JP5060313B2 - Operation method of waste treatment facility with power generation equipment - Google Patents
Operation method of waste treatment facility with power generation equipment Download PDFInfo
- Publication number
- JP5060313B2 JP5060313B2 JP2008002351A JP2008002351A JP5060313B2 JP 5060313 B2 JP5060313 B2 JP 5060313B2 JP 2008002351 A JP2008002351 A JP 2008002351A JP 2008002351 A JP2008002351 A JP 2008002351A JP 5060313 B2 JP5060313 B2 JP 5060313B2
- Authority
- JP
- Japan
- Prior art keywords
- waste
- power generation
- amount
- furnace
- facility
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/12—Heat utilisation in combustion or incineration of waste
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
- Processing Of Solid Wastes (AREA)
Description
本発明は、都市ごみや産業廃棄物等の廃棄物をごみ焼却炉や熱分解ガス化溶融炉、直接溶融炉等の廃棄物処理炉により焼却処理又は熱分解処理若しくは溶融処理し、廃棄物処理炉で発生した燃焼排ガスをボイラへ導いて蒸気を発生させると共に、発生した蒸気を過熱器により過熱して過熱蒸気とした後、当該過熱蒸気を蒸気タービン及び発電機から成る発電装置へ導いて発電するようにした発電設備付き廃棄物処理施設の運転方法に係り、特に、複数炉で構成されている発電設備付き廃棄物処理施設に於いて、各廃棄物処理炉の運転負荷を定格運転よりも下げて各廃棄物処理炉を廃棄物の処理量に応じて部分負荷運転し、複数炉による運転日数を増やすことによって、発電量の増大を図るようにした発電設備付き廃棄物処理施設の運転方法に関するものである。 In the present invention, waste such as municipal waste and industrial waste is incinerated, pyrolyzed or melted in a waste incinerator, a pyrolysis gasification melting furnace, a direct melting furnace or the like, and treated as a waste. The combustion exhaust gas generated in the furnace is guided to the boiler to generate steam, and the generated steam is superheated by a superheater to form superheated steam, and then the superheated steam is guided to a power generator composed of a steam turbine and a generator to generate power. In particular, in the waste treatment facility with power generation equipment composed of multiple furnaces, the operation load of each waste treatment furnace is higher than the rated operation. Operation method of waste treatment facilities with power generation facilities that lowers each waste treatment furnace according to the amount of waste treatment and increases the power generation amount by increasing the number of days of operation by multiple furnaces In It is intended to.
一般に、都市ごみや産業廃棄物等の廃棄物を焼却処理するごみ焼却炉や廃棄物を熱分解処理して溶融する熱分解ガス化溶融炉等の廃棄物処理炉を備えた廃棄物処理施設は、施設規模計画時に将来の人口増加や災害時等を予測して計画しているため、年間の廃棄物の計画処理量よりも実際に処理している廃棄物の処理量が少ないことが多い。
このことから、通常2炉又は3炉で構成されている廃棄物処理施設の運転形態として、2炉で構成されている廃棄物処理施設では1炉定格運転、3炉で構成されている廃棄物処理施設では2炉定格運転又は1炉定格運転で運営されている期間が長くなる。
In general, waste treatment facilities equipped with waste incinerators that incinerate waste such as municipal waste and industrial waste, and waste treatment furnaces such as pyrolysis gasification and melting furnaces that thermally decompose and melt waste In the facility size planning, because the future population increase or disaster is predicted, the amount of waste that is actually processed is often smaller than the amount of waste that is planned to be processed annually.
For this reason, as a form of operation of a waste treatment facility normally composed of two or three furnaces, a waste treatment facility composed of two furnaces is rated for one furnace and a waste composed of three furnaces. In the treatment facility, the period during which the reactor is operated in the two-furnace rated operation or the one-furnace rated operation becomes longer.
又、最近の廃棄物処理施設に於いては、廃棄物からのエネルギーの回収手段として蒸気タービン及び発電機等から成る発電設備が付設されることが多くなって来ている(例えば、特許文献1、特許文献2及び特許文献3参照)。廃棄物処理施設に付設される発電設備の容量は、最大定格処理負荷を基準に決定していることが多い。
Further, in recent waste treatment facilities, power generation equipment including a steam turbine and a generator is often attached as a means for recovering energy from waste (for example, Patent Document 1).
しかし、実際の廃棄物の処理量は、年間の廃棄物の計画処理量よりも少ないため、発電設備付き廃棄物処理施設の年間の総発電量は、年間計画処理時の発電量よりかなり減少することになる。 However, since the actual amount of waste processed is less than the planned amount of waste treated annually, the total amount of electricity generated annually at the waste treatment facility with power generation facilities is considerably smaller than the amount of electricity generated during the annual planned treatment. It will be.
例えば、廃棄物処理施設の1日当たりの廃棄物の計画処理量が240tで、廃棄物処理炉が2炉で構成されている場合には、1炉当たりの廃棄物の定格処理量は120t/日である。
通常廃棄物処理施設に於いては、1年間の1炉当たりの運転日数を280日とする場合が多く、2炉で構成されている廃棄物処理施設では、1年間で67,200t(280日×120t/日・炉×2炉)の処理が可能となる。
又、2炉で構成されている廃棄物処理施設に於いては、蒸気タービン、発電機、空気圧縮機、廃水処理設備、純水設備等の共通系設備・機器のメンテナンス等による共通休炉(2炉とも休炉)を年間20日程度としたとき、2炉による運転が215日、1炉による運転が65日の運転形態となり、各炉のメンテナンス等は夫々炉停止時の65日間の間に行う(図3参照)。
For example, when the planned processing amount of waste per day at the waste treatment facility is 240 t and the waste processing furnace is composed of two furnaces, the rated processing amount of waste per furnace is 120 t / day. It is.
In general waste treatment facilities, the number of operating days per furnace per year is often 280 days. In a waste treatment facility composed of two furnaces, 67,200 t (280 days) per year. × 120 t / day · furnace × 2 furnace).
In a waste treatment facility consisting of two furnaces, a common resting furnace (maintenance of common equipment and equipment such as steam turbines, generators, air compressors, wastewater treatment facilities, pure water facilities, etc.) When both furnaces are closed for about 20 days a year, operation with two furnaces is 215 days, operation with one furnace is 65 days, and maintenance of each furnace is performed for 65 days when the furnace is stopped. (See FIG. 3).
しかし、実際の廃棄物処理施設の処理量は、施設規模計画時に人口増加や災害等による廃棄物の増加を見込んでいるため、年間の廃棄物の計画処理量よりも少なくなり、年間の廃棄物の計画処理量の80%程度の53,760t/年となる。この場合、共通休炉(2炉とも休炉)を施設規模計画と同様に20日と考えると、廃棄物処理施設の運転形態は、2炉による定格運転が103日、1炉による定格運転が121日となる(図4参照)。
このように、2炉で構成されている発電設備付き廃棄物処理施設に於いては、廃棄物の実際の年間処理量が定格処理量より少ない場合には、上記のように2炉による運転日数を低減させて廃棄物の処理を行っている。
However, the actual amount of waste treatment facility treatment is expected to increase due to population growth and disasters at the time of facility size planning, so it will be less than the annual amount of waste treatment planned. This is 53,760 t / year, which is about 80% of the planned processing amount. In this case, assuming that the common shutdown (both reactors are closed) is 20 days as in the facility scale plan, the operation mode of the waste treatment facility is 103 days for rated operation with 2 furnaces, and 1 for 1 reactor. 121 days (see FIG. 4).
Thus, in a waste treatment facility with power generation facilities consisting of two furnaces, if the actual annual treatment amount of waste is less than the rated treatment amount, the number of operating days by two furnaces as described above To reduce the amount of waste.
ところで、通常都市ごみ等の一般廃棄物の場合、季節変動や収集形態により処理する廃棄物の性状の変動を考慮し、廃棄物の発熱量の最大値/基準値の比は1.5倍であることが多い。
又、発電設備容量を最大負荷時(2炉による定格運転)で選定した場合、処理している廃棄物の発熱量が基準程度で1炉による運転の時には、発電機負荷は定格の1/3程度になり、運転時の廃棄物の性状の変動(ごみ質の変動)を考慮すれば、発電機のターンダウンの関係上、発電できない場合がある。
By the way, in the case of ordinary waste such as municipal waste, the ratio of the maximum value / reference value of the heat generation amount of waste is 1.5 times in consideration of seasonal fluctuations and fluctuations in the properties of waste to be treated according to the collection form. There are often.
In addition, when the power generation equipment capacity is selected at the maximum load (rated operation with two furnaces), the generated load of the waste being processed is at the standard level, and the generator load is 1/3 of the rated when operating with one furnace. Considering the change in waste properties during operation (waste quality change), power generation may not be possible due to the turndown of the generator.
従って、2炉で構成されている発電設備付き廃棄物処理施設に於いては、次のような発電量の低下事態が発生する。
即ち、2炉構成の発電設備付きの廃棄物処理施設は、廃棄物の定格処理量に合わせて炉の運転日数を設定するため、2炉による運転日と1炉による運転日のパターンとなる。その結果、共通の設備である発電設備は、入口側の蒸気量が100%又は50%程度の変動の激しい運転になり、年間を通じての発電量が少なくなる。
又、廃棄物の発熱量が高い場合で且つ2炉定格運転で発電機容量を設定した場合、低質ごみから基準ごみのごみ質の廃棄物を処理する際、1炉による運転時には発電が行えない場合がある。
Therefore, in the waste treatment facility with power generation equipment composed of two furnaces, the following power generation amount reduction occurs.
That is, in the waste treatment facility with power generation equipment having a two-furnace configuration, the operation days of the furnace are set in accordance with the rated treatment amount of the waste, and therefore, the operation days of two furnaces and the operation days of one furnace are used. As a result, the power generation equipment that is a common equipment is operated with drastic fluctuations in which the amount of steam on the inlet side is about 100% or 50%, and the amount of power generation throughout the year is reduced.
In addition, when the heat generation amount of waste is high and the generator capacity is set in the two-furnace rated operation, when processing waste from the low quality waste to the standard waste, it is not possible to generate power when operating with one furnace. There is a case.
本発明は、このような問題点に鑑みて為されたものであり、その目的は、複数炉による効率的な運転を行うことによって、年間の総発電量の減少を抑えて発電量の増大を図ると共に、廃棄物の年間処理量又は廃棄物の発熱量が少ない場合でも発電を行えるようにした発電設備付き廃棄物処理施設の運転方法を提供することにある。 The present invention has been made in view of such problems, and an object of the present invention is to increase the amount of power generation while suppressing a decrease in the total amount of power generation during the year by performing efficient operation with multiple furnaces. Another object of the present invention is to provide a method for operating a waste treatment facility with a power generation facility that can generate power even when the amount of waste treated annually or the amount of heat generated by waste is small.
上記目的を達成するために、本発明の請求項1の発明は、廃棄物を複数の廃棄物処理炉により焼却処理又は熱分解処理若しくは溶融処理し、各廃棄物処理炉からの燃焼排ガスをボイラへ導いて蒸気を発生させると共に、発生した蒸気を過熱器により過熱して過熱蒸気を生成し、当該過熱蒸気を共通の蒸気タービン及び発電機から成る発電設備に導いて発電するようにした複数炉で構成された発電設備付き廃棄物処理施設に於いて、各廃棄物処理炉の運転負荷を定格負荷よりも下げて各廃棄物処理炉を廃棄物の処理量に応じて部分負荷運転し、複数炉による運転日数を増やして発電量の増大を図るようにしたことに特徴がある。 In order to achieve the above object, according to the first aspect of the present invention, waste is incinerated, pyrolyzed or melted in a plurality of waste treatment furnaces, and the combustion exhaust gas from each waste treatment furnace is boiler. A plurality of furnaces that generate steam by supervising the generated steam, superheating the generated steam by a superheater, and introducing the superheated steam to a power generation facility composed of a common steam turbine and generator. In the waste treatment facility with power generation equipment composed of the following, the operation load of each waste treatment furnace is lowered below the rated load, and each waste treatment furnace is operated at partial load according to the amount of waste treated. The feature is that the power generation amount is increased by increasing the operation days by the furnace.
又、本発明の請求項2の発明は、発電設備の発電機に高圧受電で済む発電機容量の小さい発電機を使用し、発電機容量の小さい発電設備で発電するようにしたことに特徴がある。
Further, the invention of
本発明は、各廃棄物処理炉の運転負荷を定格負荷よりも下げて各廃棄物処理炉を廃棄物の処理量に応じて部分負荷運転し、複数炉による運転日数を増やすようにしているため、共通の発電設備からの発電量が増大することになる。
又、本発明は、発電設備の発電機に高圧受電で済む発電機容量の小さい発電機を使用し、発電機容量の小さい発電設備で発電するようにしているため、発電量をより一層増大させることができると共に、イニシャルコスト等のコスト低減を図れる。
更に、本発明は、発電機容量の小さい発電設備で発電するようにしているため、廃棄物の年間処理量又は廃棄物の発熱量が少ない場合でも発電機のターンダウンを回避できて発電を行うことができ、発電量がより増大することになる。
In the present invention, the operation load of each waste treatment furnace is lowered below the rated load, and each waste treatment furnace is partially loaded in accordance with the amount of waste to be treated, so that the number of operation days by a plurality of furnaces is increased. The amount of power generated from the common power generation facility will increase.
In addition, the present invention uses a generator with a small generator capacity that only requires high-voltage power reception as the generator of the power generation facility, and generates power with the power generation facility with a small generator capacity, thereby further increasing the amount of power generation. It is possible to reduce costs such as initial costs.
Furthermore, since the present invention generates power with a power generation facility having a small generator capacity, even when the annual amount of waste processed or the amount of heat generated by the waste is small, the generator can be prevented from being turned down to generate power. This will increase the amount of power generation.
以下、本発明の実施の形態を図面に基づいて詳細に説明する。
図1は本発明の方法を実施する複数炉で構成された発電設備付き廃棄物処理施設を示し、当該発電設備付き廃棄物処理施設は、廃棄物を焼却処理する2基のストーカ式焼却炉1と、各ストーカ式焼却炉1の下流側に接続され、各ストーカ式焼却炉1で発生した燃焼排ガスから熱エネルギーを回収して蒸気を発生するボイラ2と、各ボイラ2の下流側に設置され、燃焼排ガスから更に熱エネルギーを回収するエコノマイザー3と、各エコノマイザー3の下流側に設置され、燃焼排ガスに冷却水を噴射して燃焼排ガスを冷却する減温塔4と、各減温塔4の下流側に設置され、排ガスに含まれている煤塵を除去するバグフィルター5と、各バグフィルター5の下流側に設けられ、各ストーカ式焼却炉1内の燃焼排ガスを誘引する誘引通風機6と、各誘引通風機6の下流側に設置され、排ガス中の酸性ガスを除去する湿式洗浄塔7と、各湿式洗浄塔7の下流側に設置され、減温した排ガスを加熱して排ガスの白煙化を防止するガス再加熱器8と、各ガス再加熱器8の下流側に設けられ、排ガスを大気中へ放出する煙突9と、各ストーカ式焼却炉1の出口側に設けられ、各ボイラ2で発生した蒸気を更に過熱する過熱器10と、各過熱器10からの過熱蒸気により駆動される蒸気タービン11及び蒸気タービン11により駆動されて電力を発生する発電機12から成る発電設備13(この発電設備13は共通の設備となっている)とから構成されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows a waste treatment facility with power generation equipment composed of a plurality of furnaces for carrying out the method of the present invention. The waste treatment facility with power generation equipment comprises two stoker-type incinerators 1 for incinerating waste. Connected to the downstream side of each stoker-type incinerator 1 and installed on the downstream side of each
而して、この発電設備3付き廃棄物処理施設に於いては、各ストーカ式焼却炉1内で発生した燃焼排ガスを夫々ボイラ2へ導いて蒸気を発生させると共に、発生した蒸気を過熱器10により更に過熱して過熱蒸気を生成し、当該過熱蒸気を共通のアキュムレータ14を介して同じく共通の発電設備13へ導いて発電するようになっている。尚、発電設備13で得られた電力は、廃棄物処理施設内で消費される他、余剰の電力は電力会社に売電されている。
又、発電設備13の蒸気タービン11を通過した蒸気は、復水器15で復水された後、復水タンク16から脱気器17を経て給水ポンプ18により各エコノマイザー3に給水され、各ストーカ式焼却炉1のボイラ2へ還流されるようになっている。
Thus, in the waste treatment facility with the power generation equipment 3, the combustion exhaust gas generated in each stoker type incinerator 1 is led to the
Further, the steam that has passed through the
前記発電設備付き廃棄物処理施設は、1日当たりの廃棄物の計画処理量が240tで、1炉当たりの定格処理量が120t/日となるように計画されており、年間の1炉当たりの運転日数を280日とし、1年間で67,200tの廃棄物を焼却処理できる施設に構成されている。 The waste treatment facility with power generation facilities is planned to have a planned throughput of 240 t / day and a rated throughput of 120 t / day / furnace. The number of days is 280, and the facility is configured to incinerate 67,200 tons of waste in one year.
ところで、前記発電設備付き廃棄物処理施設は、実際の廃棄物の年間処理量が計画処理量(67,200t)の80%の場合、廃棄物の年間処理量が53,760tとなり、発電設備13、空気圧縮機、廃水処理設備、純水設備等の共通系設備・機器のメンテナンス等による共通休炉(2炉とも休炉)を20日と考えると、2炉による定格運転が103日、1炉による定格運転が121日の運転形態となる。 By the way, in the waste treatment facility with power generation equipment, when the actual annual treatment amount of waste is 80% of the planned treatment amount (67,200 t), the annual treatment amount of waste becomes 53,760 t. Considering a common outage due to maintenance of common system facilities and equipment such as air compressors, wastewater treatment facilities, and deionized water facilities (both furnaces are closed), the rated operation with two furnaces is 103 days, 1 The rated operation by the furnace is the operation mode for 121 days.
しかし、前記発電設備付き廃棄物処理施設は、各ストーカ式焼却炉1の運転負荷を定格負荷よりも下げて各ストーカ式焼却炉1を廃棄物の処理量に応じて部分負荷運転し、2炉による運転日数を増やして発電量の増大を図るようにしている。このとき、各ストーカ式焼却炉1の部分負荷運転は、2炉による運転をなるべく長く継続できるようにした部分負荷運転となっている。 However, the waste treatment facility with the power generation equipment operates the partial load operation of each stalker-type incinerator 1 according to the amount of waste, by reducing the operation load of each stalker-type incinerator 1 below the rated load. The number of operating days is increased to increase power generation. At this time, the partial load operation of each stoker type incinerator 1 is a partial load operation that allows the operation with two furnaces to be continued as long as possible.
この実施の形態に於いては、発電設備付き廃棄物処理施設は、各ストーカ式焼却炉1の運転負荷を定格運転の80%の部分負荷運転とし、1炉当たりの廃棄物の処理量を96t/日(120t/日×80/100)とすることで、2炉による運転日数を増やしている。
即ち、この発電設備付き廃棄物処理施設は、2炉による運転日数が215日、1炉による運転日数が65日の運転形態になっており、共通休炉を20日とすると共に、各炉の運転停止期間を夫々65日とし、この間に各炉のメンテナンスを行うようになっている。
In this embodiment, in the waste treatment facility with power generation equipment, the operation load of each stoker type incinerator 1 is set to 80% partial load operation of the rated operation, and the waste processing amount per furnace is 96 t. / Day (120t / day × 80/100), the number of operating days by two furnaces is increased.
In other words, this waste treatment facility with power generation facilities has an operation mode in which the operation days by two furnaces are 215 days, the operation days by one furnace is 65 days, the common furnace is set to 20 days, The shutdown period is 65 days, and maintenance of each furnace is performed during this period.
又、この発電設備付きの廃棄物処理施設は、過去の廃棄物の搬入実績、過去の廃棄物の発熱量実績、ごみピット(図示省略)のレベル、ボイラ蒸発量を基に適切な部分負荷運転を自動的に行うようになっている。 In addition, this waste treatment facility with power generation facilities is suitable for partial load operation based on past results of carrying in waste, past heat generation results, waste pits (not shown), and boiler evaporation. Is to be done automatically.
図2は上述した発電設備付き廃棄物処理施設の部分負荷運転制御の概要を示すフローチャート図であり、炉への投入熱量を一定化する例を示したものである。
年間の廃棄物総投入熱量Nは、過去の廃棄物搬入実績Wと過去の廃棄物発熱量実績Qとを基に計算されている。
又、過去の廃棄物搬入実績Wは、廃棄物処理施設に設置した計量機により廃棄物の量を計量し、その計量結果を記憶装置に日毎、月毎、年間の搬入量を入力することにより得られる。
更に、過去の廃棄物発熱量Qは、(ボイラ吸収熱量+排ガス持ち出し熱量+未燃損失+ボイラ燃焼炉放熱損失)/ごみ処理量等で計算される。個々の計算については、従来公知であるので割愛する。
従って、年間の廃棄物総投入熱量Nは、年間の廃棄物搬入量W×年間の平均廃棄物発熱量Qとなる。
そして、年間の廃棄物総投入熱量Nを平準化した年間の炉運転日数(なるべく2炉運転が継続できるようにした処理負荷での運転日数)で割り戻すことにより、炉1日当たりの処理熱量Gが計算される。この例では、廃棄物のモデル処理計画を2炉による運転日数を215日、1炉による運転日数を130日としている。
炉の処理量Lは、過去の発熱量G及び現在の発熱量qから算定される。これを基に処理負荷を設定し、ボイラ蒸発量の設定を行う。この設定は、日毎、週毎、月毎であっても良い。又、ボイラ蒸発量の制御は、従来から廃棄物の炉への供給量制御及び燃焼用空気の投入制御により行う。
処理負荷設定の結果、現在のごみピット(図示省略)内の廃棄物のレベルをフィードバックし、ごみピット内の廃棄物のレベルがモデル処理計画から求めたごみピット内の廃棄物のレベルより下がる場合には、設定値を下げ、又、ごみピット内の廃棄物のレベルがモデル処理計画から求めたごみピット内の廃棄物のレベルより上がる場合には、設定値をあげる等の補正を行う。
これらの制御/演算を行うことにより、年間を通じて2炉での安定した部分負荷運転が実現され、発電量が増大することになる。
FIG. 2 is a flowchart showing an outline of the partial load operation control of the waste treatment facility with power generation equipment described above, and shows an example in which the amount of heat input to the furnace is made constant.
The total waste heat input N for the year is calculated based on the past waste carry-in result W and the past waste heat generation result Q.
In addition, past waste carry-in results W are obtained by measuring the amount of waste with a weighing machine installed in the waste treatment facility, and inputting the result of the weighing into the storage device daily, monthly, or annually. can get.
Further, the past waste heat generation amount Q is calculated by (boiler absorption heat amount + exhaust gas heat generation amount + unburned loss + boiler combustion furnace heat dissipation loss) / garbage treatment amount or the like. The individual calculations are well-known and will be omitted.
Accordingly, the total waste heat input N for the year becomes the annual waste carry amount W × the average waste heat generation amount Q for the year.
Then, by dividing the annual total waste heat input N by the average number of days of furnace operation (operating days with a processing load that allows two furnace operations to continue as much as possible), the processing heat amount G per furnace day Is calculated. In this example, the model processing plan for waste is 215 days for operation by two furnaces and 130 days for one furnace.
The furnace processing amount L is calculated from the past heat generation amount G and the current heat generation amount q. Based on this, the processing load is set, and the boiler evaporation amount is set. This setting may be daily, weekly, or monthly. The boiler evaporation amount is conventionally controlled by controlling the amount of waste supplied to the furnace and controlling the input of combustion air.
When the level of waste in the waste pit (not shown) is fed back as a result of the processing load setting, and the level of waste in the waste pit falls below the level of waste in the waste pit determined from the model processing plan If the level of waste in the garbage pit is higher than the level of waste in the garbage pit determined from the model processing plan, correction is performed such as raising the setting value.
By performing these controls / calculations, stable partial load operation in two furnaces is realized throughout the year, and the amount of power generation increases.
尚、図2のフローチャート図は、炉への投入熱量を一定化する例を示したものであるが、簡単に処理量を一定化することも含んでいる。又、フローの熱量の項を削除すると、重量負荷一定運転となる。 The flow chart of FIG. 2 shows an example in which the amount of heat input to the furnace is made constant, but it also includes simply making the amount of treatment constant. Further, if the term of heat quantity of the flow is deleted, the operation is constant weight load.
下記の表1は、廃棄物処理施設に発電機容量が2,900kWの発電機12を設置し、炉を定格運転した場合と炉を部分負荷運転(定格運転の80%)した場合の余剰電力の試算を行ったものである。炉が定格運転のときには、廃棄物の処理量を1日当たり120tとし、炉が部分負荷運転のときには、廃棄物の処理量を1日当たり96tとして計算している。
表1からも明らかなように、廃棄物処理施設に発電機容量が2,900kWの発電機12を設置した場合、炉を定格運転するよりも炉を部分負荷運転した方が1年間で余剰電力量が503GW上昇することになる。
Table 1 below shows the surplus power when a
As is clear from Table 1, when a
又、発電設備付き廃棄物処理施設に於いては、発電機容量が3,000kW程度の発電機12を設置した廃棄物処理施設では、施設計画時に特別高圧電線からの引き込み工事費が嵩むため、イニシャルコストの低減を考慮し、特別高圧受電を避けて安価な高圧受電で済む発電機容量が2,000kW以下の1,990kW程度の発電機12を設置することが多い。
In addition, in the waste treatment facility with power generation equipment, the waste treatment facility in which the
下記の表2は、廃棄物処理施設に発電機容量が1,990kWの発電機12を設置し、炉を定格運転した場合と炉を部分負荷運転(定格運転の80%)した場合の余剰電力の試算を行ったものである。炉が定格運転のときには、廃棄物の処理量を1日当たり120tとし、炉が部分負荷運転のときには、廃棄物の処理量を1日当たり96tとして計算している。
表2からも明らかなように、廃棄物処理施設に発電機容量が1,990kWの発電機12を設置した場合、炉を定格運転するよりも炉を部分負荷運転した方が1年間で余剰電力量が1,050GW上昇し、発電機容量が小さい方が発電量がより一層増大することになる。
Table 2 below shows surplus power when a generator with a generator capacity of 1,990 kW is installed in a waste treatment facility and the furnace is rated and when the furnace is partially loaded (80% of rated operation). This is a trial calculation. When the furnace is in rated operation, the amount of waste treated is 120 t / day, and when the furnace is in partial load operation, the amount of waste treated is 96 t / day.
As is clear from Table 2, when the
このように、複数炉により構成された発電設備付き廃棄物処理施設に於いては、各廃棄物処理炉の運転負荷を定格運転よりも下げて各廃棄物処理炉を廃棄物の処理量に応じて部分負荷運転し、2炉による運転日数を増やすことによって、発電量を増大させることができる。
又、発電設備13の発電機12に特別高圧受電を避けて高圧受電で済む発電機12を使用し、発電機容量の小さい発電機12で発電している場合には、発電量をより一層増大させることができると共に、イニシャルコスト等のコスト低減を図れる。
更に、発電機容量の小さい発電機12で発電するようにしているため、廃棄物の年間処理量又は廃棄物の発熱量が少ない場合でも発電機12のターンダウンを回避することができ、発電を行うことができる。
In this way, in the waste treatment facility with power generation facilities composed of multiple furnaces, the operation load of each waste treatment furnace is lowered from the rated operation, and each waste treatment furnace is set according to the amount of waste treated. The amount of power generation can be increased by performing partial load operation and increasing the number of operating days by two furnaces.
In addition, when the
Furthermore, since the
尚、上記の実施の形態に於いては、廃棄物をストーカ式焼却炉1で焼却処理するようにしたが、他の実施の形態に於いては、廃棄物を流動床式焼却炉で焼却処理するようにしても良く、或いは、廃棄物を熱分解ガスガス化溶融炉や直接溶融炉等で熱分解処理又は溶融処理するようにしても良い。この場合も、廃棄物を焼却処理した場合と同様の作用効果を奏することができる。 In the above embodiment, the waste is incinerated in the stoker type incinerator 1, but in other embodiments, the waste is incinerated in the fluidized bed incinerator. Alternatively, the waste may be pyrolyzed or melted in a pyrolysis gas gasification melting furnace or a direct melting furnace. In this case as well, the same effects as when the waste is incinerated can be obtained.
1は廃棄物処理炉、2はボイラ、10は過熱器、11は蒸気タービン、12は発電機、13は発電設備。 1 is a waste treatment furnace, 2 is a boiler, 10 is a superheater, 11 is a steam turbine, 12 is a generator, and 13 is power generation equipment.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008002351A JP5060313B2 (en) | 2008-01-09 | 2008-01-09 | Operation method of waste treatment facility with power generation equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008002351A JP5060313B2 (en) | 2008-01-09 | 2008-01-09 | Operation method of waste treatment facility with power generation equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009162452A JP2009162452A (en) | 2009-07-23 |
JP5060313B2 true JP5060313B2 (en) | 2012-10-31 |
Family
ID=40965276
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008002351A Active JP5060313B2 (en) | 2008-01-09 | 2008-01-09 | Operation method of waste treatment facility with power generation equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5060313B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101090239B1 (en) | 2009-10-19 | 2011-12-06 | 공기일 | Power generation system using chimney energy |
JP5787303B2 (en) * | 2010-07-08 | 2015-09-30 | 株式会社タクマ | Operation method of municipal waste incineration plant |
JP5967652B2 (en) * | 2012-10-30 | 2016-08-10 | 株式会社タクマ | Operation method of municipal waste incineration plant with steam turbine generator and arithmetic controller for adjusting steam pressure at the inlet of the steam turbine used therefor |
JP6034154B2 (en) * | 2012-11-27 | 2016-11-30 | クボタ環境サ−ビス株式会社 | Waste heat recovery equipment, waste heat recovery method and waste treatment furnace |
JP5918810B2 (en) * | 2014-07-10 | 2016-05-18 | 株式会社神鋼環境ソリューション | Waste treatment facility and heat retention method for dust collector |
CN105275517A (en) * | 2015-12-15 | 2016-01-27 | 北京凯盛建材工程有限公司 | Cement kiln waste heat power generation system utilizing waste incineration flue gas |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56168003A (en) * | 1980-05-28 | 1981-12-24 | Nippon Kokan Kk | Steam generation volume stabilizer for municipal garbage incinerator waste heat boiler |
JP3640327B2 (en) * | 1996-07-10 | 2005-04-20 | 株式会社タクマ | High-efficiency power generation method, exhaust gas treatment method and exhaust gas treatment device in a waste treatment plant |
JP3639404B2 (en) * | 1997-02-26 | 2005-04-20 | 株式会社タクマ | Waste carbonization pyrolysis melting combustion equipment |
JP3455394B2 (en) * | 1997-05-21 | 2003-10-14 | 株式会社クボタ | Garbage incineration equipment |
JPH1113418A (en) * | 1997-06-23 | 1999-01-19 | Hitachi Ltd | Operating method of refuse incineration power plant |
JP2002250513A (en) * | 2001-02-22 | 2002-09-06 | Takuma Co Ltd | Oxygen-enriched combustion system of garbage disposing furnace |
JP2002372207A (en) * | 2001-06-18 | 2002-12-26 | Kubota Corp | Heat utilization system |
-
2008
- 2008-01-09 JP JP2008002351A patent/JP5060313B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009162452A (en) | 2009-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5060313B2 (en) | Operation method of waste treatment facility with power generation equipment | |
JP6613822B2 (en) | Waste incineration and hydrogen production equipment and method | |
JP6034154B2 (en) | Waste heat recovery equipment, waste heat recovery method and waste treatment furnace | |
JP5769066B2 (en) | Heat recovery system from incinerator exhaust gas | |
JP5787303B2 (en) | Operation method of municipal waste incineration plant | |
Korobitsyn et al. | Possibilities for gas turbine and waste incinerator integration | |
JP2019216501A (en) | Device for storing and supplying energy obtained by waste incineration | |
JP3042394B2 (en) | Power generation system utilizing waste incineration heat | |
JP5438146B2 (en) | Pressurized flow furnace system | |
JP5995685B2 (en) | Waste heat recovery equipment | |
JP2004144308A (en) | Combined power generation system | |
JP4449704B2 (en) | Combustion method and apparatus | |
JP4823998B2 (en) | Waste power generation method | |
JP5491550B2 (en) | Pressurized flow furnace system and control method thereof | |
JP5807903B2 (en) | Heat recovery utilization method and heat recovery utilization system of intermittent operation type waste incineration facility | |
JP2021071238A (en) | Incineration plant and combustion controlling method thereof | |
JPH07332637A (en) | Garbage incineration power generation system | |
CN116592354A (en) | Urban household garbage power generation system and operation method | |
KR20060017963A (en) | Second gas reflux system of waste incinerator | |
JP7576250B2 (en) | Intermittent operation incineration facility and its operation method | |
JP2769270B2 (en) | Garbage incineration equipment | |
JPH1113418A (en) | Operating method of refuse incineration power plant | |
JP2740096B2 (en) | Garbage incineration equipment | |
JP2769271B2 (en) | Garbage incineration equipment | |
Tugov et al. | Experience gained from making the incineration of solid domestic wastes a factory standard at thermal power stations in Russia |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100824 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120730 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120803 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150810 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5060313 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |