JP2012189008A - Thermal power generating plant - Google Patents

Thermal power generating plant Download PDF

Info

Publication number
JP2012189008A
JP2012189008A JP2011053692A JP2011053692A JP2012189008A JP 2012189008 A JP2012189008 A JP 2012189008A JP 2011053692 A JP2011053692 A JP 2011053692A JP 2011053692 A JP2011053692 A JP 2011053692A JP 2012189008 A JP2012189008 A JP 2012189008A
Authority
JP
Japan
Prior art keywords
steam
auxiliary
boiler
turbine
thermal power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011053692A
Other languages
Japanese (ja)
Other versions
JP5463313B2 (en
Inventor
Nobuyoshi Mishima
信義 三島
Takashi Sugiura
尊 杉浦
Takahiko Sakakura
季彦 坂倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011053692A priority Critical patent/JP5463313B2/en
Publication of JP2012189008A publication Critical patent/JP2012189008A/en
Application granted granted Critical
Publication of JP5463313B2 publication Critical patent/JP5463313B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermal power generation system including an auxiliary steam system that collects solar heat to generate steam and uses the steam as an auxiliary steam for the thermal power plant in order to suppress the decrease of output or efficiency of a steam turbine.SOLUTION: The thermal power generating plant includes: a primary boiler 1 for generating the steam by burning a fossil fuel; a steam turbine driven by the steam generated by the boiler 1; a steam condenser 5 for condensing the steam that drives the steam turbine; a water supply system for supplying the condensed water discharged from the steam condenser 5 to the primary boiler 1; a steam turbine facility having an auxiliary device that is driven by the steam extracted from the steam turbine; and a solar heat concentrator for heating a heat medium using the solar heat. An auxiliary steam is generated by heating some supplied water extracted from the water supply system using the solar heat concentrator and the auxiliary steam is supplied to the auxiliary device as steam used for driving.

Description

本発明は、火力発電プラント、特にボイラと蒸気タービンと太陽熱集熱装置とを有する火力発電プラントに関する。   The present invention relates to a thermal power plant, and more particularly to a thermal power plant having a boiler, a steam turbine, and a solar heat collector.

一般的に火力発電プラントは、主な構成機器として、石炭等の化石燃料を焚いて給水を加熱し、蒸気を生成する主ボイラと、主ボイラで生成した蒸気で駆動する蒸気タービンと、蒸気タービンを駆動した蒸気を復水する復水器と、復水器で復水化した復水を主ボイラに給水として供給する給水系統と、蒸気タービンから取り出した動力で発電する発電機とを有する蒸気タービン設備を備える。   Generally, a thermal power plant has, as main components, a fossil fuel such as coal to heat feed water and generate steam, a steam turbine driven by steam generated by the main boiler, and a steam turbine Steam having a condenser that condenses the steam that has driven the steam, a water supply system that supplies the condensate condensed by the condenser as feed water to the main boiler, and a generator that generates electric power using power extracted from the steam turbine Turbine equipment is provided.

また、上述した従来の蒸気タービン設備では、給水系統に給水を加熱する給水加熱器を設け、この給水加熱器に蒸気タービンから抽気した抽気蒸気を導き、この抽気蒸気で給水を加熱している。   Moreover, in the conventional steam turbine equipment described above, a feed water heater for heating the feed water is provided in the feed water system, the extracted steam extracted from the steam turbine is guided to the feed water heater, and the feed water is heated with the extracted steam.

またさらに、蒸気タービン設備に太陽熱集熱装置を併設した火力発電プラントが提案されている(特許文献1参照)。この火力発電プラントは、蒸気タービン設備の給水加熱器に太陽熱集熱装置を併設するものである。即ち、太陽熱集熱装置で太陽熱にて熱媒体を加熱し、高温となった熱媒体を主ボイラに供給する給水の一部と熱交換させることで、太陽熱を蒸気タービンの熱サイクルに取り込むものである。   Furthermore, a thermal power plant in which a solar heat collecting device is provided in addition to steam turbine equipment has been proposed (see Patent Document 1). This thermal power plant has a solar heat collecting device attached to a feed water heater of a steam turbine facility. In other words, the solar heat collection device heats the heat medium with solar heat, and heat exchange of the heated heat medium with a part of the feed water supplied to the main boiler makes it possible to incorporate solar heat into the heat cycle of the steam turbine. is there.

一方、上記のような蒸気タービン設備を備える火力発電プラントでは、蒸気タービン設備を稼動させるために多種多様な補助機器類を要する。これらの補助機器類のなかには、蒸気を利用して駆動するものがあり、例えば、復水器の真空度を常時保つために、復水器内の空気を復水器外に抽出する蒸気式空気抽出器(別名エジェクターまたは、ジェットポンプ)が広く用いられている(例として特許文献2参照)。   On the other hand, in a thermal power plant equipped with the steam turbine equipment as described above, a wide variety of auxiliary equipment is required to operate the steam turbine equipment. Some of these auxiliary devices are driven using steam, for example, steam-type air that extracts the air in the condenser to the outside of the condenser in order to maintain the vacuum of the condenser at all times. An extractor (also called an ejector or a jet pump) is widely used (see Patent Document 2 as an example).

特開昭51−4429号公報Japanese Patent Laid-Open No. 51-4429 特許第4579479号公報Japanese Patent No. 4579479

従来の太陽熱を利用する発電システムでは、給水を太陽熱集熱装置の熱媒体と熱交換して予熱し、温度上昇した給水を蒸気タービン設備の給水系統に戻し、主ボイラに供給している。この構成によれば、給水加熱器への抽気蒸気の供給量を減らすことができ、出力と効率とを向上させることができる。   In a conventional power generation system using solar heat, water is preheated by exchanging heat with a heat medium of a solar heat collector, and the water whose temperature has increased is returned to the water supply system of the steam turbine facility and supplied to the main boiler. According to this configuration, the amount of extraction steam supplied to the feed water heater can be reduced, and the output and efficiency can be improved.

しかしながら、従来の方式は、太陽熱エネルギーの用途が、給水の予熱に留まるため、太陽熱エネルギーの蒸気タービン設備に対する用途は限られてしまい、出力と効率の向上効果も限定的である。   However, in the conventional method, the use of solar thermal energy is limited to preheating of feed water, so the use of solar thermal energy for steam turbine equipment is limited, and the effect of improving output and efficiency is also limited.

また、従来の給水を太陽熱集熱装置の熱媒体と熱交換して予熱し、温度上昇した給水を蒸気タービン設備の給水系統に直接戻す蒸気タービンヒートサイクルでは、天気の変化により太陽熱回収熱量が変動し、蒸気タービンサイクルへの回収蒸気流量が時事刻々変化することによる、蒸気タービン出力制御が困難となる課題がある。   In addition, in the steam turbine heat cycle, where the conventional water supply is preheated by exchanging heat with the heat medium of the solar heat collector and the temperature-increased water supply is directly returned to the water supply system of the steam turbine equipment, the amount of heat recovered by solar heat fluctuates due to weather changes. However, there is a problem that steam turbine output control becomes difficult due to a change in the flow rate of recovered steam to the steam turbine cycle.

さらに、電力系統が弱い地域に送電する場合、蒸気タービン出力制御と同時に系統周波数を一定に制御することが困難となる。   Furthermore, when power is transmitted to an area where the power system is weak, it is difficult to control the grid frequency at the same time as the steam turbine output control.

そこで、本発明の目的は、蒸気タービン設備における太陽熱エネルギーの用途の範囲を広げ、蒸気タービンの出力と効率を向上させるとともに、天候の変化による蒸気タービンの出力の変動を小さくすることにある。   Accordingly, an object of the present invention is to expand the range of application of solar thermal energy in steam turbine equipment, improve the output and efficiency of the steam turbine, and reduce fluctuations in the output of the steam turbine due to weather changes.

上記課題を解決するため、本発明は、化石燃料を焚いて蒸気を生成するボイラと、該ボイラで生成した蒸気で駆動する蒸気タービンと、該蒸気タービンを駆動した蒸気を復水する復水器と、復水器から出た復水をボイラに供給する給水系統と、蒸気タービンから抽気した蒸気を用いて駆動する補助機器とを有する蒸気タービン設備と、太陽熱を用いて熱媒体を加熱する太陽熱集熱装置とを備えた火力発電プラントにおいて、給水系統から抜き出した給水の一部と太陽熱集熱装置で加熱した熱媒体とを熱交換させて補助蒸気を生成し、該補助蒸気を補助機器に駆動用蒸気として供給することを特徴とする。   In order to solve the above problems, the present invention is directed to a boiler that generates steam by fossil fuel, a steam turbine that is driven by the steam generated by the boiler, and a condenser that condenses the steam that has driven the steam turbine. And steam turbine equipment having a water supply system for supplying condensate from the condenser to the boiler, auxiliary equipment driven using steam extracted from the steam turbine, and solar heat for heating the heat medium using solar heat In a thermal power plant equipped with a heat collector, auxiliary steam is generated by exchanging heat between part of the feed water extracted from the water supply system and the heat medium heated by the solar heat collector, and the auxiliary steam is used as auxiliary equipment. It is characterized by being supplied as driving steam.

本発明によれば、太陽熱エネルギーを用いて給水系統から抜き出した一部の給水から蒸気を生成し、生成した蒸気を蒸気タービン設備の補助蒸気として活用することで、蒸気タービン設備における太陽熱エネルギーの用途の範囲を広げることができる。その結果、主ボイラが発生した蒸気の一部または所内ボイラの発生蒸気を補助蒸気として使用する割合が大幅に下がり、その分蒸気タービンの出力増加や発電効率の向上に回せることができる。   According to the present invention, steam is generated from a part of feed water extracted from a water supply system using solar thermal energy, and the generated steam is used as auxiliary steam for the steam turbine equipment, thereby using solar thermal energy in the steam turbine equipment. Can be expanded. As a result, the ratio of using a part of the steam generated by the main boiler or the generated steam of the in-house boiler as auxiliary steam is greatly reduced, and accordingly, the output of the steam turbine can be increased and the power generation efficiency can be improved.

また、本発明では、間接的に蒸気タービンヒートサイクルに蒸気を提供する。すなわち、ボイラ給水を太陽熱で加熱し蒸気タービンヒートサイクルの補助蒸気として間接的に太陽熱由来の蒸気を蒸気タービンヒートサイクルの中で利用する。これにより天気の変化による、太陽熱由来の補助蒸気発生量の変動はボイラ本体由来の補助蒸気抽気量の加減により補償できる。この結果、蒸気タービン出力の変動を少なくできる。   The present invention also provides steam indirectly to the steam turbine heat cycle. That is, boiler feed water is heated by solar heat, and steam derived from solar heat is indirectly used in the steam turbine heat cycle as auxiliary steam for the steam turbine heat cycle. Thereby, the fluctuation | variation of the amount of auxiliary steam generation derived from a solar heat by the change of a weather can be compensated by adjustment of the amount of auxiliary steam extraction derived from a boiler main body. As a result, fluctuations in the steam turbine output can be reduced.

よって、本発明によれば蒸気タービン設備に対する太陽熱エネルギーの利用範囲を広げ、蒸気タービンの出力と効率を向上させることができるとともに、天候の変化による蒸気タービンの出力の変動を小さくできる。   Therefore, according to the present invention, the range of utilization of solar thermal energy for steam turbine equipment can be expanded, the output and efficiency of the steam turbine can be improved, and fluctuations in the output of the steam turbine due to changes in weather can be reduced.

本発明の実施例に係る火力発電プラントのシステム系統を説明する概略図である。It is the schematic explaining the system system | strain of the thermal power plant which concerns on the Example of this invention. 図1に記載の火力発電プラントの制御系統を説明した概略図である。It is the schematic explaining the control system of the thermal power plant of FIG.

一般に、蒸気タービン設備を備える火力発電プラントでは、蒸気タービン設備を稼動させるために多種多様な補助機器類を要する。これらの補助機器類のなかには、蒸気を利用して駆動するものがあり、従来は、主ボイラが発生した蒸気の一部または所内ボイラの発生蒸気を駆動用蒸気として用いていた。   Generally, in a thermal power plant equipped with a steam turbine facility, a wide variety of auxiliary equipment is required to operate the steam turbine facility. Some of these auxiliary devices are driven using steam. Conventionally, a part of the steam generated by the main boiler or the steam generated in the in-house boiler has been used as the driving steam.

ところで、従来の太陽熱エネルギーをボイラ給水の予熱に利用する方式では、予熱後の給水を給水系統に戻す必要がある。そのため、給水は液体のままで留まるため、蒸気を利用して駆動する補助機器の駆動源に用いたりすることができない。その結果、蒸気タービン設備に対する太陽熱エネルギーの利用範囲は限定的となる。   By the way, in the method of using the conventional solar thermal energy for preheating boiler feedwater, it is necessary to return the preheated water to the water supply system. Therefore, since water supply remains in a liquid state, it cannot be used as a drive source for auxiliary equipment driven using steam. As a result, the range of utilization of solar thermal energy for steam turbine equipment is limited.

本発明は、給水の予熱に留まらず、給水の一部を太陽熱エネルギーを利用して積極的に蒸気とし、さらに蒸気を蒸気タービン設備の補助蒸気として活用することで、蒸気タービン設備に対する太陽熱エネルギーの利用範囲を広げるものである。本発明の実施例について図を用いて以下に説明する。   The present invention is not limited to preheating water supply, and a part of the water supply is positively converted into steam by using solar thermal energy, and further, steam is used as auxiliary steam for the steam turbine equipment. It expands the range of use. Embodiments of the present invention will be described below with reference to the drawings.

図1に本実施例に係る火力発電プラントのシステム系統の概略図を示す。本実施例の火力発電プラントは、主要な構成要素として、蒸気タービン設備と太陽熱集熱装置とを備える。   FIG. 1 shows a schematic diagram of a system system of a thermal power plant according to the present embodiment. The thermal power plant according to the present embodiment includes a steam turbine facility and a solar heat collector as main components.

蒸気タービン設備は、その主な構成要素として、石炭等の化石燃料を焚いて給水を加熱し蒸気を生成する主ボイラ1と、主ボイラ1で生成した蒸気で回転駆動する蒸気タービンと、蒸気タービンを回転駆動した蒸気を凝縮して復水する復水器5と、復水器5から出た復水を主ボイラ1に供給する給水系統と、蒸気タービンの回転力を電力に変換する発電機4とを備える。蒸気タービンは、高圧タービン2と、中低圧タービン3とを備える。なお中低圧タービン3は、中圧タービンと低圧タービンとに別体で構成されていても良い。   The steam turbine equipment includes, as main components, a main boiler 1 that generates fossil fuel such as coal and heats feed water to generate steam, a steam turbine that is rotationally driven by steam generated by the main boiler 1, and a steam turbine. A condenser 5 for condensing and condensing steam that has been rotationally driven, a water supply system for supplying the main boiler 1 with the condensate discharged from the condenser 5, and a generator for converting the rotational force of the steam turbine into electric power 4. The steam turbine includes a high-pressure turbine 2 and a medium-low pressure turbine 3. The intermediate / low pressure turbine 3 may be configured separately for the intermediate pressure turbine and the low pressure turbine.

復水器5は循環水取水槽90から循環水ポンプ91を使って冷却水を取り出す。冷却水は、循環水入口配管92を通過して復水器5に送られ、低圧タービン排気蒸気を冷却して復水に戻す。復水器5を出た冷却水は循環水出口配管93を通過して循環水排水槽94に流入する。   The condenser 5 takes out the cooling water from the circulating water intake tank 90 using the circulating water pump 91. The cooling water passes through the circulating water inlet pipe 92 and is sent to the condenser 5 to cool the low-pressure turbine exhaust steam and return it to the condensate. The cooling water exiting the condenser 5 passes through the circulating water outlet pipe 93 and flows into the circulating water drainage tank 94.

また、給水系統は、復水器5から主ボイラ1に向って順に、復水ポンプ6と、互いに並列に設置されたインタークーラ97及びアフタークーラ98と、低圧給水加熱器18と、脱気器44と、ボイラ給水ポンプ50と、高圧給水加熱器51a,51b,51cとを有する。低圧給水加熱器18および脱気器44には、中低圧タービン3から抽気された抽気蒸気が加熱源として供給されている。また、高圧給水加熱器51には、高圧タービン2から抽気された抽気蒸気が加熱源として供給されている。なお、低圧および高圧給水加熱器の設置数は図示したものに限定されない。   The water supply system includes, in order from the condenser 5 toward the main boiler 1, a condensate pump 6, an intercooler 97 and an aftercooler 98 installed in parallel with each other, a low-pressure feed water heater 18, and a deaerator. 44, boiler feed water pump 50, and high-pressure feed water heaters 51a, 51b, 51c. The low-pressure feed water heater 18 and the deaerator 44 are supplied with extracted steam extracted from the medium-low pressure turbine 3 as a heating source. Further, the extracted steam extracted from the high-pressure turbine 2 is supplied to the high-pressure feed water heater 51 as a heating source. The number of low-pressure and high-pressure feed water heaters installed is not limited to that shown.

給水系統から主ボイラ1に供給された給水は、主ボイラ1内に設置されたボイラ1次過熱器57,ボイラ2次過熱器58を順次通過する際に加熱され、気化して蒸気となる。主ボイラ1で生成された蒸気は、主蒸気配管80を流下して高圧タービン2に供給され、高圧タービン2を回転駆動させる。高圧タービン2を回転駆動した蒸気は、再度主ボイラ1に戻されボイラ再熱器82で加熱され、再熱蒸気として高温再熱蒸気配管83を流下して中低圧タービン3に供給される。中低圧タービン3に供給された蒸気は、中低圧タービン3を回転駆動した後、復水器5に導かれ、冷却されて凝縮し、復水化する。復水器5で復水化された復水は、復水ポンプ6に供給され昇圧された後、主空気抽出器入口復水配管7を流下する。主空気抽出器入口復水配管7は、途中でインタークーラ入口空気配管7aと、アフタークーラ入口空気配管7bとに分岐しており、主空気抽出器入口復水配管7を流下した復水は、インタークーラ入口空気配管7aと、アフタークーラ入口空気配管7bとに夫々流入し、インタークーラ97とアフタークーラ98とに供給され加熱される。インタークーラ97とアフタークーラ98を出た復水は合流し、低圧給水加熱器入口復水配管17を流下して低圧給水加熱器18,脱気器44に導入される。低圧給水加熱器18,脱気器44で順次加熱された復水は、給水として高圧給水加熱器51a,51b,51cに導入され順次加熱されて昇温し、その後主ボイラ1に給水として導入される。   The feed water supplied to the main boiler 1 from the feed water system is heated when it sequentially passes through the boiler primary superheater 57 and the boiler secondary superheater 58 installed in the main boiler 1, and is vaporized into steam. The steam generated in the main boiler 1 flows down the main steam pipe 80 and is supplied to the high-pressure turbine 2 to drive the high-pressure turbine 2 to rotate. The steam that rotationally drives the high-pressure turbine 2 is returned again to the main boiler 1, heated by the boiler reheater 82, flows down through the high-temperature reheat steam pipe 83 as reheated steam, and is supplied to the intermediate / low pressure turbine 3. The steam supplied to the intermediate / low pressure turbine 3 rotates and drives the intermediate / low pressure turbine 3, and then is guided to the condenser 5, cooled, condensed, and condensed. The condensate condensated in the condenser 5 is supplied to the condensate pump 6 and pressurized, and then flows down through the main air extractor inlet condensate piping 7. The main air extractor inlet condensate pipe 7 is branched into an intercooler inlet air pipe 7a and an aftercooler inlet air pipe 7b on the way, and the condensate flowing down the main air extractor inlet condensate pipe 7 is The air flows into the intercooler inlet air pipe 7a and the aftercooler inlet air pipe 7b, respectively, and is supplied to the intercooler 97 and the aftercooler 98 to be heated. The condensate that has exited the intercooler 97 and the aftercooler 98 merges, flows down the low pressure feed water heater inlet condensate piping 17, and is introduced into the low pressure feed water heater 18 and the deaerator 44. The condensate that has been sequentially heated by the low-pressure feed water heater 18 and the deaerator 44 is introduced into the high-pressure feed water heaters 51a, 51b, and 51c as feed water, and is heated in order to increase the temperature, and then introduced into the main boiler 1 as feed water. The

さらに本実施例の蒸気タービン設備は、蒸気タービン設備の作動に必要な補助蒸気を生成する所内ボイラ107を備える。   Furthermore, the steam turbine equipment of the present embodiment includes an in-house boiler 107 that generates auxiliary steam necessary for the operation of the steam turbine equipment.

また、本実施例の蒸気タービン設備は、蒸気タービンから抽気した蒸気を用いて駆動する補助機器として1段目主空気抽出器13と、2段目主空気抽出器15と、起動空気抽出器12とを備える。   Moreover, the steam turbine equipment of the present embodiment is a first stage main air extractor 13, a second stage main air extractor 15, and an activation air extractor 12 as auxiliary devices that are driven using steam extracted from the steam turbine. With.

1段目主空気抽出器13と、2段目主空気抽出器15は、復水器5内の真空度を保つために、エジェクター効果にて復水器5内の空気を復水器外に抽出する機器である。この1段目主空気抽出器13と、2段目主空気抽出器15には駆動蒸気として主ボイラ1で生成した主蒸気、または所内ボイラ107で生成した補助蒸気が供給される。主蒸気配管80を流下する主蒸気の一部は、主蒸気配管80から分岐する主空気抽出器駆動蒸気取り出し配管85,減圧弁入口配管7cを流下し、減圧弁79で減圧された後、1段目主空気抽出器13と、2段目主空気抽出器15に夫々供給される。   The first-stage main air extractor 13 and the second-stage main air extractor 15 allow the air in the condenser 5 to be moved out of the condenser by the ejector effect in order to maintain the degree of vacuum in the condenser 5. This is the equipment to be extracted. The first stage main air extractor 13 and the second stage main air extractor 15 are supplied with main steam generated by the main boiler 1 or auxiliary steam generated by the in-house boiler 107 as driving steam. A part of the main steam flowing down the main steam pipe 80 flows down the main air extractor-driven steam take-out pipe 85 and the pressure reducing valve inlet pipe 7c branched from the main steam pipe 80, and is decompressed by the pressure reducing valve 79. It is supplied to the stage main air extractor 13 and the second stage main air extractor 15, respectively.

また、所内ボイラ107で生成された補助蒸気は、所内ボイラ出口弁108,補助蒸気配管109を流下して一度補助蒸気母管110に供給された後、補助蒸気母管110から配管38,減圧弁入口配管7c,減圧弁79を流下して1段目主空気抽出器13と、2段目主空気抽出器15とに夫々供給される。   The auxiliary steam generated in the in-house boiler 107 flows down the in-house boiler outlet valve 108 and the auxiliary steam pipe 109 and is once supplied to the auxiliary steam mother pipe 110, and then the pipe 38 and the pressure reducing valve from the auxiliary steam mother pipe 110. It flows down the inlet pipe 7c and the pressure reducing valve 79 and is supplied to the first-stage main air extractor 13 and the second-stage main air extractor 15, respectively.

1段目主空気抽出器13のエジェクター効果により復水器5から抽出された空気は、配管9を流下して1段目主空気抽出器13に導かれ、1段目主空気抽出器13で水蒸気との混合気体となって、さらに配管95を流下してインタークーラ97に流入する。インタークーラ97に流入した混合気体は、復水との熱交換によって冷却された後、インタークーラ97をでて配管14を通過して2段目主空気抽出器15に導かれる。2段目主空気抽出器15に導かれた混合気体は、水蒸気と混合された後、配管96を通過してアフタークーラ98に流入する。アフタークーラ98に流入した混合気体の水蒸気分は、復水との熱交換によって冷却されてドレンとなって配管105を通過して復水器5に回収される。一方、復水器5から抽出された空気は、アフタークーラ98からアフタークーラ出口空気配管16を通過して大気に戻される。   The air extracted from the condenser 5 by the ejector effect of the first stage main air extractor 13 flows down the pipe 9 and is guided to the first stage main air extractor 13. It becomes a mixed gas with water vapor, and further flows down the pipe 95 and flows into the intercooler 97. The mixed gas that has flowed into the intercooler 97 is cooled by heat exchange with the condensate, then passes through the pipe 14 through the intercooler 97 and is guided to the second-stage main air extractor 15. The mixed gas guided to the second-stage main air extractor 15 is mixed with water vapor, and then passes through the pipe 96 and flows into the aftercooler 98. The water vapor content of the mixed gas flowing into the aftercooler 98 is cooled by heat exchange with the condensate, becomes drainage, passes through the pipe 105, and is collected by the condenser 5. On the other hand, the air extracted from the condenser 5 is returned to the atmosphere from the aftercooler 98 through the aftercooler outlet air pipe 16.

起動空気抽出器12は、蒸気タービンの起動時にエジェクター効果により復水器5内にある空気を復水器5外に取り出す補助機器である。この起動空気抽出器12は、補助蒸気配管71,配管39を介して補助蒸気母管110と繋がっており、駆動用蒸気として所内ボイラ107で生成した補助蒸気が供給される。   The startup air extractor 12 is an auxiliary device that takes out the air in the condenser 5 to the outside of the condenser 5 by the ejector effect when the steam turbine is started up. The starting air extractor 12 is connected to the auxiliary steam mother pipe 110 via the auxiliary steam pipe 71 and the pipe 39, and the auxiliary steam generated by the in-house boiler 107 is supplied as driving steam.

蒸気タービン起動の際に、所内ボイラ107で生成した補助蒸気が起動空気抽出器12に供給され、起動空気抽出器12が駆動する。起動した起動空気抽出器12のエジェクター作用により、復水器5内の空気が復水器空気抽出器配管9,起動空気抽出器入口空気抽出配管10,起動空気抽出器12を順次通過し、起動空気抽出器出口消音器69に送られ大気中に排出される。これにより蒸気タービン起動時の復水器5の真空度が上昇する。   When the steam turbine is started, the auxiliary steam generated by the in-house boiler 107 is supplied to the starting air extractor 12, and the starting air extractor 12 is driven. Due to the ejector action of the activated starter air extractor 12, the air in the condenser 5 sequentially passes through the condenser air extractor pipe 9, the starter air extractor inlet air extractor pipe 10, and the starter air extractor 12. It is sent to the air extractor outlet silencer 69 and discharged into the atmosphere. Thereby, the vacuum degree of the condenser 5 at the time of steam turbine starting increases.

その他にも、補助蒸気母管110からはタ−ビン補助蒸気分岐配管37にて補助蒸気が取り出され、補助蒸気は、タ−ビン補助蒸気弁45を抜けてタ−ビン補助蒸気圧力調整弁46を通過した後タービン補助蒸気系へ流れる。その後、補助蒸気は、タービン各機器の補助蒸気、例えばタービングランドシールや復水脱塩装置の再生用蒸気などのタービン補助蒸気として用いられる。   In addition, auxiliary steam is taken out from the auxiliary steam mother pipe 110 through a turbine auxiliary steam branch pipe 37, and the auxiliary steam passes through the turbine auxiliary steam valve 45 and is supplied to the turbine auxiliary steam pressure adjusting valve 46. After passing through, it flows to the turbine auxiliary steam system. Thereafter, the auxiliary steam is used as auxiliary steam for each turbine device, for example, turbine auxiliary steam such as turbine ground seal or steam for regeneration of a condensate demineralizer.

同様に、補助蒸気母管110からはボイラ補助蒸気分岐配管36にて補助蒸気が取り出され、補助蒸気は、ボイラ補助蒸気弁65を抜けてボイラ補助蒸気圧力調整弁66を通過した後ボイラ補助蒸気系へ流れる。その後、補助蒸気は、ボイラ各機器の補助蒸気、例えばボイラスートブロワ蒸気や、バーナアトマイズ蒸気、または重油加熱用蒸気などのボイラ補助蒸気として用いられる。   Similarly, auxiliary steam is taken out from the auxiliary steam mother pipe 110 through the boiler auxiliary steam branch pipe 36, and the auxiliary steam passes through the boiler auxiliary steam valve 65 and passes through the boiler auxiliary steam pressure adjusting valve 66 and then the boiler auxiliary steam. It flows into the system. Thereafter, the auxiliary steam is used as auxiliary steam for boiler equipment, for example, boiler auxiliary steam such as boiler soot blower steam, burner atomized steam, or heavy oil heating steam.

また、火力発電所起動時に必要となる脱気器44の加熱用の補助蒸気も同様に補助蒸気母管110から脱気器補助蒸気分岐配管40を使って取り出し、脱気器補助蒸気弁42を流下して、次に脱気器補助蒸気圧力調整弁43通過して脱気器44に供給される。   Similarly, auxiliary steam for heating the deaerator 44 required for starting the thermal power plant is taken out from the auxiliary steam mother pipe 110 using the deaerator auxiliary steam branch pipe 40, and the deaerator auxiliary steam valve 42 is installed. It flows down and then passes through the deaerator auxiliary steam pressure regulating valve 43 and is supplied to the deaerator 44.

補助蒸気母管110には、所内ボイラ107の他に、主ボイラ1からも補助蒸気が供給される。主ボイラ1は、ボイラ補助蒸気取り出し配管74,ボイラ補助蒸気供給配管77と介して補助蒸気母管110と接続しており、火力発電プラント通常運用時は、主ボイラ1から補助蒸気が補助蒸気母管110に供給される。   Auxiliary steam is supplied from the main boiler 1 to the auxiliary steam mother pipe 110 in addition to the in-house boiler 107. The main boiler 1 is connected to an auxiliary steam mother pipe 110 via a boiler auxiliary steam take-out pipe 74 and a boiler auxiliary steam supply pipe 77. During normal operation of the thermal power plant, auxiliary steam is supplied from the main boiler 1 to the auxiliary steam mother. Supplied to the tube 110.

次に、本実施例の太陽熱集熱装置について説明する。   Next, the solar heat collecting apparatus of a present Example is demonstrated.

本実施例の太陽熱集熱装置は、主な構成要素として太陽熱集熱装置本体22と、熱媒体熱交換器20と、熱媒体冷却器26と、熱媒体循環系統113とを備える。   The solar heat collecting apparatus of the present embodiment includes a solar heat collecting apparatus main body 22, a heat medium heat exchanger 20, a heat medium cooler 26, and a heat medium circulation system 113 as main components.

太陽熱集熱装置本体22は、主な構成要素として太陽熱集熱鏡を有するが、太陽熱集熱鏡の型式としてはトラフ式,タワー式,フレネル式等数種類あるが、本実施例ではどの型式の太陽熱集熱鏡にも対応できる。図1の例はフレネル型をモデル化している。また熱媒体循環系統113内を流れる熱媒体は、溶融塩または油を成分とする。   The solar thermal collector main body 22 has a solar thermal collector mirror as a main component, and there are several types of solar thermal collector mirrors such as trough type, tower type, and Fresnel type. Can also be used with a heat collecting mirror. The example in FIG. 1 models a Fresnel type. The heat medium flowing through the heat medium circulation system 113 includes a molten salt or oil as a component.

本実施例では、太陽熱集熱鏡で集めた太陽熱で熱媒体循環系統113内を流れる熱媒体を加熱する。太陽熱集熱装置本体22で加熱され高温となった熱媒体は、圧力調整弁23,弁24aを通過して熱媒体熱交換器20に導入される。熱媒体熱交換器20に導入された熱媒体は、給水系統から供給された復水または給水の一部と熱交換して冷却される。   In the present embodiment, the heat medium flowing in the heat medium circulation system 113 is heated by solar heat collected by the solar heat collecting mirror. The heat medium heated by the solar heat collector main body 22 and heated to high temperature is introduced into the heat medium heat exchanger 20 through the pressure regulating valve 23 and the valve 24a. The heat medium introduced into the heat medium heat exchanger 20 is cooled by exchanging heat with condensate or a part of the water supply supplied from the water supply system.

万一、熱媒体熱交換器20に異常が発生した場合に備えて、本実施例では、熱媒体熱交換器20をバイパスするバイパス系統114を熱媒体循環系統113に設けている。またバイパス系統114の下流側に熱媒体冷却器26を設けている。熱媒体熱交換器20をバイパス運用する際には、バイパス系統114に設けられたバイパス弁25を開け、熱媒体熱交換器20の上流側,下流側の熱媒体循環系統113に設けられた弁24aと弁24bを閉める。次に弁27を開けて冷却水を熱媒体冷却器26に供給し弁28を開けて太陽熱エネルギーを系外に排出する。   In the present embodiment, a bypass system 114 that bypasses the heat medium heat exchanger 20 is provided in the heat medium circulation system 113 in case the abnormality occurs in the heat medium heat exchanger 20. A heat medium cooler 26 is provided on the downstream side of the bypass system 114. When the heat medium heat exchanger 20 is bypassed, the bypass valve 25 provided in the bypass system 114 is opened, and the valve provided in the heat medium circulation system 113 upstream and downstream of the heat medium heat exchanger 20 is opened. 24a and valve 24b are closed. Next, the valve 27 is opened to supply cooling water to the heat medium cooler 26, and the valve 28 is opened to discharge solar thermal energy out of the system.

熱媒体冷却器26を通過した熱媒体は、太陽熱集熱装置本体22に熱媒体循環ポンプ21にて送られる。以上が本実施例の太陽熱集熱装置の主な構成である。   The heat medium that has passed through the heat medium cooler 26 is sent to the solar heat collector main body 22 by the heat medium circulation pump 21. The above is the main configuration of the solar heat collecting apparatus of the present embodiment.

本実施例の火力発電プラントは、蒸気タービン設備の給水系統から抜き出した復水または給水の一部を太陽熱集熱装置に導入し、加熱させて補助蒸気を生成し、この補助蒸気を補助機器に作動用蒸気として供給する補助蒸気供給系統を備える。   The thermal power plant of the present embodiment introduces a part of the condensate or feed water extracted from the water supply system of the steam turbine equipment to the solar heat collector, generates the auxiliary steam by heating, and uses this auxiliary steam as auxiliary equipment. An auxiliary steam supply system for supplying operating steam is provided.

補助蒸気供給系統は、復水ポンプ6で昇圧された復水の一部を主空気抽出器入口復水配管7から取り出す送水管8と、送水管8と熱媒体熱交換器20とを接続する給水配管112と、ボイラ給水ポンプ50で昇圧された給水の一部を給水系統から取り出して、給水配管112に合流させる送水管111と、熱媒体熱交換器20と太陽熱発生補助蒸気汽水分離器100とを接続する配管30と、太陽熱発生補助蒸気汽水分離器100から蒸気を補助蒸気母管110に導入する蒸気配管102,補助蒸気供給配管34と、補助蒸気供給配管34を流下する蒸気の一部を、高圧タービン2から高圧給水加熱器51へ抽気蒸気を供給する高圧蒸気タービン抽気配管61に合流させる蒸気配管63と、太陽熱発生補助蒸気汽水分離器100で分離した水分を復水器5に導入するドレン配管104とを備える。なお、熱媒体熱交換器20へ脱気器44から取り出したボイラ給水を送水する方法として、ボイラ給水ポンプ50と並列に小型専用給水ポンプ(図示せず)を設置しても良い。または、ボイラ給水ポンプ50の吸い込み側に設置されるボイラ給水ポンプ50の専用昇圧ポンプ(図示せず)を設置して本ポンプから、熱媒体熱交換器20へボイラ給水を送水できる。   The auxiliary steam supply system connects a water supply pipe 8 for extracting a part of the condensate whose pressure has been increased by the condensate pump 6 from the main air extractor inlet condensate pipe 7, and the water supply pipe 8 and the heat medium heat exchanger 20. A water supply pipe 112, a water supply pipe 111 that extracts a part of the water supply boosted by the boiler water supply pump 50 from the water supply system and joins the water supply pipe 112, the heat medium heat exchanger 20, and the solar heat generation auxiliary steam brackish water separator 100. A part of steam that flows down the auxiliary steam supply pipe 34, a steam pipe 102 that introduces steam from the solar heat generation auxiliary steam brack separator 100, a steam pipe 102 that introduces steam into the auxiliary steam mother pipe 110, and an auxiliary steam supply pipe 34. The water separated by the steam pipe 63 that joins the high pressure steam turbine bleed pipe 61 for supplying the bleed steam from the high pressure turbine 2 to the high pressure feed water heater 51 and the solar heat generation auxiliary steam brackish water separator 100 The and a drain pipe 104 to be introduced into the condenser 5. As a method for feeding the boiler feed water taken out from the deaerator 44 to the heat medium heat exchanger 20, a small dedicated feed pump (not shown) may be installed in parallel with the boiler feed pump 50. Alternatively, a boiler booster pump (not shown) of the boiler feed pump 50 installed on the suction side of the boiler feed pump 50 can be installed to supply boiler feed water from the pump to the heat medium heat exchanger 20.

図2は図1に示した本実施例に係る火力発電プラントの補助蒸気ローカル制御の説明図である。主空気抽出器駆動蒸気検出計79pにて検出された圧力信号により、主空気抽出器駆動蒸気減圧弁79の出口圧力を制御することにより、1段目主空気抽出器13と2段目主空気抽出器15の駆動蒸気圧力制御を行う。   FIG. 2 is an explanatory diagram of auxiliary steam local control of the thermal power plant according to the present embodiment shown in FIG. The first stage main air extractor 13 and the second stage main air are controlled by controlling the outlet pressure of the main air extractor driven steam pressure reducing valve 79 based on the pressure signal detected by the main air extractor driven steam detector 79p. Drive steam pressure control of the extractor 15 is performed.

タ−ビン補助蒸気圧力検出計46pにてタービン補助蒸気圧力を検出して、タ−ビン補助蒸気圧力調整弁46の弁解度を制御してタ−ビン補助蒸気圧力調整弁46の出口圧力をタービン補助蒸気系統が必要とする圧力制御を行う。   The turbine auxiliary steam pressure detector 46p detects the turbine auxiliary steam pressure, controls the degree of turbine auxiliary steam pressure adjustment valve 46, and adjusts the outlet pressure of the turbine auxiliary steam pressure adjustment valve 46 to the turbine. The pressure control required by the auxiliary steam system is performed.

ボイラ補助蒸気圧力検出計66pにてボイラ補助蒸気圧力を検出して、ボイラ補助蒸気圧力調整弁66の弁解度を調整してボイラ補助蒸気圧力調整弁66の出口圧力をボイラ補助蒸気系統が必要とする圧力制御を行う。   The boiler auxiliary steam pressure detector 66p detects the boiler auxiliary steam pressure, adjusts the degree of boiler auxiliary steam pressure adjustment valve 66, and the boiler auxiliary steam system needs the outlet pressure of the boiler auxiliary steam pressure adjustment valve 66. Perform pressure control.

脱気器補助蒸気圧力検出計43pにて脱気器44が必要とする補助蒸気圧力を検出して、脱気器補助蒸気圧力調整弁43の弁解度を調整して脱気器補助蒸気圧力調整弁43の出口圧力を脱気器44が必要とする圧力制御を行う。   The deaerator auxiliary steam pressure detection meter 43p detects the auxiliary steam pressure required by the deaerator 44, and adjusts the degree of solution of the deaerator auxiliary steam pressure adjustment valve 43 to adjust the deaerator auxiliary steam pressure. The pressure control which the deaerator 44 requires for the outlet pressure of the valve 43 is performed.

熱媒体熱交換器出口高温水圧力検出計32pにて圧力を検出して、熱媒体熱交換器出口高温水圧力調整弁32の弁解度を調整して太陽熱発生補助蒸気汽水分離器100に適合した同汽水分離器の圧力制御を行い汽水分離を行い飽和蒸気とドレンに分離する。   The pressure was detected by the heat medium heat exchanger outlet high-temperature water pressure detector 32p, and the degree of solution of the heat medium heat exchanger outlet high-temperature water pressure adjustment valve 32 was adjusted to suit the solar heat generation auxiliary steam brackish water separator 100. The brackish water separator is controlled by pressure control and separated into saturated steam and drain.

太陽熱発生補助蒸気汽水分離器出口圧力検出器101pにて補助蒸気母管110が必要とする補助蒸気圧力を検出して、太陽熱発生補助蒸気汽水分離器出口圧力調整弁101の弁解度を調整して補助蒸気圧力制御を行う。   The auxiliary steam pressure required by the auxiliary steam mother pipe 110 is detected by the solar heat generating auxiliary steam brackish water separator outlet pressure detector 101p, and the degree of excitement of the solar heat generating auxiliary steam brack water separator outlet pressure regulating valve 101 is adjusted. Provide auxiliary steam pressure control.

ボイラ補助蒸気圧力検出計76pにて補助蒸気母管110が必要とする補助蒸気圧力を検出して、ボイラ補助蒸気圧力調整弁76の弁解度を調整して補助蒸気母管110の圧力制御を行う。   The auxiliary steam pressure required by the auxiliary steam mother pipe 110 is detected by a boiler auxiliary steam pressure detector 76p, and the pressure control of the auxiliary steam mother pipe 110 is performed by adjusting the degree of solution of the boiler auxiliary steam pressure adjusting valve 76. .

以上が本実施例の火力発電プラントの主な構成である。次に本実施例の火力発電プラントの作用効果について説明する。   The above is the main configuration of the thermal power plant of this embodiment. Next, the effect of the thermal power plant of a present Example is demonstrated.

火力発電プラント起動時は、まず所内ボイラ107を起動して補助蒸気を発生させ、この補助蒸気を、所内ボイラ出口弁108,補助蒸気配管109を通して補助蒸気母管110へ導入する。   When starting the thermal power plant, first, the in-house boiler 107 is activated to generate auxiliary steam, and this auxiliary steam is introduced into the auxiliary steam mother pipe 110 through the in-house boiler outlet valve 108 and the auxiliary steam pipe 109.

火力プラント通常運用時には高圧第3給水加熱器出口ボイラ給水配管56を通過したボイラ給水は節炭器(図示せず)や火炉やドラムを通過してボイラ1次過熱器57に導入される。ボイラ1次過熱器57を通過したボイラ発生蒸気の一部をボイラ補助蒸気取り出し配管74にて取り出しボイラ補助蒸気弁75を流下して、ボイラ補助蒸気圧力調整弁76を通過し、ボイラ補助蒸気供給配管77にて補助蒸気母管110へ供給する。   During normal operation of the thermal power plant, the boiler feed water that has passed through the high pressure third feed water heater outlet boiler feed pipe 56 passes through a economizer (not shown), a furnace and a drum, and is introduced into the boiler primary superheater 57. Part of the boiler-generated steam that has passed through the boiler primary superheater 57 is taken out by a boiler auxiliary steam take-out pipe 74, flows down through a boiler auxiliary steam valve 75, passes through a boiler auxiliary steam pressure adjustment valve 76, and is supplied with boiler auxiliary steam. It is supplied to the auxiliary steam mother pipe 110 through the pipe 77.

本発明では、これら2箇所の補助蒸気供給源に加え太陽熱で発生した蒸気も補助蒸気母管110へ導入され補助蒸気として有効活用される。   In the present invention, in addition to these two auxiliary steam supply sources, steam generated by solar heat is also introduced into the auxiliary steam mother pipe 110 and effectively used as auxiliary steam.

復水ポンプ6で昇圧された復水の一部を送水管8で取り出し送水弁68を流下して給水配管112を通過し弁29を通過して熱媒体熱交換器20に導入する。またはボイラ給水ポンプ50から主ボイラ1に送水される主ボイラ1の給水の一部を送水管111にて取り出し弁67を流下して給水配管112を通過し弁29を通過して熱媒体熱交換器20に導入する。   A part of the condensate whose pressure has been increased by the condensate pump 6 is taken out by the water supply pipe 8, flows down the water supply valve 68, passes through the water supply pipe 112, passes through the valve 29, and is introduced into the heat medium heat exchanger 20. Alternatively, a part of the feed water of the main boiler 1 fed from the boiler feed pump 50 to the main boiler 1 is taken out by the feed pipe 111, flows down the valve 67, passes through the feed water pipe 112, passes through the valve 29, and heat medium heat exchange. Introduced into the vessel 20.

熱媒体熱交換器20にて太陽熱から熱エネルギーをもらい高温となった熱媒体により、給水は加熱され高温かつ高圧の汽水混合物となって熱媒体熱交換器出口高温水配管30から出てくる。さらに、この汽水混合物は弁31を流下して、次に圧力調整弁32を通過して太陽熱発生補助蒸気汽水分離器100に流入し、ここで汽水混合物は減圧され飽和蒸気成分と飽和ドレン成分に分離される。この飽和蒸気成分は圧力調整弁101を流下して、蒸気配管102を通過し一部は蒸気配管33を流下して蒸気弁35を通過して蒸気配管63により配管64に導入される。配管64を出た加熱蒸気は高圧給水加熱器51bに流入しボイラ給水を加熱する。   The feed water is heated by the heat medium that has received heat energy from the solar heat in the heat medium heat exchanger 20 and has become a high temperature, and becomes a high-temperature and high-pressure brackish water mixture that comes out of the heat medium heat exchanger outlet high-temperature water pipe 30. Further, the brackish water mixture flows down the valve 31 and then passes through the pressure regulating valve 32 and flows into the solar heat generation auxiliary steam brackish water separator 100 where the brackish water mixture is depressurized to become a saturated steam component and a saturated drain component. To be separated. The saturated steam component flows down the pressure regulating valve 101, passes through the steam pipe 102, and partly flows down the steam pipe 33, passes through the steam valve 35, and is introduced into the pipe 64 through the steam pipe 63. The heating steam exiting the pipe 64 flows into the high-pressure feed water heater 51b and heats the boiler feed water.

一方、蒸気配管102を通過した補助蒸気は蒸気供給配管34を通過して補助蒸気母管110に流入し、主空気抽出器,起動空気抽出器,タービン補助蒸気,ボイラ補助蒸気等の補助蒸気として活用される。太陽熱発生補助蒸気汽水分離器100のドレンはドレン弁103を流下してドレン配管104を通過して復水器5へ流れる。   On the other hand, the auxiliary steam that has passed through the steam pipe 102 passes through the steam supply pipe 34 and flows into the auxiliary steam mother pipe 110, and serves as auxiliary steam such as a main air extractor, start-up air extractor, turbine auxiliary steam, and boiler auxiliary steam. Be utilized. The drain of the solar heat generation auxiliary steam brack separator 100 flows down the drain valve 103, passes through the drain pipe 104, and flows to the condenser 5.

図1で示した例では、高圧タービン2から2箇所および中低圧タービン3から1箇所抽気された抽気により高圧給水加熱器51aと高圧給水加熱器51bと高圧給水加熱器51cを加熱するタービン抽気構成のケースを表示している。太陽熱から取り出した補助蒸気は、高圧給水加熱器51bにて熱交換した後でドレンとなり、ドレン配管52を流下して水位調整弁53を通過して高圧給水加熱器51aに導入される。高圧給水加熱器51aを出たドレンは水位調整弁54を通過して脱気器44に熱回収される。低圧給水加熱器18のドレンは低圧給水加熱器ドレン配管59を通過して復水器5へ回収される。   In the example shown in FIG. 1, a turbine bleed configuration that heats the high-pressure feed water heater 51 a, the high-pressure feed water heater 51 b, and the high-pressure feed water heater 51 c by the bleed extracted from two places from the high-pressure turbine 2 and one place from the medium- and low-pressure turbine 3. The case of is displayed. The auxiliary steam taken out from the solar heat becomes a drain after exchanging heat in the high-pressure feed water heater 51b, flows down the drain pipe 52, passes through the water level adjustment valve 53, and is introduced into the high-pressure feed water heater 51a. The drain from the high-pressure feed water heater 51 a passes through the water level adjustment valve 54 and is recovered by the deaerator 44. The drain of the low-pressure feed water heater 18 passes through the low-pressure feed water heater drain pipe 59 and is recovered to the condenser 5.

従来の火力発電所では発電所専用の所内ボイラを設置して火力発電所を起動する。即ち、所内ボイラを最初に起動してボイラやタービン起動に必要となる補助蒸気を確保しプラントが起動したら自らのボイラ発生蒸気に切り替えていた。   In a conventional thermal power plant, an in-house boiler dedicated to the power plant is installed to start the thermal power plant. That is, the in-house boiler is started first, auxiliary steam necessary for starting the boiler and the turbine is secured, and when the plant is started, it is switched to its own boiler-generated steam.

しかし、本実施例は補助蒸気供給系統を備えることにより、給水の予熱に留まらず、給水の一部を太陽熱エネルギーを利用して積極的に蒸気とし、さらに蒸気を蒸気タービン設備の補助蒸気として起動時から活用できる。さらに起動完了後の通常運転においても、太陽熱回収により蒸気を発生させ、その蒸気を火力プラント通常運転中のボイラまたはタービンプラントが要求する補助蒸気として活用できる。   However, the present embodiment is not limited to preheating the feed water by providing an auxiliary steam supply system, and a part of the feed water is actively made steam using solar thermal energy, and the steam is started as auxiliary steam for the steam turbine equipment. Can be used from time to time. Furthermore, even in normal operation after completion of startup, steam can be generated by solar heat recovery, and the steam can be used as auxiliary steam required by a boiler or turbine plant in normal operation of a thermal power plant.

通常プラント運転中にボイラプラントが必要とする補助蒸気としてボイラスートブロワ蒸気,ボイラバーナアトマイズ蒸気,重油加熱器蒸気,蒸化器用加熱蒸気、等がある。またタービンプラントが必要とする補助蒸気として空気抽出器駆動蒸気,タービングランドシール蒸気,起動時の脱気器の加熱用蒸気がある。これら各機器が必要とする補助蒸気の一部を、太陽熱回収により生れる蒸気にてまかなえれば大幅な発電効率の改善や発電単価の節減効果が生まれ、同時に火力発電所から出す二酸化炭素発生量も下げられる。   Auxiliary steam required by the boiler plant during normal plant operation includes boiler soot blower steam, boiler burner atomizing steam, heavy oil heater steam, heating steam for evaporators, and the like. The auxiliary steam required by the turbine plant includes air extractor driven steam, turbine ground seal steam, and steam for heating the deaerator at start-up. If some of the auxiliary steam required by these devices can be covered with steam generated by solar heat recovery, a significant improvement in power generation efficiency and a reduction in the unit price of power generation can be achieved. At the same time, the amount of carbon dioxide generated from thermal power plants Is also lowered.

火力発電所で使用される復水器の主空気抽出器の駆動蒸気としては一般的に主蒸気を減圧して用いる。しかし、本実施例では、太陽熱で生じた蒸気を主空気抽出器の駆動蒸気源として活用できるので、従来では主空気抽出器の駆動蒸気源としていた主蒸気を減圧しないで、蒸気タービンの飲み込み蒸気として使用できるので蒸気タービンの出力向上や性能向上が達成できる。また、主空気抽出器の代わりに復水器真空ポンプを使用していた場合、復水器真空ポンプを主空気抽出器に代えてその動力源を太陽熱から発生させた蒸気を用いることで、復水器真空ポンプの駆動動力の節約効果が生れる。さらに、太陽熱から発生させた蒸気を用いた主空気抽出器で復水器真空ポンプよりも復水器真空度をより真空側に上げることにより、蒸気タービンの出力増加や効率改善効果も生じる。   Generally, the main steam is decompressed and used as the driving steam for the main air extractor of the condenser used in the thermal power plant. However, in this embodiment, steam generated by solar heat can be used as a driving steam source for the main air extractor, so that the main steam that has been conventionally used as the driving steam source for the main air extractor is not depressurized, and the swallowing steam of the steam turbine is used. Therefore, it is possible to improve the output and performance of the steam turbine. In addition, when a condenser vacuum pump is used instead of the main air extractor, the condenser vacuum pump is replaced with the main air extractor, and steam is generated from solar heat. This saves the driving power of the water pump vacuum pump. Furthermore, the main air extractor using steam generated from solar heat raises the condenser vacuum degree to the vacuum side more than the condenser vacuum pump, thereby increasing the output of the steam turbine and improving the efficiency.

よって、通常運用時の給水の予熱に留まらず、起動時,通常運用時を通して蒸気タービン設備に対する太陽熱エネルギーの利用範囲を広げることができ、蒸気タービンの出力と効率を向上させることができる。   Therefore, not only the preheating of the water supply during normal operation, but also the range of utilization of solar thermal energy for the steam turbine equipment can be expanded through startup and normal operation, and the output and efficiency of the steam turbine can be improved.

また補助蒸気を、高圧給水加熱器の抽気蒸気の一部として活用することもできる。   The auxiliary steam can also be used as part of the extraction steam of the high-pressure feed water heater.

また、従来の給水を太陽熱集熱装置の熱媒体と熱交換して予熱し、温度上昇した給水を蒸気タービン設備の給水系統に直接戻す蒸気タービンヒートサイクルでは、天気の変化により太陽熱回収熱量が変動し、蒸気タービンサイクルへの回収蒸気流量が時事刻々変化することによる、蒸気タービン出力制御が困難となる課題がある。さらに、電力系統が弱い地域に送電する場合、蒸気タービン出力制御と同時に系統周波数を一定に制御することが困難となる。一方、本発明では、蒸気タービンサイクルに間接的に蒸気タービンヒートサイクルに蒸気を提供する。すなわち、ボイラ給水を太陽熱で加熱し蒸気タービンヒートサイクルの補助蒸気として間接的に太陽熱由来の蒸気を蒸気タービンヒートサイクルの中で利用する。例えば、復水器の主空気抽出機の駆動蒸気として間接的にこの蒸気活用する。すなわち、ボイラ本体からの補助蒸気も復水器の主空気抽出機の駆動蒸気として使う為に、天気の変化による、太陽熱由来の補助蒸気発生量の変動はボイラ本体由来の補助蒸気抽気量の加減により常に補償される。この結果、復水器の真空度が保たれ蒸気タービン出力の変動を少なくできる。   In addition, in the steam turbine heat cycle, where the conventional water supply is preheated by exchanging heat with the heat medium of the solar heat collector and the temperature-increased water supply is directly returned to the water supply system of the steam turbine equipment, the amount of heat recovered by solar heat fluctuates due to weather changes. However, there is a problem that steam turbine output control becomes difficult due to a change in the flow rate of recovered steam to the steam turbine cycle. Furthermore, when power is transmitted to an area where the power system is weak, it is difficult to control the grid frequency at the same time as the steam turbine output control. On the other hand, the present invention provides steam to the steam turbine heat cycle indirectly to the steam turbine cycle. That is, boiler feed water is heated by solar heat, and steam derived from solar heat is indirectly used in the steam turbine heat cycle as auxiliary steam for the steam turbine heat cycle. For example, this steam is indirectly used as the driving steam for the main air extractor of the condenser. In other words, since the auxiliary steam from the boiler body is also used as the driving steam for the main air extractor of the condenser, the fluctuation in the amount of auxiliary steam generated from the solar heat due to changes in the weather causes the amount of auxiliary steam extraction from the boiler body to increase or decrease. Always compensated by As a result, the vacuum degree of the condenser is maintained and the fluctuation of the steam turbine output can be reduced.

火力発電の一形態である汽力発電所における、補助蒸気の蒸気発生源として自らのボイラ蒸気発生系統からの抽気蒸気と、所内ボイラ発生蒸気と、太陽熱集熱装置で太陽熱エネルギーにより発生した水蒸気を活用した火力発電所の補助蒸気系統の例を説明した。なお、汽力発電所の代わりにガスタービンと蒸気タービンを用いた複合発電所の補助蒸気システムの場合でも同様である。また、給水を太陽熱エネルギー回収の熱媒体として直接的に用いて、熱媒体熱交換器20を不要として活用するシステムでも同様である。   Utilizes steam extracted from its boiler steam generation system, steam generated from its boiler steam, and steam generated by solar thermal energy from a solar thermal collector as a steam generation source for auxiliary steam at a steam power plant, a form of thermal power generation An example of an auxiliary steam system for a thermal power plant was explained. The same applies to an auxiliary steam system of a combined power plant that uses a gas turbine and a steam turbine instead of a steam power plant. The same applies to a system that uses water supply directly as a heat medium for solar thermal energy recovery and utilizes the heat medium heat exchanger 20 as unnecessary.

1 主ボイラ
2 高圧タ−ビン
3 中低圧タ−ビン
4 発電機
5 復水器
6 復水ポンプ
12 起動空気抽出器
13 1段目主空気抽出器
15 2段目主空気抽出器
18 低圧給水加熱器
20 熱媒体熱交換器
21 熱媒体循環ポンプ
22 太陽熱集熱装置本体
26 熱媒体冷却器
44 脱気器
50 ボイラ給水ポンプ
51a,51b,51c 高圧給水加熱器
57 ボイラ1次過熱器
58 ボイラ2次過熱器
69 起動空気抽出器出口消音器
82 ボイラ再熱器
97 インタークーラ
98 アフタークーラ
107 所内ボイラ
110 補助蒸気母管
113 熱媒体循環系統
114 バイパス系統
DESCRIPTION OF SYMBOLS 1 Main boiler 2 High pressure turbine 3 Medium / low pressure turbine 4 Generator 5 Condenser 6 Condensate pump 12 Startup air extractor 13 First stage main air extractor 15 Second stage main air extractor 18 Low pressure feed water heating 20 Heat medium heat exchanger 21 Heat medium circulation pump 22 Solar heat collector main body 26 Heat medium cooler 44 Deaerator 50 Boiler feed pumps 51a, 51b, 51c High pressure feed water heater 57 Boiler primary superheater 58 Boiler secondary Superheater 69 Start-up air extractor outlet silencer 82 Boiler reheater 97 Intercooler 98 After cooler 107 In-house boiler 110 Auxiliary steam mother pipe 113 Heat medium circulation system 114 Bypass system

Claims (5)

化石燃料を焚いて蒸気を生成するボイラと、該ボイラで生成した蒸気で駆動する蒸気タービンと、該蒸気タービンを駆動した蒸気を復水する復水器と、該復水器から出た復水を前記ボイラに供給する給水系統と、前記蒸気タービンから抽気した蒸気を用いて駆動する補助機器とを有する蒸気タービン設備と、太陽熱を用いて熱媒体を加熱する太陽熱集熱装置とを備えた火力発電プラントであって、
前記給水系統から抜き出した給水の一部と前記太陽熱集熱装置で加熱した前記熱媒体とを熱交換させて補助蒸気を生成し、前記補助蒸気を前記補助機器に駆動用蒸気として供給する補助蒸気供給系統を備えたことを特徴とする火力発電プラント。
A boiler that generates steam by fossil fuel, a steam turbine that is driven by the steam generated by the boiler, a condenser that condenses the steam that has driven the steam turbine, and a condensate that is discharged from the condenser A steam power plant comprising: a water supply system that supplies the boiler to the boiler; steam turbine equipment having auxiliary equipment that is driven using steam extracted from the steam turbine; and a solar heat collector that heats the heat medium using solar heat A power plant,
Auxiliary steam that generates a supplemental steam by exchanging heat between a part of the feed water extracted from the water supply system and the heat medium heated by the solar heat collector, and supplies the supplemental steam to the supplementary equipment as a drive steam A thermal power plant characterized by comprising a supply system.
請求項1に記載の火力発電プラントにおいて、
前記蒸気タービン設備は、前記補助機器として前記復水器内の空気を抽出する主空気抽出器を備えることを特徴とする火力発電プラント。
The thermal power plant according to claim 1,
The said steam turbine equipment is equipped with the main air extractor which extracts the air in the said condenser as the said auxiliary equipment, The thermal power plant characterized by the above-mentioned.
請求項2に記載の火力発電プラントにおいて、
前記給水系統は、前記復水器から出た復水を昇圧する復水ポンプと、前記蒸気タービンから抽気した抽気蒸気で復水を加熱する低圧給水加熱器と、復水を脱気する脱気器と、脱気器出口ボイラ給水を昇圧するボイラ給水ポンプと、前記蒸気タービンから抽気した抽気蒸気でボイラ給水ポンプ出口給水を加熱する高圧給水加熱器とを備え、
前記補助蒸気供給系統は、前記補助蒸気を前記蒸気タービンから抽気した抽気蒸気と共に前記高圧給水加熱器に供給することを特徴とする火力発電プラント。
The thermal power plant according to claim 2,
The water supply system includes a condensate pump that boosts the condensate discharged from the condenser, a low-pressure feed water heater that heats the condensate with extracted steam extracted from the steam turbine, and a deaerator that degass the condensate A boiler feed water pump that pressurizes the deaerator outlet boiler feed water, and a high-pressure feed water heater that heats the boiler feed pump outlet feed water with the extracted steam extracted from the steam turbine,
The auxiliary steam supply system supplies the auxiliary steam to the high-pressure feed water heater together with extracted steam extracted from the steam turbine.
請求項3に記載の火力発電プラントにおいて、
前記蒸気タービン設備は、前記補助蒸気供給系統から供給された前記補助蒸気を、ボイラ補助蒸気として用いることを特徴とする火力発電プラント。
In the thermal power plant according to claim 3,
The steam turbine facility uses the auxiliary steam supplied from the auxiliary steam supply system as boiler auxiliary steam.
請求項3に記載の火力発電プラントにおいて、
前記蒸気タービン設備は、前記補助蒸気供給系統から供給された前記補助蒸気をタービン機器の補助蒸気として用いることを特徴とする火力発電プラント。
In the thermal power plant according to claim 3,
The steam turbine facility uses the auxiliary steam supplied from the auxiliary steam supply system as auxiliary steam for turbine equipment.
JP2011053692A 2011-03-11 2011-03-11 Thermal power plant Active JP5463313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011053692A JP5463313B2 (en) 2011-03-11 2011-03-11 Thermal power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011053692A JP5463313B2 (en) 2011-03-11 2011-03-11 Thermal power plant

Publications (2)

Publication Number Publication Date
JP2012189008A true JP2012189008A (en) 2012-10-04
JP5463313B2 JP5463313B2 (en) 2014-04-09

Family

ID=47082441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011053692A Active JP5463313B2 (en) 2011-03-11 2011-03-11 Thermal power plant

Country Status (1)

Country Link
JP (1) JP5463313B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014105612A (en) * 2012-11-27 2014-06-09 Kubota Kankyo Service Kk Waste heat recovery facility, waste heat recovery method and waste treatment furnace
CN109826681A (en) * 2019-02-02 2019-05-31 华电电力科学研究院有限公司 A kind of the industrial heating system and its operation method integrated for Combined cycle gas-steam turbine unit steam extraction
CN111365086A (en) * 2020-05-07 2020-07-03 西安西热节能技术有限公司 Shutdown non-shutdown system and method based on molten salt heat storage

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105333415A (en) * 2015-11-25 2016-02-17 中国能源建设集团浙江省电力设计院有限公司 Water supply system of low-capacity external type steam cooler

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039367A (en) * 2006-08-10 2008-02-21 Kawasaki Heavy Ind Ltd Solar thermal power generation facility and heat medium supply facility

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039367A (en) * 2006-08-10 2008-02-21 Kawasaki Heavy Ind Ltd Solar thermal power generation facility and heat medium supply facility

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014105612A (en) * 2012-11-27 2014-06-09 Kubota Kankyo Service Kk Waste heat recovery facility, waste heat recovery method and waste treatment furnace
CN109826681A (en) * 2019-02-02 2019-05-31 华电电力科学研究院有限公司 A kind of the industrial heating system and its operation method integrated for Combined cycle gas-steam turbine unit steam extraction
CN109826681B (en) * 2019-02-02 2023-09-08 华电电力科学研究院有限公司 Industrial heating system for gas-steam combined cycle unit steam extraction integration and operation method thereof
CN111365086A (en) * 2020-05-07 2020-07-03 西安西热节能技术有限公司 Shutdown non-shutdown system and method based on molten salt heat storage

Also Published As

Publication number Publication date
JP5463313B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
US8938966B2 (en) Storage of electrical energy with thermal storage and return through a thermodynamic cycle
RU2595192C2 (en) Power plant with built-in pre-heating of fuel gas
JP5320423B2 (en) Thermal power plant, steam turbine equipment, and control method thereof
RU2009333C1 (en) Combined steam-gas power plant and method of its operation
RU2688078C2 (en) Coaling welded electric installation with oxy-ignition with heat integrating
JP5526219B2 (en) Thermal power generation system and operation method thereof, thermal power generation system modification method, steam turbine equipment used in thermal power generation system, carbon dioxide separation and recovery device, overheat reducer
JP2012158996A (en) Thermal power plant with carbon dioxide capture scrubbing equipment
CN110454769A (en) A kind of Generator Set high back pressure steam feed pump control system and control method
KR20130025907A (en) Energy recovery and steam supply for power augmentation in a combined cycle power generation system
US8205451B2 (en) System and assemblies for pre-heating fuel in a combined cycle power plant
JP7178464B2 (en) Plant and flue gas treatment method
KR20090126255A (en) High efficiency feedwater heater
US20150000249A1 (en) Combined cycle power plant
CN105240061A (en) Ultrahigh-temperature steam power cycle system adopting hydrogen injection burning mix heating
JP5463313B2 (en) Thermal power plant
RU2524588C2 (en) Power plant running on organic fuel with carbon dioxide separator and method of its operation
JPH11173111A (en) Thermal power plant
KR101140126B1 (en) Hybrid of solar thermal power plant and fossil fuel boiler
JP2009097735A (en) Feed-water warming system and exhaust heat recovering boiler
RU2564367C2 (en) Steam-turbine power plant
KR101690384B1 (en) Waste heat recovery apparatus for combustion furnace and method thereof
KR101303811B1 (en) Combined cycle power plant utilizing waste heat
JPH1113488A (en) Full fired heat recovery combined plant using steam cooling type gas turbine
KR101935637B1 (en) Combined cycle power generation system
KR101753526B1 (en) Combined cycle power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R151 Written notification of patent or utility model registration

Ref document number: 5463313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250