JP5526219B2 - Thermal power generation system and operation method thereof, thermal power generation system modification method, steam turbine equipment used in thermal power generation system, carbon dioxide separation and recovery device, overheat reducer - Google Patents

Thermal power generation system and operation method thereof, thermal power generation system modification method, steam turbine equipment used in thermal power generation system, carbon dioxide separation and recovery device, overheat reducer Download PDF

Info

Publication number
JP5526219B2
JP5526219B2 JP2012501527A JP2012501527A JP5526219B2 JP 5526219 B2 JP5526219 B2 JP 5526219B2 JP 2012501527 A JP2012501527 A JP 2012501527A JP 2012501527 A JP2012501527 A JP 2012501527A JP 5526219 B2 JP5526219 B2 JP 5526219B2
Authority
JP
Japan
Prior art keywords
steam
extraction
carbon dioxide
boiler
extracted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012501527A
Other languages
Japanese (ja)
Other versions
JPWO2011104759A1 (en
Inventor
信義 三島
尊 杉浦
哲也 小坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2011104759A1 publication Critical patent/JPWO2011104759A1/en
Application granted granted Critical
Publication of JP5526219B2 publication Critical patent/JP5526219B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は、二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムに関する。   The present invention relates to a fossil fuel-fired thermal power generation system including a carbon dioxide separation and recovery device.

本発明に係る二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムとしては、化石燃料、例えば石炭焚ボイラの排気ガスから二酸化炭素を分離し回収する装置(PCC:Post Combustion CO2 Capture)を備えたシステムがある。As a fossil fuel-fired thermal power generation system equipped with a carbon dioxide separation and recovery device according to the present invention, a device (PCC: Post Combustion CO 2 Capture) that separates and recovers carbon dioxide from fossil fuel, for example, exhaust gas from a coal fired boiler. There is a system with.

一般的にボイラの排ガス中から二酸化炭素を回収する二酸化炭素回収装置では、吸収液循環ポンプを駆動して吸収液を吸収塔と再生塔との間で循環させ、吸収塔にてボイラ排ガスに含まれた二酸化炭素を吸収液に吸収させ、再生塔でこの吸収液に吸収した二酸化炭素を分離して回収している。   Generally, in a carbon dioxide recovery device that recovers carbon dioxide from boiler exhaust gas, the absorption liquid is circulated between the absorption tower and the regeneration tower by driving the absorption liquid circulation pump, and is contained in the boiler exhaust gas in the absorption tower. The absorbed carbon dioxide is absorbed in the absorption liquid, and the carbon dioxide absorbed in the absorption liquid is separated and recovered by the regeneration tower.

即ち、ボイラ排ガス中の二酸化炭素成分と吸収液を吸収塔内で接触させて約40℃程度の吸収液がガス中の二酸化炭素との化学反応(発熱反応)により二酸化炭素を吸収する。   That is, the carbon dioxide component in the boiler exhaust gas is brought into contact with the absorption liquid in the absorption tower, and the absorption liquid at about 40 ° C. absorbs carbon dioxide through a chemical reaction (exothermic reaction) with the carbon dioxide in the gas.

この時の吸収液と二酸化炭素の化学反応により約70℃程度の二酸化炭素に富んだリッチ吸収液は吸収塔を出た後で、再生塔から供給される再生された約120℃の吸収液(リーン吸収液と呼ぶ)と熱交換を行い約100℃程度まで昇温し、熱交換された後のリッチ吸収液は再生塔でさらに120℃〜130℃程度に加熱されてリッチ吸収液に吸収した二酸化炭素を分離する。再生塔で二酸化炭素を分離した吸収液はリーン吸収液となって再度吸収塔に導入されてボイラ排ガス中の二酸化炭素を吸収する。   At this time, the rich absorption liquid rich in carbon dioxide of about 70 ° C. by the chemical reaction between the absorption liquid and carbon dioxide exits the absorption tower, and is then regenerated about 120 ° C. absorption liquid supplied from the regeneration tower ( This is called lean absorption liquid) and heated to about 100 ° C., and the rich absorption liquid after the heat exchange is further heated to about 120 ° C. to 130 ° C. in the regeneration tower and absorbed into the rich absorption liquid. Separate carbon dioxide. The absorption liquid from which carbon dioxide has been separated in the regeneration tower becomes a lean absorption liquid and is again introduced into the absorption tower to absorb the carbon dioxide in the boiler exhaust gas.

この際、再生塔内の吸収液を二酸化炭素を分離させてリーン吸収液となるように加熱するために、再生塔に加熱蒸気を供給するリボイラは多量の加熱蒸気を発生させる必要がある。   At this time, in order to heat the absorption liquid in the regeneration tower so as to separate carbon dioxide into a lean absorption liquid, the reboiler that supplies the heating steam to the regeneration tower needs to generate a large amount of heating steam.

そこで、特許第4274846号公報には、二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムとして、高圧タービン,中圧タービン及び低圧タービンを有する蒸気タービンと、これらを駆動する蒸気を発生させるためのボイラと、ボイラの燃焼排ガスから二酸化炭素を吸収除去するための二酸化炭素吸収液を備える二酸化炭素吸収塔と、二酸化炭素を吸収した該二酸化炭素吸収液を再生するための再生塔と、除去された二酸化炭素を圧縮するためのコンプレッサと、高圧タービンの排出蒸気の一部により駆動するコンプレッサ用のタービンと、中圧タービンの排出蒸気の一部により駆動する補機用タービンと、コンプレッサ用タービン及び補機用タービンの排出蒸気を再生塔のリボイラに加熱源として供給するための供給管とを有するシステムが開示されている。   Therefore, Japanese Patent No. 4274646 discloses a fossil fuel-fired thermal power generation system equipped with a carbon dioxide separation and recovery device for generating a steam turbine having a high-pressure turbine, an intermediate-pressure turbine, and a low-pressure turbine, and steam for driving them. Boiler, a carbon dioxide absorption tower having a carbon dioxide absorption liquid for absorbing and removing carbon dioxide from the combustion exhaust gas of the boiler, and a regeneration tower for regenerating the carbon dioxide absorption liquid that has absorbed carbon dioxide are removed. A compressor for compressing the carbon dioxide, a compressor turbine driven by a part of the exhaust steam of the high pressure turbine, an auxiliary turbine driven by a part of the exhaust steam of the intermediate pressure turbine, a compressor turbine, A supply pipe for supplying the exhaust steam of the auxiliary turbine to the reboiler of the regeneration tower as a heating source; System having is disclosed.

特許第4274846号公報Japanese Patent No. 4274646

上記従来技術では、リボイラの加熱源に用いるために、中圧タービンの排出蒸気を用いることによって、タービン効率が低下することを補うため、排出蒸気が有する余分なエネルギーを背圧タービンに導入して動力として回収している。   In the above prior art, in order to compensate for the decrease in turbine efficiency by using the exhaust steam of the intermediate pressure turbine for use as a reboiler heating source, excess energy of the exhaust steam is introduced into the back pressure turbine. It is recovered as power.

しかしながら、リボイラが何らかの原因で緊急停止した際に、リボイラからの逆流蒸気によりタービンが加速する不具合を予防するために、リボイラへの送気系統に逆止弁や止め弁を設置する必要があり、また、送気配管や流量計の圧力損失を考慮すると、背圧タービンの排気圧力が高くなってしまい、背圧タービンでの動力回収量が減少するため、効率向上は限定的である。   However, when the reboiler stops for an emergency for some reason, it is necessary to install a check valve or stop valve in the air supply system to the reboiler in order to prevent the turbine from accelerating due to the backflow steam from the reboiler. Further, considering the pressure loss of the air supply pipe and the flow meter, the exhaust pressure of the back pressure turbine becomes high, and the amount of power recovery in the back pressure turbine decreases, so that the efficiency improvement is limited.

そこで、本発明は、蒸気タービンからリボイラへ送られる抽気蒸気が有する余分な過熱エネルギーをより多く、蒸気タービンの給水系統に回収して、ボイラを含めた効率の向上を図ることができる二酸化炭素分離回収装置を備えた火力発電システムを提供することを目的とする。   In view of this, the present invention provides a carbon dioxide separation that can improve the efficiency including the boiler by recovering more excess superheat energy of the extracted steam sent from the steam turbine to the reboiler and collecting it in the water supply system of the steam turbine. It aims at providing the thermal power generation system provided with the collection | recovery apparatus.

上記目的を達成するため、ボイラと、ボイラで生成した蒸気で駆動する蒸気タービンと、蒸気タービンを駆動した蒸気を冷却して復水する復水器と、復水器で復水した給水をボイラに送る給水系統と、ボイラで発生したボイラ排ガスから二酸化炭素を分離する二酸化炭素分離回収装置と、を備えた火力発電システムにおいて、蒸気タービンから抽気され、二酸化炭素分離回収装置のリボイラへ送気される抽気蒸気と、復水器からボイラへ送られる給水とを熱交換させる。   To achieve the above object, a boiler, a steam turbine driven by steam generated by the boiler, a condenser that cools and condenses the steam that drives the steam turbine, and water that is condensed by the condenser is supplied to the boiler. In a thermal power generation system equipped with a water supply system to be sent to a boiler and a carbon dioxide separation and recovery device for separating carbon dioxide from boiler exhaust gas generated in the boiler, the steam is extracted from the steam turbine and sent to the reboiler of the carbon dioxide separation and recovery device Heat exchange between the extracted steam and the feed water sent from the condenser to the boiler.

本発明によれば、二酸化炭素分離回収装置を備えた火力発電システムにおいて、蒸気タービンからリボイラへ送られる抽気蒸気が有する余分な過熱エネルギーをより多く、蒸気タービンの給水系統に回収して、ボイラを含めた効率向上を図ることができる。   According to the present invention, in a thermal power generation system equipped with a carbon dioxide separation and recovery device, more excess superheat energy of the extracted steam sent from the steam turbine to the reboiler is recovered in the water supply system of the steam turbine, and the boiler is The efficiency improvement including it can be aimed at.

また、ボイラの燃料使用量を大幅に下げることができ、ボイラの排ガス量が低減されボイラからの二酸化炭素の排出量を低減できる。   In addition, the amount of fuel used by the boiler can be significantly reduced, the amount of exhaust gas from the boiler can be reduced, and the amount of carbon dioxide emitted from the boiler can be reduced.

第1の実施例に係る火力発電システムの蒸気タービン設備側システムの概略構成図である。It is a schematic block diagram of the steam turbine equipment side system of the thermal power generation system which concerns on a 1st Example. 第1の実施例に係る火力発電システムの二酸化炭素分離回収装置側システムの概略構成図である。It is a schematic block diagram of the carbon dioxide separation and recovery apparatus side system of the thermal power generation system which concerns on a 1st Example. 第2の実施例に係る二酸化炭素分離回収装置を備えた火力発電システムの蒸気タービン設備側システムの概略構成図である。It is a schematic block diagram of the steam turbine equipment side system of the thermal power generation system provided with the carbon dioxide separation and recovery device concerning the 2nd example. 第3の実施例に係る二酸化炭素分離回収装置を備えた火力発電システムの蒸気タービン設備側システムの概略構成図である。It is a schematic block diagram of the steam turbine equipment side system of the thermal power generation system provided with the carbon dioxide separation-and-recovery apparatus which concerns on a 3rd Example.

本発明の実施例である火力発電システムについて図面を参照して以下に説明する。なお、各図面を通し、同等の構成要素には同一の符号を付してある。   A thermal power generation system according to an embodiment of the present invention will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected to the equivalent component through each drawing.

本発明の第1実施例である火力発電システムについて図1および図2を引用して説明する。本実施例の火力発電システムのうち、蒸気タービン設備側システムの概略構成を図1に、二酸化炭素分離回収装置側システムの概略構成を図2に図示する。なお、本実施例は、蒸気タービン設備100および二酸化炭素分離回収装置200が新設の場合を示すものである。   A thermal power generation system according to a first embodiment of the present invention will be described with reference to FIGS. 1 and 2. Of the thermal power generation system of this embodiment, the schematic configuration of the steam turbine equipment side system is shown in FIG. 1, and the schematic configuration of the carbon dioxide separation and recovery device side system is shown in FIG. In addition, a present Example shows the case where the steam turbine equipment 100 and the carbon dioxide separation and recovery apparatus 200 are newly installed.

本実施例に係る火力発電システムの蒸気タービン設備100について説明する。図1に示したように、蒸気タービン設備100は、化石燃料を焚いて蒸気を生成するボイラ1と、ボイラ1で生成した蒸気で回転駆動する蒸気タービンを構成する高圧タービン2,中圧タービン3、および低圧タービン4と、蒸気タービンの回転力を電力に変換する発電機5と、蒸気タービンを回転駆動した蒸気を凝縮して復水化させる復水器20と、復水器20で復水化した給水をボイラ1に送る給水系統101とを備える。   The steam turbine equipment 100 of the thermal power generation system according to the present embodiment will be described. As shown in FIG. 1, the steam turbine facility 100 includes a boiler 1 that generates fossil fuel and generates steam, and a high-pressure turbine 2 and an intermediate-pressure turbine 3 that constitute a steam turbine that is rotationally driven by the steam generated by the boiler 1. , And a low-pressure turbine 4, a generator 5 that converts the rotational force of the steam turbine into electric power, a condenser 20 that condenses and condenses the steam that has rotationally driven the steam turbine, and condensate in the condenser 20. The water supply system 101 which sends the converted water supply to the boiler 1 is provided.

ボイラ1は、化石燃料を燃焼させて得た熱で復水器20から供給された給水を加熱し、高温高圧の蒸気を生成する。ボイラ1で生成された蒸気は、高圧タービン2に送られ、高圧タービン2で動力を発生して減圧される。高圧タービン2を駆動した蒸気は、ボイラ1に再度戻され、ボイラ1で再度加熱されて高温再熱蒸気となる。ボイラ1で再度加熱された再熱蒸気はボイラ1から中圧タービン3に送られ、中圧タービン3で動力を発生して減圧される。中圧タービン3を駆動した蒸気は、クロスオーバ管48を流下して低圧タービン4に送られ、低圧タービン4で動力を発生し、さらに減圧される。低圧タービン4を駆動した蒸気は、復水器20に送られ、復水器20で冷却されて凝縮し、復水される。復水器20で復水化された復水は、給水として給水系統101を流下し、再びボイラ1に供給される。   The boiler 1 heats feed water supplied from the condenser 20 with heat obtained by burning fossil fuel, and generates high-temperature and high-pressure steam. The steam generated in the boiler 1 is sent to the high-pressure turbine 2, and power is generated in the high-pressure turbine 2 to reduce the pressure. The steam that has driven the high-pressure turbine 2 is returned again to the boiler 1 and is heated again by the boiler 1 to become high-temperature reheated steam. The reheated steam heated again by the boiler 1 is sent from the boiler 1 to the intermediate pressure turbine 3, and the intermediate pressure turbine 3 generates power to reduce the pressure. The steam that has driven the intermediate-pressure turbine 3 flows down the crossover pipe 48 and is sent to the low-pressure turbine 4. The low-pressure turbine 4 generates power and is further depressurized. The steam that has driven the low-pressure turbine 4 is sent to the condenser 20, where it is cooled, condensed, and condensed. The condensate condensated by the condenser 20 flows down the water supply system 101 as water supply, and is supplied to the boiler 1 again.

高圧タービン2,中圧タービン3,低圧タービン4、および発電機5はタービンロータを介して接続されており、タービンの動力が、発電機5で電力として取り出される。   The high-pressure turbine 2, the intermediate-pressure turbine 3, the low-pressure turbine 4, and the generator 5 are connected via a turbine rotor, and the power of the turbine is taken out as electric power by the generator 5.

給水系統101は、復水器20からボイラ1に向かって、順に復水ポンプ21,グランド復水器22,第1低圧給水加熱器24,第2低圧給水加熱器25,第3低圧給水加熱器26,第4低圧給水加熱器27,脱気器8,ボイラ給水ポンプ入口昇圧ポンプ9,ボイラ給水ポンプ10,高圧給水加熱器11を備える。   The water supply system 101 is a condenser pump 21, a ground condenser 22, a first low-pressure feed water heater 24, a second low-pressure feed water heater 25, and a third low-pressure feed water heater in this order from the condenser 20 toward the boiler 1. 26, a fourth low-pressure feed water heater 27, a deaerator 8, a boiler feed pump inlet booster pump 9, a boiler feed pump 10, and a high-pressure feed water heater 11.

第1低圧給水加熱器24,第2低圧給水加熱器25,第3低圧給水加熱器26、および第4低圧給水加熱器27には、低圧タービン4からそれぞれ第1抽気管44,第2抽気管43,第3抽気管42,第4抽気管41を経て抽気蒸気が加熱源として送られる。   The first low pressure feed water heater 24, the second low pressure feed water heater 25, the third low pressure feed water heater 26, and the fourth low pressure feed water heater 27 are respectively connected to the first extraction pipe 44 and the second extraction pipe from the low pressure turbine 4. 43, extraction steam is sent as a heating source through the third extraction pipe 42 and the fourth extraction pipe 41.

復水器20で復水した給水は、復水ポンプ21に送られて昇圧され、グランド復水器22に送られる。グランド復水器22を通過した給水は、順次、第1低圧給水加熱器24,第2低圧給水加熱器25,第3低圧給水加熱器26、および第4低圧給水加熱器27を流下しつつ、各給水加熱器で抽気蒸気と熱交換して加熱される。   The feed water condensed by the condenser 20 is sent to the condensate pump 21 to be boosted and sent to the ground condenser 22. The feed water that has passed through the ground condenser 22 flows down the first low-pressure feed water heater 24, the second low-pressure feed water heater 25, the third low-pressure feed water heater 26, and the fourth low-pressure feed water heater 27 sequentially. Heat is exchanged with extracted steam in each feed water heater.

第2低圧給水加熱器25のドレンは、第2低圧給水加熱器ドレン管35を流下して第1低圧給水加熱器24に送られる。第1低圧給水加熱器24のドレンは第1低圧給水加熱器ドレン管36を流下して復水器20に回収される。一方、第4低圧給水加熱器27のドレンは、第4低圧給水加熱器ドレン管33を流下して第3低圧給水加熱器26に送られる。第3低圧給水加熱器26のドレンは、第3低圧給水加熱器ドレンポンプ37に送られて昇圧され、第3低圧給水加熱器ドレン管34を流下して給水系統101を構成する第3低圧給水加熱器ドレンポンプ出口復水管38内に戻される。なお、第3低圧給水加熱器ドレンポンプ出口復水管38は、第3低圧給水加熱器26と第4低圧給水加熱器27とに接続する配管である。   The drain of the second low-pressure feed water heater 25 flows down the second low-pressure feed water heater drain pipe 35 and is sent to the first low-pressure feed water heater 24. The drain of the first low-pressure feed water heater 24 flows down the first low-pressure feed water heater drain pipe 36 and is collected in the condenser 20. On the other hand, the drain of the fourth low-pressure feed water heater 27 flows down the fourth low-pressure feed water heater drain pipe 33 and is sent to the third low-pressure feed water heater 26. The drain of the third low-pressure feed water heater 26 is sent to the third low-pressure feed water heater drain pump 37 to be pressurized, and flows down the third low-pressure feed water heater drain pipe 34 to constitute the feed water system 101. It returns to the heater drain pump outlet condensate pipe 38. The third low-pressure feed water heater drain pump outlet condensate pipe 38 is a pipe connected to the third low-pressure feed water heater 26 and the fourth low-pressure feed water heater 27.

次に、二酸化炭素分離回収装置200について説明する。図2に示したように、二酸化炭素分離回収装置200は、蒸気タービン設備100のボイラ1から排出されたボイラ排ガスに含まれる二酸化炭素を吸収液で吸収する吸収塔65と、吸収塔65で二酸化炭素を吸収した吸収液から二酸化炭素を分離する再生塔72と、蒸気を生成し、蒸気を吸収液から二酸化炭素を分離するための熱源として再生塔72に供給するリボイラ17とを備える。   Next, the carbon dioxide separation and recovery apparatus 200 will be described. As shown in FIG. 2, the carbon dioxide separation and recovery apparatus 200 includes an absorption tower 65 that absorbs carbon dioxide contained in boiler exhaust gas discharged from the boiler 1 of the steam turbine equipment 100 with an absorption liquid, and a carbon dioxide that is absorbed by the absorption tower 65. The regenerator 72 separates carbon dioxide from the absorbing liquid that has absorbed carbon, and the reboiler 17 that generates steam and supplies the steam to the regenerating tower 72 as a heat source for separating carbon dioxide from the absorbing liquid.

ボイラ1は、化石燃料を燃焼させた際に、二酸化炭素を含んだボイラ排ガスを発生させる。ボイラ1で発生したボイラ排ガスは、ボイラ1からボイラ排ガス管60を流下してボイラ排ガス昇圧ファン61に送られ、昇圧される。ボイラ排ガス昇圧ファン61で昇圧したボイラ排ガスは、ボイラ排ガス冷却器62に送られて冷却された後、吸収塔65に送られる。   The boiler 1 generates boiler exhaust gas containing carbon dioxide when fossil fuel is burned. The boiler exhaust gas generated in the boiler 1 flows down from the boiler 1 through the boiler exhaust pipe 60 and is sent to the boiler exhaust gas booster fan 61 where the pressure is increased. The boiler exhaust gas boosted by the boiler exhaust gas booster 61 is sent to the boiler exhaust gas cooler 62 and cooled, and then sent to the absorption tower 65.

吸収塔65に送られたボイラ排ガスは、吸収塔65内で二酸化炭素ガスを吸収液に吸収され、二酸化炭素を含まない処理ガスとなる。処理ガスは、吸収塔65から吸収塔出口ボイラ排ガス管66を流下して煙突67に送られ、煙突67から大気に排出される。   The boiler exhaust gas sent to the absorption tower 65 is absorbed into the absorption liquid in the absorption tower 65 and becomes a processing gas containing no carbon dioxide. The processing gas flows down from the absorption tower 65 through the absorption tower outlet boiler exhaust gas pipe 66, is sent to the chimney 67, and is discharged from the chimney 67 to the atmosphere.

一方、ボイラ1から送られたボイラ排ガスのうち、二酸化炭素分離回収過程を経ないボイラ排ガスは、ボイラ排ガス昇圧ファン61の上流でボイラ排ガス管60から分岐したバイパスガス管64を流下し、吸収塔出口ボイラ排ガス管66に合流し、煙突67に導かれる。バイパスガス管64には、バイパスガス管64の流量を制御するバイパスバタフライ弁63が設けられている。バイパスバタフライ弁63の開度を制御することにより、二酸化炭素分離回収装置200をバイパスするボイラ排ガスの流量を制御する。   On the other hand, of the boiler exhaust gas sent from the boiler 1, the boiler exhaust gas that has not undergone the carbon dioxide separation and recovery process flows down the bypass gas pipe 64 branched from the boiler exhaust gas pipe 60 upstream of the boiler exhaust gas booster fan 61, and the absorption tower It joins the outlet boiler exhaust gas pipe 66 and is led to the chimney 67. The bypass gas pipe 64 is provided with a bypass butterfly valve 63 that controls the flow rate of the bypass gas pipe 64. By controlling the opening degree of the bypass butterfly valve 63, the flow rate of the boiler exhaust gas that bypasses the carbon dioxide separation and recovery device 200 is controlled.

吸収塔65内でボイラ排ガスに含まれた二酸化炭素ガスを吸収して、二酸化炭素を多く含んだリッチ吸収液は、リッチ吸収液移送ポンプ68に送られ昇圧された後、吸収液熱交換器69に送られ、約100℃程度まで加熱される。吸収液熱交換器69で加熱されたリッチ吸収液は、再生塔72に送られ、再生塔72内でさらに120℃〜130℃程度まで加熱され、ボイラ排ガスから吸収した二酸化炭素ガスを分離する。   The rich absorbing liquid containing a large amount of carbon dioxide is absorbed in the boiler tower exhaust gas in the absorption tower 65 and sent to the rich absorbing liquid transfer pump 68 to be pressurized, and then the absorbing liquid heat exchanger 69. And heated to about 100 ° C. The rich absorbent heated by the absorbent heat exchanger 69 is sent to the regeneration tower 72 and further heated to about 120 ° C. to 130 ° C. in the regeneration tower 72 to separate carbon dioxide gas absorbed from the boiler exhaust gas.

リッチ吸収液から分離された二酸化炭素ガスは、再生塔72から出口ガス冷却器73に送られ、冷却される。出口ガス冷却器73で冷却された二酸化炭素ガスは、リフラックスドラム77に送られ、ガス中に含まれる水分が分離される。リフラックスドラム77内で水分が分離された二酸化炭素ガスは、二酸化炭素排気管78を流下して二酸化炭素の液化貯留設備(図示せず)に供給される。   The carbon dioxide gas separated from the rich absorbent is sent from the regeneration tower 72 to the outlet gas cooler 73 and cooled. The carbon dioxide gas cooled by the outlet gas cooler 73 is sent to the reflux drum 77, and moisture contained in the gas is separated. The carbon dioxide gas from which moisture has been separated in the reflux drum 77 flows down the carbon dioxide exhaust pipe 78 and is supplied to a liquefied carbon dioxide storage facility (not shown).

リフラックスドラム77内で二酸化炭素分離回収装置から分離された水分は、リフラックスドラム77からリフラックスドラムポンプ76に送られて昇圧され、再生塔72に戻される。   The water separated from the carbon dioxide separation / recovery device in the reflux drum 77 is sent from the reflux drum 77 to the reflux drum pump 76, pressurized, and returned to the regeneration tower 72.

再生塔72内の吸収液の一部は、再生塔内吸収液抜き出し管74を通じて抜き出され、リボイラ17に送られる。リボイラ17に送られた吸収液は、リボイラ17内で加熱されて蒸気となる。リボイラ17内で蒸気となった吸収液は、リボイラ出口蒸気配管75を流下して再生塔72に戻される。   A part of the absorption liquid in the regeneration tower 72 is extracted through the regeneration tower absorption liquid extraction pipe 74 and sent to the reboiler 17. The absorption liquid sent to the reboiler 17 is heated in the reboiler 17 to become steam. The absorbing liquid that has become steam in the reboiler 17 flows down the reboiler outlet steam pipe 75 and is returned to the regeneration tower 72.

後述するように、リボイラ17には、抽気蒸気送気系統102を介して中圧タービン3から抽気された抽気蒸気が加熱源として供給されている。リボイラ17内において、供給された抽気蒸気で吸収液を加熱し、蒸気を発生させる。   As will be described later, extracted steam extracted from the intermediate pressure turbine 3 is supplied to the reboiler 17 as a heating source via the extracted steam supply system 102. In the reboiler 17, the absorbing liquid is heated by the supplied extracted steam to generate steam.

再生塔72内で二酸化炭素ガスを分離した吸収液は、再生塔72から吸収液熱交換器69に送られ、吸収液熱交換器69内でリッチ吸収液と熱交換して冷却される。吸収液熱交換器69内で冷却された吸収液は、リーン吸収液移送ポンプ71に送られて昇圧され、リーン吸収液冷却器70に送られる。リーン吸収液冷却器70に送られた吸収液は、冷却された後、吸収塔65に戻される。以上説明したように、吸収液は、吸収塔65と再生塔72との間を循環するように構成されている。   The absorption liquid from which the carbon dioxide gas is separated in the regeneration tower 72 is sent from the regeneration tower 72 to the absorption liquid heat exchanger 69, and is cooled by exchanging heat with the rich absorption liquid in the absorption liquid heat exchanger 69. The absorption liquid cooled in the absorption liquid heat exchanger 69 is sent to the lean absorption liquid transfer pump 71 to be pressurized, and sent to the lean absorption liquid cooler 70. The absorption liquid sent to the lean absorption liquid cooler 70 is returned to the absorption tower 65 after being cooled. As described above, the absorption liquid is configured to circulate between the absorption tower 65 and the regeneration tower 72.

蒸気タービン設備100の説明に戻る。図1に示したように、本実施例の火力発電システムに係る蒸気タービン設備100は、中圧タービン3から抽気した抽気蒸気を二酸化炭素分離回収装置200のリボイラ17に供給する抽気蒸気送気系統102を備える。   Returning to the description of the steam turbine equipment 100. As shown in FIG. 1, the steam turbine equipment 100 according to the thermal power generation system of the present embodiment is an extraction steam supply system that supplies extracted steam extracted from the intermediate pressure turbine 3 to the reboiler 17 of the carbon dioxide separation and recovery device 200. 102.

抽気蒸気送気系統102は、中圧タービン3の中間段落に設けられた抽気機構(図示せず)とリボイラ17とに接続している。   The extraction steam supply system 102 is connected to an extraction mechanism (not shown) provided in an intermediate stage of the intermediate pressure turbine 3 and the reboiler 17.

抽気蒸気送気系統102は、中圧タービン3からリボイラ17に向かって、順に抽気蒸気の逆流を防止する抽気逆止弁12,抽気蒸気過熱低減器入口弁54,抽気蒸気の過熱低減処理を行う抽気蒸気過熱低減器14,抽気蒸気過熱低減器出口弁15,リボイラ17へ供給する抽気蒸気量および圧力を制御するリボイラ加熱蒸気入口出力制御弁16、およびリボイラ17へ供給する蒸気の圧力を検出するリボイラ加熱蒸気圧力検出器58を備える。   The extraction steam supply system 102 performs an extraction check valve 12, an extraction steam superheat reducer inlet valve 54, and an extraction steam superheat reduction process for preventing the backflow of the extraction steam in order from the intermediate pressure turbine 3 toward the reboiler 17. The extraction steam superheat reducer 14, the extraction steam superheat reducer outlet valve 15, the reboiler heating steam inlet output control valve 16 that controls the amount and pressure of the extraction steam supplied to the reboiler 17, and the pressure of the steam supplied to the reboiler 17 are detected. A reboiler heating steam pressure detector 58 is provided.

中圧タービン3を流下する蒸気の一部は、中間段落に設けられた抽気機構によって抽気され、抽気蒸気として抽気蒸気送気系統102を流下して、抽気蒸気過熱低減器14に送られる。抽気蒸気過熱低減器14に送られた抽気蒸気は、抽気蒸気過熱低減器14内で給水系統101から送られてきた給水と熱交換して、送気系統の圧力の飽和温度近くまで冷却される。   A part of the steam flowing down the intermediate pressure turbine 3 is extracted by the extraction mechanism provided in the intermediate stage, flows down the extraction steam supply system 102 as extraction steam, and is sent to the extraction steam superheat reducer 14. The extracted steam sent to the extracted steam superheat reducer 14 is cooled to near the saturation temperature of the pressure of the air supply system by exchanging heat with the feed water sent from the water supply system 101 in the extracted steam superheat reducer 14. .

抽気蒸気過熱低減器14内で冷却され減温した抽気蒸気は、リボイラ加熱蒸気入口出力制御弁16を通過し、リボイラ17へ送られる。   The extracted steam cooled and reduced in temperature in the extracted steam superheat reducer 14 passes through the reboiler heating steam inlet output control valve 16 and is sent to the reboiler 17.

リボイラ加熱蒸気入口出力制御弁16は、リボイラ17の入口に設置されたリボイラ加熱蒸気圧力検出器58の検出信号に基づき開閉制御される。リボイラ加熱蒸気入口出力制御弁16の開閉制御によって、リボイラへ供給する抽気蒸気の圧力と蒸気流量が制御される。   The reboiler heating steam inlet output control valve 16 is controlled to open and close based on the detection signal of the reboiler heating steam pressure detector 58 installed at the inlet of the reboiler 17. By controlling the opening and closing of the reboiler heating steam inlet output control valve 16, the pressure and steam flow rate of the extracted steam supplied to the reboiler are controlled.

リボイラ17へ送られた抽気蒸気は、リボイラ17内で再生塔72から送られてきた吸収液と熱交換し、冷却されてドレン化する。一方、吸収液は加熱され、蒸気となる。リボイラ17への供給熱量によって再生塔72の吸収液が120℃〜130℃程度に加温されるので、吸収液から二酸化炭素が分離され、二酸化炭素が回収されると同時に吸収液は再生され再び吸収塔65に送水される。   The extracted steam sent to the reboiler 17 exchanges heat with the absorbing solution sent from the regeneration tower 72 in the reboiler 17 and is cooled and drained. On the other hand, the absorbing liquid is heated to become vapor. Since the absorption liquid in the regeneration tower 72 is heated to about 120 ° C. to 130 ° C. by the amount of heat supplied to the reboiler 17, carbon dioxide is separated from the absorption liquid, and at the same time carbon dioxide is recovered, the absorption liquid is regenerated and again. Water is sent to the absorption tower 65.

リボイラ17で冷却されドレン化した抽気蒸気は、温水ドレンとしてリボイラドレンポンプ18に送られて昇圧される。リボイラドレンポンプ18で昇圧された温水ドレンは、リボイラドレンポンプ出口送水管19を流下して第3低圧給水加熱器26に送られる。第3低圧給水加熱器26に送られた温水ドレンは、給水と熱交換して熱回収され、第3低圧給水加熱器ドレン管34を流下して給水系統101に戻される。   The extracted steam that has been cooled and drained by the reboiler 17 is sent to the reboiler drain pump 18 as a hot water drain to be pressurized. The hot water drain boosted by the reboiler drain pump 18 flows down the reboiler drain pump outlet water supply pipe 19 and is sent to the third low-pressure feed water heater 26. The hot water drain sent to the third low-pressure feed water heater 26 is heat-recovered by exchanging heat with the feed water, and flows down through the third low-pressure feed water heater drain pipe 34 and returned to the feed water system 101.

給水系統101は、給水の一部を抽気蒸気過熱低減器14に導き、抽気蒸気過熱低減器14で抽気蒸気と熱交換させた後、脱気器8に戻す給水分岐系統103を備える。   The water supply system 101 includes a water supply branch system 103 that guides part of the water supply to the extraction steam superheat reducer 14, exchanges heat with the extraction steam in the extraction steam superheat reduction apparatus 14, and then returns to the deaerator 8.

給水分岐系統103は、第4低圧給水加熱器27と脱気器8との間で給水系統101から分岐し、給水の流れ方向上流側から下流側に向かって、前記給水の分配量を調節する復水流量分配弁29と、復水流量分配弁29から抽気蒸気過熱低減器14に接続する抽気蒸気過熱低減器入口復水管30と、抽気蒸気加熱低減器14から脱気器8に接続する抽気蒸気過熱低減器出口復水管31とを有する。   The feed water branch system 103 branches from the feed water system 101 between the fourth low-pressure feed water heater 27 and the deaerator 8 and adjusts the distribution amount of the feed water from the upstream side to the downstream side in the feed water flow direction. Condensate flow distribution valve 29, extraction steam superheat reducer inlet condensate pipe 30 connected from condensate flow distribution valve 29 to extraction steam superheat reducer 14, and extraction extracted from extraction steam heating reducer 14 to deaerator 8 A steam superheat reducer outlet condensate pipe 31.

また、給水系統101は、復水流量分配弁29から脱気器8に接続し、給水の一部を抽気蒸気過熱低減器14をバイパスさせる過熱低減器バイパス給水系統104を備える。この過熱低減器バイパス給水系統104は、抽気蒸気過熱低減器バイパス復水管32で構成される。   Further, the water supply system 101 includes an overheat reducer bypass water supply system 104 that is connected to the deaerator 8 from the condensate flow distribution valve 29 and bypasses the extracted steam superheat reducer 14 with a part of the water supply. The overheat reducer bypass water supply system 104 is configured by an extraction steam overheat reducer bypass condenser pipe 32.

給水系統101の第1乃至4低圧給水加熱器を順次流下して加熱され、昇温した給水は、復水流量分配弁29で、抽気蒸気過熱低減器14側と脱気器8側とに分流される。   The first to fourth low-pressure feed water heaters of the feed water system 101 are sequentially flowed down and heated, and the heated feed water is divided into the extracted steam superheat reducer 14 side and the deaerator 8 side by the condensate flow rate distribution valve 29. Is done.

復水流量分配弁29で抽気蒸気過熱低減器14側に分配された給水は、抽気蒸気過熱低減器入口復水管30を流下して抽気蒸気過熱低減器14に供給される。抽気蒸気過熱低減器に供給された給水は、抽気蒸気と熱交換し、抽気蒸気が有する余分な過熱エネルギーを回収して昇温する。抽気蒸気過熱低減器14で抽気蒸気の過熱エネルギーを回収した給水は、抽気蒸気過熱低減器出口復水管31を流下して脱気器8へ送られる。   The feed water distributed to the extraction steam superheat reducer 14 by the condensate flow distribution valve 29 flows down the extraction steam superheat reducer inlet condensate pipe 30 and is supplied to the extraction steam superheat reducer 14. The feed water supplied to the extraction steam superheat reducer exchanges heat with the extraction steam, recovers excess superheat energy of the extraction steam, and raises the temperature. The feed water that has recovered the superheat energy of the extracted steam by the extracted steam superheat reducer 14 flows down the extracted steam superheat reducer outlet condensate pipe 31 and is sent to the deaerator 8.

一方、復水流量分配弁29で脱気器8側に分配された給水は、抽気蒸気過熱低減器バイパス復水管32を流下し、抽気蒸気過熱低減器14をバイパスして直接脱気器8に送られる。   On the other hand, the feed water distributed to the deaerator 8 side by the condensate flow distribution valve 29 flows down the extraction steam superheat reducer bypass condensate pipe 32, bypasses the extraction steam superheat reducer 14 and directly enters the deaerator 8. Sent.

抽気蒸気過熱低減器14側と脱気器8側とに分流された給水は、脱気器8で再び合流し、給水系統101を流下してボイラ1に送られる。   The feed water divided into the extracted steam superheat reducer 14 side and the deaerator 8 side is joined again by the deaerator 8, flows down the feed water system 101, and is sent to the boiler 1.

一方、抽気蒸気送気系統102は、抽気蒸気過熱低減器入口弁54の上流で、抽気蒸気送気系統102から分岐し、脱気器8に接続する過熱低減器バイパス抽気蒸気系統105を備える。   On the other hand, the extraction steam supply system 102 includes an overheat reducer bypass extraction steam system 105 that branches from the extraction steam supply system 102 upstream of the extraction steam superheat reducer inlet valve 54 and is connected to the deaerator 8.

過熱低減器バイパス抽気蒸気系統105は、抽気蒸気送気系統102を流下する抽気蒸気の一部を二酸化炭素分離回収装置200のリボイラ17をバイパスして直接蒸気タービン設備の給水系統101に導く。   The superheat reducer bypass extraction steam system 105 bypasses the reboiler 17 of the carbon dioxide separation / recovery device 200 and directly leads a part of the extraction steam flowing down the extraction steam supply system 102 to the water supply system 101 of the steam turbine facility.

脱気器8に導かれた抽気蒸気は、脱気器内で給水の加熱源として用いられる。脱気器入口、即ち、第4低圧給水加熱器出口の給水温度は、抽気蒸気と熱交換する上で最適な温度であり、抽気蒸気を脱気器8に導く。   The extracted steam led to the deaerator 8 is used as a heating source of feed water in the deaerator. The feed water temperature at the deaerator inlet, that is, the outlet of the fourth low-pressure feed water heater is an optimum temperature for exchanging heat with the extracted steam, and guides the extracted steam to the deaerator 8.

二酸化炭素分離回収装置200は、バイパスガス管64に設けられたバイパスバタフライ弁63の開閉制御によって、ボイラ排ガスから回収する二酸化炭素量を調節する。ボイラ排ガスから回収する二酸化炭素量の変動により、リボイラ17が要求する抽気蒸気量も変動する。リボイラ17が要求する抽気蒸気量の変動に合わせて抽気蒸気の一部が余剰となる場合がある。   The carbon dioxide separation and recovery apparatus 200 adjusts the amount of carbon dioxide recovered from the boiler exhaust gas by opening and closing control of the bypass butterfly valve 63 provided in the bypass gas pipe 64. The amount of extracted steam required by the reboiler 17 also varies due to the variation in the amount of carbon dioxide recovered from the boiler exhaust gas. There may be a case where a part of the extracted steam becomes redundant in accordance with the fluctuation of the extracted steam amount required by the reboiler 17.

本実施例では、リボイラ17が要求する抽気蒸気量の変動に合わせて、余剰な抽気蒸気を過熱低減器バイパス抽気蒸気系統105に流し、給水系統101に戻す。   In the present embodiment, surplus extracted steam is caused to flow through the superheat reducer bypass extracted steam system 105 and returned to the water supply system 101 in accordance with fluctuations in the amount of extracted steam requested by the reboiler 17.

一方、リボイラ17が要求する抽気蒸気量の変動に合わせて、抽気蒸気過熱低減器14へ供給する給水量も変動させる必要がある。   On the other hand, the amount of water supplied to the extraction steam superheat reducer 14 needs to be changed in accordance with the change in the extraction steam amount required by the reboiler 17.

本実施例では、リボイラ17が要求する抽気蒸気量の変動に合わせて、復水流量分配弁29で給水分岐系統103と過熱低減器バイパス給水系統104への給水分配量を調節する。   In the present embodiment, the water supply distribution amount to the water supply branch system 103 and the overheat reducer bypass water supply system 104 is adjusted by the condensate flow rate distribution valve 29 in accordance with the fluctuation of the amount of extracted steam required by the reboiler 17.

この構成によれば、タービン等の主要構成機器への影響を抑えながら、リボイラ17の要求量の変動にも柔軟に対応して運用することができる。また、余剰な抽気蒸気は、給水系統101に戻すので、熱効率の低下を抑制できる。   According to this configuration, it is possible to operate flexibly corresponding to fluctuations in the required amount of the reboiler 17 while suppressing the influence on main components such as a turbine. Moreover, since excess extraction steam returns to the water supply system 101, the fall of thermal efficiency can be suppressed.

次に、本発明の作用効果について説明する。   Next, the function and effect of the present invention will be described.

二酸化炭素分離回収装置200のリボイラ17が要求する蒸気は、過熱蒸気ではなく約3atg程度の飽和蒸気であり、その飽和温度は143℃である。一方、中圧タービン3から抽気する抽気蒸気の圧力/温度は、9atg/370℃程度である。従って、抽気蒸気が持っている過熱度が高く、リボイラ17の必要温度143℃との温度差が227℃と大きいため、抽気蒸気をそのままリボイラ17に送気すると両者の温度の整合が取れない。   The steam required by the reboiler 17 of the carbon dioxide separation and recovery apparatus 200 is not superheated steam but saturated steam of about 3 atg, and its saturation temperature is 143 ° C. On the other hand, the pressure / temperature of the extracted steam extracted from the intermediate pressure turbine 3 is about 9 atg / 370 ° C. Accordingly, since the degree of superheat of the extracted steam is high and the temperature difference from the required temperature 143 ° C. of the reboiler 17 is as large as 227 ° C., if the extracted steam is supplied to the reboiler 17 as it is, the temperature of both cannot be matched.

一方、抽気蒸気をスプレーで減温すると、温度は下がるが抽気蒸気が持っている過熱エネルギーが有効に活用されなくなる。   On the other hand, when the temperature of the extracted steam is reduced by the spray, the temperature is lowered, but the superheat energy possessed by the extracted steam is not effectively utilized.

本実施例では、蒸気タービンから抽気した蒸気を、蒸気タービンの給水と熱交換させて冷却し、冷却した蒸気をリボイラに送気するので、スプレーで減温,減圧せず、抽気蒸気が持っている過熱エネルギーを蒸気タービンの熱サイクルに戻すことができ、抽気による効率の低下を抑制できる。   In this embodiment, the steam extracted from the steam turbine is cooled by heat exchange with the feed water of the steam turbine, and the cooled steam is sent to the reboiler. It is possible to return the overheated energy to the heat cycle of the steam turbine, and it is possible to suppress a decrease in efficiency due to extraction.

本実施例では、中圧タービン3の抽気蒸気と脱気器8に入る前の給水とを熱交換させる抽気蒸気過熱低減器14を設けて、抽気蒸気が持っている熱の有効回収を図っている。抽気した蒸気の過熱エネルギーを再び蒸気タービンサイクルに回収する手段により、蒸気タービンの出力や効率の低下を押える事が可能となる。   In this embodiment, an extraction steam superheat reducer 14 for exchanging heat between the extraction steam of the intermediate pressure turbine 3 and the feed water before entering the deaerator 8 is provided to effectively recover the heat of the extraction steam. Yes. By means of recovering the superheated energy of the extracted steam again in the steam turbine cycle, it becomes possible to suppress the output and efficiency of the steam turbine.

また、抽気した蒸気の過熱エネルギーをボイラ供給前の給水で回収することにより、給水温度が上がるので、ボイラの燃料を減らすことができ、ボイラを含めた効率も向上できる。   In addition, by recovering the superheated energy of the extracted steam with the feed water before supplying the boiler, the feed water temperature rises, so that the boiler fuel can be reduced and the efficiency including the boiler can be improved.

本実施例のシステム構成によれば、抽気蒸気で背圧タービンを駆動して動力回収後にリボイラに送気するシステムと比較して、蒸気タービン効率が2%〜3%(絶対値)向上する試算例がある。この効果により、ボイラの燃料使用量が大幅に下がり、ボイラの排ガス量が低減され経済効果のみならずボイラからの二酸化炭素の排出量を下げられる効果も得られる。   According to the system configuration of the present embodiment, the steam turbine efficiency is improved by 2% to 3% (absolute value) as compared with a system in which the back pressure turbine is driven by extracted steam and the power is recovered and then supplied to the reboiler. There is an example. Due to this effect, the amount of fuel used by the boiler is greatly reduced, the amount of exhaust gas from the boiler is reduced, and the effect of reducing not only the economic effect but also the amount of carbon dioxide emitted from the boiler can be obtained.

なお、本実施例において、リボイラへ供給する蒸気自体は、3atg以上の過熱蒸気であればよい。従って、圧力と温度の条件を満たせば、必ずしも、中圧タービンから抽気する必要はない。   In the present embodiment, the steam itself supplied to the reboiler may be superheated steam of 3 atg or more. Therefore, it is not always necessary to extract air from the intermediate pressure turbine if the pressure and temperature conditions are satisfied.

しかしながら、タービンは、部分負荷運用すると、タービン全ての抽気圧力がほぼ比例して下がる特徴を有している。したがって、タービンが部分負荷運用された場合、低圧タービンから抽気すると、リボイラが要求する最低抽気圧力約3atg以上の必要圧力が確保できなくなる。そこで、タービンが部分負荷運用されても、リボイラが要求する最低抽気圧力約3atg以上を確保するために、低圧タービンよりも抽気圧力が高い中圧タービン排気部から抽気する。なお、高圧タービンから抽気すると必要圧力より高すぎるために抽気蒸気圧力の絞り減圧幅が増加し、タービン効率の低下をもたらす。   However, the turbine has a characteristic that when the partial load operation is performed, the extraction pressure of all the turbines is substantially proportionally decreased. Therefore, when the turbine is operated at a partial load, if the air is extracted from the low-pressure turbine, a required pressure of about 3 atg or more required by the reboiler cannot be secured. Therefore, even if the turbine is partially loaded, in order to ensure the minimum extraction pressure of about 3 atg or more required by the reboiler, the extraction is performed from the intermediate pressure turbine exhaust section where the extraction pressure is higher than that of the low pressure turbine. Note that when the air is extracted from the high-pressure turbine, it is too higher than the required pressure, so that the throttle pressure reduction width of the extracted steam pressure increases and the turbine efficiency is lowered.

よって、部分負荷運転時においても最低抽気圧力を確保し、タービン効率の低下を抑えるため中圧タービンから抽気するのが望ましい。   Therefore, it is desirable to extract from the intermediate pressure turbine in order to secure the minimum extraction pressure even during the partial load operation and suppress the decrease in turbine efficiency.

本発明の第2実施例を図3を引用して説明する。図3は、本発明の第2の実施例に係る火力発電システムの蒸気タービン設備側システムの概略構成図である。なお、第1の実施例と同等の構成要素には同一の符号を付し、説明を省略する。また、二酸化炭素分離回収装置についても、第1の実施例と同じであり、説明を省略する。 A second embodiment of the present invention will be described with reference to FIG. FIG. 3 is a schematic configuration diagram of the steam turbine equipment side system of the thermal power generation system according to the second embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the component equivalent to a 1st Example, and description is abbreviate | omitted. Also, the carbon dioxide separation and recovery device is the same as that of the first embodiment, and the description thereof is omitted.

本実施例が、図1に示した実施例と異なるのは、抽気蒸気送気系統102が、過熱低減器バイパス抽気蒸気系統105の下流側であって、抽気蒸気過熱低減器入口弁54の上流側に、抽気蒸気送気系統102から分岐し、復水器20に接続する抽気蒸気逃がし系統106を備える点である。   This embodiment differs from the embodiment shown in FIG. 1 in that the extraction steam supply system 102 is downstream of the superheat reducer bypass extraction steam system 105 and upstream of the extraction steam superheat reducer inlet valve 54. On the side, an extraction steam escape system 106 branched from the extraction steam supply system 102 and connected to the condenser 20 is provided.

抽気蒸気逃がし系統106は、上流側から復水器20のある下流側に向かって、非常用圧力逃がし用抽気圧力検出器57,非常用圧力逃がし止弁52,非常用圧力逃がし調整弁55を有する。   The extraction steam relief system 106 has an emergency pressure relief extraction pressure detector 57, an emergency pressure relief stop valve 52, and an emergency pressure relief adjustment valve 55 from the upstream side toward the downstream side where the condenser 20 is located. .

何らかの原因によって二酸化炭素分離回収装置200が緊急停止した場合、リボイラ17へ供給する抽気蒸気量および圧力を制御するリボイラ加熱蒸気入口出力制御弁16を閉めて中圧タービン3からリボイラ17への送気を停止し、抽気蒸気過熱低減器入口弁54,抽気蒸気過熱低減器出口弁15を閉めて抽気蒸気過熱低減器14を抽気蒸気送気系統102から隔離する。送気停止ととも、復水流量分配弁29を用いて本弁を通過する給水量を抽気蒸気過熱低減器バイパス復水管32を通じて全量過熱低減器バイパス給水系統104側に切り替える操作を行う。   When the carbon dioxide separation and recovery device 200 is urgently stopped for some reason, the reboiler heating steam inlet output control valve 16 that controls the amount and pressure of the extracted steam supplied to the reboiler 17 is closed, and the air supply from the intermediate pressure turbine 3 to the reboiler 17 is performed. And the extraction steam superheat reducer inlet valve 54 and the extraction steam superheat reducer outlet valve 15 are closed to isolate the extraction steam superheat reducer 14 from the extraction steam supply system 102. Along with the stoppage of the air supply, an operation is performed to switch the amount of water supply passing through the main valve to the entire amount superheat reducer bypass water supply system 104 side through the extraction steam superheat reducer bypass condensate pipe 32 using the condensate flow distribution valve 29.

また、リボイラ17への送気停止により余剰となった抽気蒸気は、非常用圧力逃がし止弁52を開弁操作し、非常用圧力逃がし調整弁55の開度を調整して圧力を調整しつつ、復水器20へ逃す。   In addition, the bleed steam surplus due to the stop of the air supply to the reboiler 17 is operated by opening the emergency pressure relief valve 52 and adjusting the opening of the emergency pressure relief regulating valve 55 to adjust the pressure. To the condenser 20.

なお、抽気蒸気の異常圧力上昇は非常用圧力逃がし用抽気圧力検出器57にて検出され、非常用圧力逃がし調整弁55の開弁操作を行う。   The abnormal pressure rise of the extracted steam is detected by the emergency pressure relief extraction pressure detector 57, and the emergency pressure relief regulating valve 55 is opened.

本実施例によれば、実施例1と同様の効果を奏するとともに、火力発電システムの信頼性を向上できる。即ち、何らかの原因により二酸化炭素分離回収装置200が緊急停止した時、すみやかに、抽気蒸気過熱低減器14側への不必要な復水の流入を防ぐ事ができる。また、リボイラ17への送気停止により、余剰となった抽気蒸気を抽気蒸気逃がし系統106を介して復水器20に逃すことにより、低圧タービン4への流入蒸気流量の急激増大を防いで、低圧タービン4の急激な負荷増大を抑制でき、システムの信頼性を向上できる。   According to the present embodiment, the same effects as those of the first embodiment can be obtained, and the reliability of the thermal power generation system can be improved. That is, when the carbon dioxide separation / recovery device 200 is urgently stopped for some reason, it is possible to prevent unnecessary inflow of condensate to the extracted steam superheat reducer 14 as soon as possible. Further, by stopping the supply of air to the reboiler 17, surplus extracted steam is released to the condenser 20 via the extracted steam escape system 106, thereby preventing a rapid increase in the flow rate of the inflow steam to the low-pressure turbine 4, A rapid load increase of the low-pressure turbine 4 can be suppressed, and the reliability of the system can be improved.

本発明の第3実施例を図4を引用して説明する。図4は、本発明の第3の実施例に係る火力発電システムの蒸気タービン設備側システムの概略構成図である。なお、第1および第2実施例と同等の構成要素には同一の符号を付し、説明を省略する。また、二酸化炭素分離回収装置についても、第1の実施例と同じであり、説明を省略する。   A third embodiment of the present invention will be described with reference to FIG. FIG. 4 is a schematic configuration diagram of the steam turbine equipment side system of the thermal power generation system according to the third embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the component equivalent to 1st and 2nd Example, and description is abbreviate | omitted. Also, the carbon dioxide separation and recovery device is the same as that of the first embodiment, and the description thereof is omitted.

本実施例は、既設の蒸気タービン設備に新たに二酸化炭素分離回収装置を新設した場合を示すものである。   The present embodiment shows a case where a carbon dioxide separation and recovery device is newly installed in the existing steam turbine equipment.

既設の蒸気タービン設備100に二酸化炭素分離回収装置200を追設する場合、抽気蒸気送気系統102,給水分岐系統103,過熱低減器バイパス給水系統104,過熱低減器バイパス抽気蒸気系統105を併せて追設する。また、抽気蒸気逃がし系統106も設置しても良い。   When the carbon dioxide separation and recovery device 200 is additionally installed in the existing steam turbine equipment 100, the extraction steam supply system 102, the feed water branch system 103, the overheat reducer bypass feed water system 104, and the overheat reducer bypass extraction steam system 105 are combined. To be added. A bleed steam escape system 106 may also be installed.

リボイラ17に送気される抽気蒸気とボイラ1に送られる前記給水とを熱交換させる抽気蒸気過熱低減器14を、抽気蒸気送気系統102に設ける。   An extraction steam superheat reducer 14 is provided in the extraction steam supply system 102 for exchanging heat between the extraction steam supplied to the reboiler 17 and the feed water supplied to the boiler 1.

また、抽気蒸気送気系統102を追設するとともに、リボイラ17で冷却されドレン化した抽気蒸気を、第3低圧給水加熱器26で回収するため、リボイラドレンポンプ出口送水管19を追設し、リボイラドレンポンプ出口送水管19にリボイラドレンポンプ18を設置する。   In addition, the extraction steam supply system 102 is additionally installed, and the extraction steam cooled and drained by the reboiler 17 is recovered by the third low-pressure feed water heater 26, so that the reboiler drain pump outlet water supply pipe 19 is additionally installed. A reboiler drain pump 18 is installed in the reboiler drain pump outlet water supply pipe 19.

また必要に応じて、ドレン化した抽気蒸気を回収するため、第3低圧給水加熱器26,第3低圧給水加熱器ドレンポンプ37も置換する等して容量増大させる。   Further, if necessary, the third low-pressure feed water heater 26 and the third low-pressure feed water heater drain pump 37 are replaced to increase the capacity in order to collect the drained extracted steam.

給水系統101のうち、第4低圧給水加熱器27と脱気器8との間の配管を、第3低圧給水加熱器出口復水管28,復水流量分配弁29に置き換え、給水分岐系統103,過熱低減器バイパス給水系統104を追設する。   In the feed water system 101, the pipe between the fourth low-pressure feed water heater 27 and the deaerator 8 is replaced with a third low-pressure feed water heater outlet condensate pipe 28 and a condensate flow distribution valve 29, and the feed water branch system 103, An overheat reducer bypass water supply system 104 is additionally installed.

必要に応じて、脱気器8は、給水分岐系統103,過熱低減器バイパス給水系統104,過熱低減器バイパス抽気蒸気系統105と接続するため、置換する等して容量増大させる。   As necessary, the deaerator 8 is connected to the feed water branch system 103, the overheat reducer bypass feed water system 104, and the overheat reducer bypass bleed steam system 105, so that the capacity is increased by replacement.

また、抽気蒸気逃がし系統106を設置する場合には、必要に応じて復水器20を取替え容量を増大させる。もしくは、抽気蒸気逃がし系統106に、簡単な熱交換器79を設置し、給水系統101の給水の一部を冷熱源として用いれば、復水器20は取り替えずに済み、改造コストを低減できる。   Moreover, when installing the extraction steam escape system | strain 106, the condenser 20 is replaced and the capacity | capacitance is increased as needed. Alternatively, if a simple heat exchanger 79 is installed in the extraction steam escape system 106 and a part of the water supply of the water supply system 101 is used as a cold heat source, the condenser 20 is not required to be replaced, and the modification cost can be reduced.

また、本実施例は、図1または図3に示した実施例と異なり、クロスオーバ管45に既設改造用の中圧タービン排気圧力調整弁40と、クロスオーバ管圧力検出器59を追設する点に特徴がある。   Further, in the present embodiment, unlike the embodiment shown in FIG. 1 or FIG. 3, an existing modified intermediate pressure turbine exhaust pressure regulating valve 40 and a crossover pipe pressure detector 59 are additionally provided in the crossover pipe 45. There is a feature in the point.

既設の蒸気タービン設備に、二酸化炭素回収装置を設け、中圧タービンの抽気蒸気をリボイラに供給するようにした場合、中圧タービンからリボイラ17への蒸気送気圧力の確保が問題となる。   In the case where a carbon dioxide recovery device is provided in the existing steam turbine equipment and the extraction steam of the intermediate pressure turbine is supplied to the reboiler, securing the steam supply pressure from the intermediate pressure turbine to the reboiler 17 becomes a problem.

そこで、二酸化炭素回収装置非設置時の中圧タービン3排気部の圧力と、設置後の中圧タービン3排気部の圧力とが同一圧力となる様に、クロスオーバ管圧力検出器59の検出値に基づき、図示しない制御装置を介して中圧タービン排気圧力調整弁40を絞る。   Therefore, the detected value of the crossover pipe pressure detector 59 is set so that the pressure of the exhaust section of the intermediate pressure turbine 3 when the carbon dioxide recovery device is not installed and the pressure of the exhaust section of the intermediate pressure turbine 3 after installation are the same pressure. Based on the above, the intermediate pressure turbine exhaust pressure regulating valve 40 is throttled through a control device (not shown).

中圧タービン排気圧力調製弁の上流側の圧力を上げて低圧タービン4への蒸気量を減らし、既設中圧タービンの排気圧力の過度な低下を防ぐ制御を行う。   Control is performed to increase the pressure on the upstream side of the intermediate pressure turbine exhaust pressure adjustment valve to reduce the amount of steam to the low pressure turbine 4 and prevent an excessive decrease in the exhaust pressure of the existing intermediate pressure turbine.

本実施例によれば、既設の蒸気タービン設備に二酸化炭素分離回収装置を新設した場合においても、実施例1と同様の効果を得ることができる。また、二酸化炭素分離回収装置を新設し、新設のリボイラ用に送気蒸気を抽気した場合においても、既設の中圧タービンの排気圧力の大幅な低下を防ぎ、抽気蒸気送気系統102への抽気蒸気送気に必要な圧力を確保できる。   According to the present embodiment, even when a carbon dioxide separation and recovery device is newly installed in the existing steam turbine equipment, the same effect as in the first embodiment can be obtained. In addition, when a carbon dioxide separation and recovery device is newly installed and the supply steam is extracted for the newly installed reboiler, the exhaust pressure of the existing medium pressure turbine is prevented from being significantly reduced, and the extraction steam to the extraction steam supply system 102 is extracted. The pressure required for steam supply can be secured.

1 ボイラ
2 高圧タービン
3 中圧タービン
4 低圧タービン
5 発電機
8 脱気器
9 ボイラ給水ポンプ入口昇圧ポンプ
10 ボイラ給水ポンプ
11 高圧給水加熱器
12 抽気逆止弁
13 抽気蒸気過熱低減器入口管
14 抽気蒸気過熱低減器
15 抽気蒸気過熱低減器出口弁
16 リボイラ加熱蒸気入口出力制御弁
17 リボイラ
18 リボイラドレンポンプ
19 リボイラドレンポンプ出口送水管
20 復水器
21 復水ポンプ
22 グランド復水器
23 低圧第1給水加熱器入口復水管
24 第1低圧給水加熱器
25 第2低圧給水加熱器
26 第3低圧給水加熱器
27 第4低圧給水加熱器
28 第3低圧給水加熱器出口復水管
29 復水流量分配弁
30 抽気蒸気過熱低減器入口復水管
31 抽気蒸気過熱低減器出口復水管
32 抽気蒸気過熱低減器バイパス復水管
33 第4低圧給水加熱器ドレン管
34 第3低圧給水加熱器ドレン管
35 第2低圧給水加熱器ドレン管
36 第1低圧給水加熱器ドレン管
37 第3低圧給水加熱器ドレンポンプ
38 第3低圧給水加熱器ドレンポンプ出口復水管
40 中圧タービン排気圧力調整弁
41 第4抽気管
42 第3抽気管
43 第2抽気管
44 第1抽気管
48 クロスオーバ管
51 非常用圧力逃がし管
52 非常用圧力逃がし止弁
53 抽気分岐第2配管
54 抽気蒸気過熱低減器入口弁
55 非常用圧力逃がし調整弁
56 非常用圧力逃がし復水器入口管
57 非常用圧力逃がし用抽気圧力検出器
58 リボイラ加熱蒸気圧力検出器
59 クロスオーバ管圧力検出器
60 ボイラ排ガス管
61 ボイラ排ガス昇圧ファン
62 ボイラ排ガス冷却器
63 バイパスバタフライ弁
64 バイパスガス管
65 吸収塔
66 吸収塔出口ボイラ排ガス管
67 煙突
68 リッチ吸収液移送ポンプ
69 吸収液熱交換器
70 リーン吸収液冷却器
71 リーン吸収液移送ポンプ
72 再生塔
73 出口ガス冷却器
74 再生塔内吸収液抜き出し管
75 リボイラ出口蒸気配管
76 リフラックスドラムポンプ
77 リフラックスドラム
78 二酸化炭素排気管
100 蒸気タービン設備
101 給水系統
102 抽気蒸気送気系統
103 給水分岐系統
104 過熱低減器バイパス給水系統
105 過熱低減器バイパス抽気蒸気系統
106 抽気蒸気逃がし系統
200 二酸化炭素分離回収装置
DESCRIPTION OF SYMBOLS 1 Boiler 2 High pressure turbine 3 Medium pressure turbine 4 Low pressure turbine 5 Generator 8 Deaerator 9 Boiler feed pump inlet booster pump 10 Boiler feed pump 11 High pressure feed heater 12 Extraction check valve 13 Extraction steam superheat reducer inlet pipe 14 Extraction Steam superheat reducer 15 Extraction steam superheat reducer outlet valve 16 Reboiler heating steam inlet output control valve 17 Reboiler 18 Reboiler drain pump 19 Reboiler drain pump outlet water pipe 20 Condenser 21 Condensate pump 22 Ground condenser 23 Low pressure first Feed water heater inlet condensate pipe 24 First low pressure feed water heater 25 Second low pressure feed water heater 26 Third low pressure feed water heater 27 Fourth low pressure feed water heater 28 Third low pressure feed water heater outlet condensate pipe 29 Condensate flow distribution valve 30 Extraction steam superheat reducer inlet condensate pipe 31 Extraction steam superheat reducer outlet condensate pipe 32 Extraction steam superheat reducer bypass condensate pipe 3 Fourth low pressure feed water heater drain pipe 34 Third low pressure feed water heater drain pipe 35 Second low pressure feed water heater drain pipe 36 First low pressure feed water heater drain pipe 37 Third low pressure feed water heater drain pump 38 Third low pressure feed water heating Drain pump outlet condensate pipe 40 Medium pressure turbine exhaust pressure adjustment valve 41 Fourth bleed pipe 42 Third bleed pipe 43 Second bleed pipe 44 First bleed pipe 48 Crossover pipe 51 Emergency pressure relief pipe 52 Emergency pressure relief Valve 53 Extraction branch second piping 54 Extraction steam overheat reducer inlet valve 55 Emergency pressure relief adjustment valve 56 Emergency pressure relief condenser inlet pipe 57 Emergency pressure relief extraction pressure detector 58 Reboiler heating steam pressure detector 59 Crossover pipe pressure detector 60 Boiler exhaust gas pipe 61 Boiler exhaust gas booster fan 62 Boiler exhaust gas cooler 63 Bypass butterfly valve 64 Bypass gas Suction pipe 65 Absorption tower 66 Absorption tower outlet boiler exhaust gas pipe 67 Chimney 68 Rich absorption liquid transfer pump 69 Absorption liquid heat exchanger 70 Lean absorption liquid cooler 71 Lean absorption liquid transfer pump 72 Regeneration tower 73 Outlet gas cooler 74 Inside regeneration tower Absorption liquid extraction pipe 75 Reboiler outlet steam pipe 76 Reflux drum pump 77 Reflux drum 78 Carbon dioxide exhaust pipe 100 Steam turbine equipment 101 Water supply system 102 Extraction steam supply system 103 Supply water branch system 104 Superheat reducer Bypass water supply system 105 Superheat reduction Bypass extraction steam system 106 Extraction steam escape system 200 Carbon dioxide separation and recovery device

Claims (15)

ボイラと、該ボイラで生成した蒸気で駆動する蒸気タービンと、該蒸気タービンを駆動した蒸気を冷却して復水する復水器と、該復水器で復水した給水を前記ボイラに送る給水系統と、前記ボイラで発生したボイラ排ガスから二酸化炭素を分離する二酸化炭素分離回収装置と、前記蒸気タービンから抽気された抽気蒸気を、前記二酸化炭素分離回収装置のリボイラへ送気する抽気蒸気送気系統と、を備えた火力発電システムにおいて、
前記抽気蒸気送気系統に設けられ、前記リボイラに送気される抽気蒸気と前記ボイラに送られる前記給水とを熱交換させる過熱低減器を備え
前記給水系統は、前記給水を前記過熱低減器に導き、前記過熱低減器で前記抽気蒸気と熱交換した前記給水を前記給水系統に戻す給水分岐系統と、前記給水を前記過熱低減器をバイパスさせて前記ボイラに送る過熱低減器バイパス給水系統と、前記給水分岐系統と前記過熱低減器バイパス給水系統とに流下させる前記給水の分配量を調節する第1の弁とを備え、
前記抽気蒸気送気系統は、前記抽気蒸気送気系統を流下する抽気蒸気を前記過熱低減器をバイパスして前記給水系統に導く過熱低減器バイパス抽気蒸気系統と、前記過熱低減器と、前記過熱低減器バイパス抽気蒸気系統とに送気する抽気蒸気の分配量を調節する第2の弁とを備えることを特徴とする火力発電システム。
A boiler, a steam turbine driven by steam generated by the boiler, a condenser that cools and condenses the steam that drives the steam turbine, and feed water that feeds the water condensed by the condenser to the boiler A system, a carbon dioxide separation and recovery device for separating carbon dioxide from boiler exhaust gas generated in the boiler, and an extraction steam supply for supplying extracted steam extracted from the steam turbine to a reboiler of the carbon dioxide separation and recovery device In a thermal power generation system equipped with a system,
An overheat reducer that is provided in the extraction steam supply system and that exchanges heat between the extraction steam supplied to the reboiler and the feed water supplied to the boiler ;
The water supply system includes a water supply branch system that guides the water supply to the superheat reducer, returns the water supply heat-exchanged with the extracted steam by the superheat reducer to the water supply system, and bypasses the water supply to the superheat reducer. A first valve that adjusts the distribution amount of the feed water that flows down to the superheat reducer bypass feed water system that is sent to the boiler, and the feed water branch system and the superheat reducer bypass feed water system,
The extraction steam supply system is a superheat reducer bypass extraction steam system that bypasses the superheat reducer and extracts the extracted steam flowing down the extraction steam supply system to the water supply system, the superheat reducer, and the superheater. A thermal power generation system comprising: a second valve that adjusts a distribution amount of extracted steam to be supplied to the reducer bypass extracted steam system.
前記抽気蒸気送気系統は、The extraction steam supply system is
前記第2の弁の上流側であって、かつ前記過熱低減器バイパス抽気蒸気系統の下流側に、前記抽気蒸気を前記復水器に導く抽気蒸気逃がし系統を備え、 An extraction steam escape system that leads the extraction steam to the condenser on the upstream side of the second valve and on the downstream side of the superheat reducer bypass extraction steam system;
前記抽気蒸気逃がし系統は、前記抽気蒸気逃がし系統を流下する抽気蒸気量を調節する第3の弁と、前記抽気蒸気逃がし系統を流下する抽気蒸気の圧力を調節する第4の弁とを備えることを特徴とする請求項1記載の火力発電システム。The extraction steam escape system includes a third valve that adjusts the amount of extraction steam that flows down the extraction steam escape system, and a fourth valve that adjusts the pressure of the extraction steam that flows down the extraction steam escape system. The thermal power generation system according to claim 1.
前記蒸気タービンから抽気する蒸気は、3atg以上、かつ過熱蒸気であることを特徴とする請求項1記載の火力発電システム。The thermal power generation system according to claim 1, wherein the steam extracted from the steam turbine is at least 3 atg and superheated steam. 前記抽気蒸気を抽気する蒸気タービンは中圧タービンであることを特徴とする請求項1記載の火力発電システム。The thermal power generation system according to claim 1, wherein the steam turbine for extracting the extracted steam is an intermediate pressure turbine. ボイラと、該ボイラで生成した蒸気で駆動する蒸気タービンと、該蒸気タービンを駆動した蒸気を冷却して復水する復水器と、該復水器で復水した給水を前記ボイラに送る給水系統とを備え、前記蒸気タービンから抽気した抽気蒸気を、前記ボイラで発生したボイラ排ガスから二酸化炭素を分離する二酸化炭素分離回収装置のリボイラに送気する蒸気タービン設備であって、
前記リボイラに送気される前記抽気蒸気を熱源とする過熱低減器に前記給水を送水し、前記過熱低減器で前記抽気蒸気と熱交換して加熱された前記給水を取水する前記給水系統を備え、
前記給水系統は、前記給水を前記過熱低減器をバイパスして前記ボイラに送水する過熱低減器バイパス給水系統と、前記過熱低減器に送水する給水量と前記過熱低減器バイパス給水系統に流下させる給水量とを調節する第1の弁と、前記過熱低減器をバイパスした前記抽気蒸気を前記給水で冷却し復水する熱交換器とを備えることを特徴とする蒸気タービン設備。
A boiler, a steam turbine driven by steam generated by the boiler, a condenser that cools and condenses the steam that drives the steam turbine, and feed water that feeds the water condensed by the condenser to the boiler A steam turbine facility for supplying extracted steam extracted from the steam turbine to a reboiler of a carbon dioxide separation and recovery device that separates carbon dioxide from boiler exhaust gas generated in the boiler,
The water supply system to intake the water was water, the water supply to the heated said extraction steam and by heat exchange with desuperheater over-heat reducer said extraction steam being air to said reboiler shall be the heat source With
The water supply system includes a superheat reducer bypass water supply system that bypasses the superheat reducer and sends the water to the boiler, a water supply amount that is supplied to the superheat reducer, and a water supply that flows down to the superheat reducer bypass water supply system A steam turbine facility comprising: a first valve that adjusts the amount; and a heat exchanger that cools the extracted steam bypassing the superheat reducer with the feed water and condenses the steam.
前記復水器は、前記過熱低減器および前記リボイラをバイパスした前記抽気蒸気を取水し、復水して前記給水系統に戻すことを特徴とする請求項5記載の蒸気タービン設備。6. The steam turbine equipment according to claim 5, wherein the condenser takes in the extracted steam bypassing the overheat reducer and the reboiler, and condenses and returns the extracted steam to the water supply system. 前記蒸気タービンから抽気する蒸気は、3atg以上、かつ過熱蒸気であることを特徴とする請求項5記載の蒸気タービン設備。The steam turbine equipment according to claim 5, wherein the steam extracted from the steam turbine is at least 3 atg and superheated steam. 前記抽気蒸気を抽気する蒸気タービンは中圧タービンであることを特徴とする請求項5記載の蒸気タービン設備。The steam turbine equipment according to claim 5, wherein the steam turbine for extracting the extracted steam is an intermediate pressure turbine. 蒸気タービン設備のボイラから排出されたボイラ排ガスに含まれる二酸化炭素を吸収液で吸収する吸収塔と、該吸収塔で前記二酸化炭素を吸収した前記吸収液から前記二酸化炭素を分離する再生塔と、蒸気を生成し、該蒸気を前記吸収液から前記二酸化炭素を分離するための熱源として前記再生塔に供給するリボイラとを備える蒸気タービン設備の二酸化炭素分離回収装置であって、An absorption tower that absorbs carbon dioxide contained in boiler exhaust gas discharged from a boiler of a steam turbine facility with an absorption liquid; a regeneration tower that separates the carbon dioxide from the absorption liquid that has absorbed the carbon dioxide in the absorption tower; A carbon dioxide separation and recovery device for steam turbine equipment, comprising a reboiler that generates steam and supplies the steam to the regeneration tower as a heat source for separating the carbon dioxide from the absorbing liquid,
前記蒸気タービン設備を構成するタービンから抽気された抽気蒸気を熱源とする前記リボイラを備え、The reboiler using the extracted steam extracted from the turbine constituting the steam turbine equipment as a heat source,
前記リボイラに供給される前記抽気蒸気は、前記蒸気タービン設備を構成する復水器から前記ボイラに送水される給水と熱交換することにより過熱低減処理が施されており、The extraction steam supplied to the reboiler is subjected to an overheat reduction process by exchanging heat with water supplied to the boiler from a condenser constituting the steam turbine equipment,
前記タービンから抽気された抽気蒸気を前記リボイラに送気する抽気蒸気送気系統と、 前記抽気蒸気送気系統に設けられ、前記リボイラに供給される前記抽気蒸気と前記給水とを熱交換させて過熱低減処理を行う過熱低減器と、An extraction steam supply system for supplying extracted steam extracted from the turbine to the reboiler; and a heat exchange between the extraction steam and the feed water provided in the extraction steam supply system and supplied to the reboiler. An overheat reducer that performs overheat reduction processing;
前記抽気蒸気送気系統を流下する抽気蒸気を前記過熱低減器をバイパスして前記蒸気タービン設備の給水系統に送る過熱低減器バイパス抽気蒸気系統と、A superheat reducer bypass bleed steam system that bypasses the superheat reducer and sends the extracted steam flowing down the bleed steam supply system to the water supply system of the steam turbine facility;
前記給水系統から分岐して、前記給水を前記過熱低減器に導き、前記過熱低減器で前記抽気蒸気と熱交換した前記給水を前記給水系統に戻す給水分岐系統と、A water supply branch system that branches from the water supply system, guides the water supply to the overheat reducer, and returns the water supply heat exchanged with the extraction steam in the overheat reducer to the water supply system;
前記給水系統または給水分岐系統に設けられ、前記過熱低減器をバイパスして前記ボイラに送水される給水量と、前記給水分岐系統を流下させる給水量の分配量を調節する第1の弁と、A first valve that is provided in the water supply system or the water supply branch system, adjusts the amount of water supplied to the boiler by bypassing the overheat reducer, and the distribution amount of the water supply to flow down the water supply branch system;
前記過熱低減器と、前記過熱低減器バイパス抽気蒸気系統とに送気する抽気蒸気の分配量を調節する第2の弁とを備えることを特徴とする蒸気タービン設備の二酸化炭素分離回収装置。A carbon dioxide separation and recovery device for steam turbine equipment, comprising: a second valve that adjusts a distribution amount of extracted steam to be supplied to the superheat reducer and the superheat reducer bypass extracted steam system.
前記抽気蒸気送気系統は、前記第2の弁の上流側であって、かつ前記過熱低減器バイパス抽気蒸気系統の下流側に、前記抽気蒸気を前記復水器に導く抽気蒸気逃がし系統を備え、 前記抽気蒸気逃がし系統は、前記抽気蒸気逃がし系統を流下する抽気蒸気量を調節する第3の弁と、前記抽気蒸気逃がし系統を流下する抽気蒸気の圧力を調節する第4の弁とを備えることを特徴とする請求項9記載の蒸気タービン設備の二酸化炭素分離回収装置。The extraction steam supply system includes an extraction steam escape system that guides the extraction steam to the condenser upstream of the second valve and downstream of the superheat reducer bypass extraction steam system. The extraction steam escape system includes a third valve that adjusts the amount of extraction steam that flows down the extraction steam escape system, and a fourth valve that adjusts the pressure of the extraction steam that flows down the extraction steam escape system. The carbon dioxide separation and recovery device for a steam turbine facility according to claim 9. 前記タービンから抽気する蒸気は、3atg以上、かつ過熱蒸気であることを特徴とする請求項9記載の蒸気タービン設備の二酸化炭素分離回収装置。The steam extracted from the turbine is 3 atg or more and superheated steam, and the carbon dioxide separation and recovery device for steam turbine equipment according to claim 9. 前記抽気蒸気を抽気するタービンは中圧タービンであることを特徴とする請求項9記載の蒸気タービン設備の二酸化炭素分離回収装置。The carbon dioxide separation and recovery device for steam turbine equipment according to claim 9, wherein the turbine for extracting the extracted steam is an intermediate pressure turbine. ボイラと、該ボイラで生成した蒸気で駆動する蒸気タービンと、該蒸気タービンを駆動した蒸気を冷却して復水する復水器と、該復水器で復水した給水を前記ボイラに送る給水系統とを備える火力発電システムであって、A boiler, a steam turbine driven by steam generated by the boiler, a condenser that cools and condenses the steam that drives the steam turbine, and feed water that feeds the water condensed by the condenser to the boiler A thermal power generation system comprising a grid,
前記ボイラから排出されたボイラ排ガスに含まれる二酸化炭素を吸収液で吸収する吸収塔と、該吸収塔で前記二酸化炭素を吸収した前記吸収液から前記二酸化炭素を分離する再生塔と、蒸気を生成し、該蒸気を前記吸収液から前記二酸化炭素を分離するための熱源として前記再生塔に供給するリボイラとを備えた二酸化炭素分離回収装置と、An absorption tower that absorbs carbon dioxide contained in boiler exhaust gas discharged from the boiler with an absorption liquid, a regeneration tower that separates the carbon dioxide from the absorption liquid that has absorbed the carbon dioxide in the absorption tower, and generates steam A carbon dioxide separation and recovery device comprising a reboiler for supplying the steam to the regeneration tower as a heat source for separating the carbon dioxide from the absorption liquid;
前記蒸気タービンを構成する中圧タービンから抽気された抽気蒸気を、前記二酸化炭素分離回収装置のリボイラへ送気する抽気蒸気送気系統と、An extraction steam supply system for supplying extracted steam extracted from an intermediate pressure turbine constituting the steam turbine to a reboiler of the carbon dioxide separation and recovery device;
前記蒸気タービンを構成する低圧タービンに前記中圧タービンから排出された蒸気を送気するクロスオーバ管に設けられ、前記抽気蒸気送気系統を流れる抽気蒸気の圧力を調節する圧力調節弁を備えることを特徴とする火力発電システム。A pressure control valve for adjusting the pressure of the extracted steam flowing through the extracted steam supply system, provided in a crossover pipe for supplying the steam discharged from the intermediate pressure turbine to the low pressure turbine constituting the steam turbine; Thermal power generation system characterized by
ボイラと、該ボイラで生成した蒸気で駆動する蒸気タービンと、該蒸気タービンを駆動した蒸気を冷却して復水する復水器と、該復水器で復水した給水を前記ボイラに送る給水系統とを備える火力発電システムの改造方法であって、
前記ボイラから排出されたボイラ排ガスに含まれる二酸化炭素を吸収液で吸収する吸収塔と、該吸収塔で前記二酸化炭素を吸収した前記吸収液から前記二酸化炭素を分離する再生塔と、蒸気を生成し、該蒸気を前記吸収液から前記二酸化炭素を分離するための熱源として前記再生塔に供給するリボイラとを備えた二酸化炭素分離回収装置と、
前記蒸気タービンを構成する中圧タービンから抽気された抽気蒸気を、前記二酸化炭素分離回収装置のリボイラへ送気する抽気蒸気送気系統とを追設し、
前記リボイラに送気される抽気蒸気と前記ボイラに送られる前記給水とを熱交換させる過熱低減器を、前記抽気蒸気送気系統に設け、
前記蒸気タービンを構成する低圧タービンに前記中圧タービンから排出された主蒸気を送気するクロスオーバ管に主蒸気圧力を調節する圧力調節弁を設け、
前記給水系統に、前記給水を前記過熱低減器に導き、前記過熱低減器で前記抽気蒸気と熱交換した前記給水を前記給水系統に戻す給水分岐系統と、前記給水を前記過熱低減器をバイパスさせて前記ボイラに送る過熱低減器バイパス給水系統と、前記給水分岐系統と過熱低減器バイパス給水系統とに流下させる給水の分配量を調節する第1の弁とを追設し、
前記抽気蒸気送気系統に、前記抽気蒸気送気系統を流下する抽気蒸気を前記過熱低減器をバイパスして前記給水系統に導く過熱低減器バイパス抽気蒸気系統と、前記過熱低減器と前記過熱低減器バイパス抽気蒸気系統とに送気する抽気蒸気の分配量を調節する第2の弁とを追設することを特徴とする火力発電システムの改造方法。
A boiler, a steam turbine driven by steam generated by the boiler, a condenser that cools and condenses the steam that drives the steam turbine, and feed water that feeds the water condensed by the condenser to the boiler A method for remodeling a thermal power generation system comprising a grid,
An absorption tower that absorbs carbon dioxide contained in boiler exhaust gas discharged from the boiler with an absorption liquid, a regeneration tower that separates the carbon dioxide from the absorption liquid that has absorbed the carbon dioxide in the absorption tower, and generates steam A carbon dioxide separation and recovery device comprising a reboiler for supplying the steam to the regeneration tower as a heat source for separating the carbon dioxide from the absorption liquid;
The extraction steam extracted from the medium pressure turbine constituting the steam turbine is additionally installed with an extraction steam supply system for supplying the reboiler of the carbon dioxide separation and recovery device,
An overheat reducer for exchanging heat between the extracted steam sent to the reboiler and the feed water sent to the boiler is provided in the extracted steam supply system,
A pressure control valve for adjusting a main steam pressure is provided in a crossover pipe for sending main steam discharged from the intermediate pressure turbine to a low pressure turbine constituting the steam turbine;
A feed water branch system for guiding the feed water to the overheat reducer and returning the feed water heat-exchanged with the extracted steam by the overheat reducer to the feed water system; and bypassing the overheat reducer for the feed water. A superheat reducer bypass feed water system to be sent to the boiler, and a first valve for adjusting a distribution amount of feed water flowing down to the feed water branch system and the overheat reducer bypass feed water system,
The superheat reducer bypass bleed steam system, the superheat reducer bypassing the superheat reducer, the superheat reducer bypassing the superheat reducer, and the superheat reducer and the superheat reduction. remodeling process of thermal power system that is characterized in that additionally provided a second valve for adjusting the amount of distribution of extraction steam to air in the vessel bypass extraction steam line.
前記抽気蒸気送気系統に、In the extraction steam supply system,
前記第2の弁の上流側であって、かつ前記過熱低減器バイパス抽気蒸気系統の下流側に、前記抽気蒸気を前記復水器に導く抽気蒸気逃がし系統を追設し、An extraction steam escape system for guiding the extraction steam to the condenser is additionally installed on the upstream side of the second valve and on the downstream side of the superheat reducer bypass extraction steam system;
前記抽気蒸気逃がし系統に、前記抽気蒸気逃がし系統を流下する抽気蒸気量を調節する第3の弁と、前記抽気蒸気逃がし系統を流下する抽気蒸気の圧力を調節する第4の弁とを設けることを特徴とする請求項14記載の火力発電システムの改造方法。A third valve for adjusting the amount of extraction steam flowing down the extraction steam escape system and a fourth valve for adjusting the pressure of extraction steam flowing down the extraction steam escape system are provided in the extraction steam escape system. The method for remodeling a thermal power generation system according to claim 14.
JP2012501527A 2010-02-26 2010-02-26 Thermal power generation system and operation method thereof, thermal power generation system modification method, steam turbine equipment used in thermal power generation system, carbon dioxide separation and recovery device, overheat reducer Active JP5526219B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/001302 WO2011104759A1 (en) 2010-02-26 2010-02-26 Thermal power system and method for operation thereof, method for improvement of thermal power system, steam turbine installation for use in thermal power system, apparatus for separation/collection of carbon dioxide, and desuperheater

Publications (2)

Publication Number Publication Date
JPWO2011104759A1 JPWO2011104759A1 (en) 2013-06-17
JP5526219B2 true JP5526219B2 (en) 2014-06-18

Family

ID=44506209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012501527A Active JP5526219B2 (en) 2010-02-26 2010-02-26 Thermal power generation system and operation method thereof, thermal power generation system modification method, steam turbine equipment used in thermal power generation system, carbon dioxide separation and recovery device, overheat reducer

Country Status (2)

Country Link
JP (1) JP5526219B2 (en)
WO (1) WO2011104759A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10944307B2 (en) 2019-02-20 2021-03-09 Mitsubishi Heavy Industries, Ltd. Rotary electric machine, generator, and wind turbine power generation facility
KR102340321B1 (en) * 2020-07-17 2021-12-16 한국전력기술 주식회사 Electric Power facility with Liquid Air Energy System

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5450540B2 (en) * 2011-09-12 2014-03-26 株式会社日立製作所 Boiler heat recovery system with CO2 recovery device
JP5738166B2 (en) * 2011-12-22 2015-06-17 三菱日立パワーシステムズ株式会社 Control system and control method for coal-fired thermal power plant with CO2 recovery device
JP5734883B2 (en) * 2012-01-24 2015-06-17 株式会社東芝 Carbon dioxide separation and recovery device, carbon dioxide recovery steam power generation system, and operation method of carbon dioxide recovery steam power generation system
JP5885614B2 (en) * 2012-07-31 2016-03-15 株式会社東芝 Steam turbine plant, control method thereof, and control system thereof
CN109404075A (en) * 2018-11-30 2019-03-01 上海电气电站设备有限公司 Small turbine back pressure controls therrmodynamic system and its control method
CN109539233B (en) * 2018-12-26 2024-02-02 常州市长江热能有限公司 Exhaust steam recovery system of low-pressure deaerator and high-pressure deaerator
JP7164478B2 (en) 2019-03-28 2022-11-01 三菱重工業株式会社 Power plant and power plant output increase control method
JP7132186B2 (en) * 2019-07-16 2022-09-06 三菱重工業株式会社 Steam power generation plant, modification method of steam power generation plant, and method of operating steam power generation plant
CN117771922B (en) * 2024-02-26 2024-06-14 中国电力工程顾问集团华东电力设计院有限公司 Full flue gas carbon dioxide entrapment system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62159705A (en) * 1986-01-09 1987-07-15 Fuji Electric Co Ltd Intermediate pressure turbine warming apparatus of reheating condensing turbine
JPH03134206A (en) * 1989-10-20 1991-06-07 Toshiba Corp Steam turbine-generator equipment
JPH03193116A (en) * 1989-12-25 1991-08-22 Mitsubishi Heavy Ind Ltd Removal of co2 combustion exhaust gas
JPH05184868A (en) * 1992-01-17 1993-07-27 Kansai Electric Power Co Inc:The Method for removing carbon dioxide in combustion exhaust gas
JPH08158806A (en) * 1994-12-09 1996-06-18 Toshiba Corp Turbine starting device
JP2004323339A (en) * 2003-04-30 2004-11-18 Mitsubishi Heavy Ind Ltd Method and system for recovering carbon dioxide
JP2006213580A (en) * 2005-02-07 2006-08-17 Mitsubishi Heavy Ind Ltd Carbon dioxide recovery system, power generation system using the same and method thereof
WO2009076575A2 (en) * 2007-12-13 2009-06-18 Alstom Technology Ltd System and method for regenerating an absorbent solution

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62159705A (en) * 1986-01-09 1987-07-15 Fuji Electric Co Ltd Intermediate pressure turbine warming apparatus of reheating condensing turbine
JPH03134206A (en) * 1989-10-20 1991-06-07 Toshiba Corp Steam turbine-generator equipment
JPH03193116A (en) * 1989-12-25 1991-08-22 Mitsubishi Heavy Ind Ltd Removal of co2 combustion exhaust gas
JPH05184868A (en) * 1992-01-17 1993-07-27 Kansai Electric Power Co Inc:The Method for removing carbon dioxide in combustion exhaust gas
JPH08158806A (en) * 1994-12-09 1996-06-18 Toshiba Corp Turbine starting device
JP2004323339A (en) * 2003-04-30 2004-11-18 Mitsubishi Heavy Ind Ltd Method and system for recovering carbon dioxide
JP2006213580A (en) * 2005-02-07 2006-08-17 Mitsubishi Heavy Ind Ltd Carbon dioxide recovery system, power generation system using the same and method thereof
WO2009076575A2 (en) * 2007-12-13 2009-06-18 Alstom Technology Ltd System and method for regenerating an absorbent solution

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10944307B2 (en) 2019-02-20 2021-03-09 Mitsubishi Heavy Industries, Ltd. Rotary electric machine, generator, and wind turbine power generation facility
KR102340321B1 (en) * 2020-07-17 2021-12-16 한국전력기술 주식회사 Electric Power facility with Liquid Air Energy System

Also Published As

Publication number Publication date
JPWO2011104759A1 (en) 2013-06-17
WO2011104759A1 (en) 2011-09-01

Similar Documents

Publication Publication Date Title
JP5526219B2 (en) Thermal power generation system and operation method thereof, thermal power generation system modification method, steam turbine equipment used in thermal power generation system, carbon dioxide separation and recovery device, overheat reducer
JP5317833B2 (en) Steam turbine power generation equipment
JP5320423B2 (en) Thermal power plant, steam turbine equipment, and control method thereof
JP5050071B2 (en) Boiler equipment
JP5704937B2 (en) Thermal power generation system with carbon dioxide separation and recovery device
JP3780884B2 (en) Steam turbine power plant
EP2333255B1 (en) Fossil fuel combustion thermal power system including carbon dioxide separation and capture unit
JP4395254B2 (en) Combined cycle gas turbine
US8959917B2 (en) Method for operating a forced-flow steam generator operating at a steam temperature above 650°C and forced-flow steam generator
JP5205365B2 (en) Fossil fuel fired thermal power generation system equipped with carbon dioxide separation and recovery device
JP2011047364A (en) Steam turbine power generation facility and operation method for the same
CN109184812B (en) Nuclear energy coupling chemical energy power generation system and method based on two-loop boiler
JP5885614B2 (en) Steam turbine plant, control method thereof, and control system thereof
CN101749961A (en) Sintering product line saturated steam afterheat generating system
CN104533554B (en) A kind of new and effective water supply heat back system for single reheat unit
JP4818391B2 (en) Steam turbine plant and operation method thereof
JP7086523B2 (en) A combined cycle power plant and a method for operating this combined cycle power plant
JP3919883B2 (en) Combined cycle power plant
JP5463313B2 (en) Thermal power plant
JP5355358B2 (en) Fossil fuel fired thermal power generation system equipped with carbon dioxide separation and recovery device
JP4004800B2 (en) Combined cycle power generation system
JP2016160775A (en) Hybrid power system with solar heat and fuel boiler and control method therefor
JP4301690B2 (en) Turbine equipment
JP4488631B2 (en) Combined cycle power generation facility and operation method thereof
JPH09170405A (en) Pressurized fluidized bed compound power generation facility

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140123

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140414

R150 Certificate of patent or registration of utility model

Ref document number: 5526219

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250