue gas waste heat recovery apparatus
JP2018189007A (en) * 2017-04-28 2018-11-29 三菱日立パワーシステムズ株式会社 Power generation plant and method for operating the same
CN107062195A (en) * 2017-05-24 2017-08-18 广东理文造纸有限公司 Oxygen-eliminating device draining residual neat recovering system

Also Published As

Publication number Publication date
JP6034154B2 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
JP6034154B2 (en) Waste heat recovery equipment, waste heat recovery method and waste treatment furnace
US9175851B2 (en) Method of and an arrangement for recovering heat from bottom ash
JP5769066B2 (en) Heat recovery system from incinerator exhaust gas
US9803853B2 (en) Heat recovery and utilization system
JP2011247553A (en) Oxygen combustion boiler
JP5787303B2 (en) Operation method of municipal waste incineration plant
JP5060313B2 (en) Operation method of waste treatment facility with power generation equipment
JP5995685B2 (en) Waste heat recovery equipment
JP5818307B2 (en) Boiler equipment and method for controlling gas temperature at outlet thereof
JP5438146B2 (en) Pressurized flow furnace system
JP2007187352A (en) Starting method of boiler
KR101690384B1 (en) Waste heat recovery apparatus for combustion furnace and method thereof
JP2009097735A (en) Feed-water warming system and exhaust heat recovering boiler
JP7089626B1 (en) Waste heat recovery device
JP2012189008A (en) Thermal power generating plant
CN206281365U (en) A kind of high-temp waste gas afterheat utilizing system
JP5766527B2 (en) Method and apparatus for controlling once-through boiler
JP6103347B2 (en) Boiler forced cooling method after fire extinguishing of boiler in power generation equipment
JP5491550B2 (en) Pressurized flow furnace system and control method thereof
JP4823998B2 (en) Waste power generation method
JP2016041939A (en) Waste power generation system
CN218409878U (en) Subcritical gas power generation system
JP6564427B2 (en) Operation method of once-through boiler in refuse incinerator and power generation system using the same
JP5807903B2 (en) Heat recovery utilization method and heat recovery utilization system of intermittent operation type waste incineration facility
JP2740096B2 (en) Garbage incineration equipment

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20150918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161027

R150 Certificate of patent or registration of utility model

Ref document number: 6034154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350