JP5205365B2 - Fossil fuel fired thermal power generation system equipped with carbon dioxide separation and recovery device - Google Patents

Fossil fuel fired thermal power generation system equipped with carbon dioxide separation and recovery device Download PDF

Info

Publication number
JP5205365B2
JP5205365B2 JP2009293717A JP2009293717A JP5205365B2 JP 5205365 B2 JP5205365 B2 JP 5205365B2 JP 2009293717 A JP2009293717 A JP 2009293717A JP 2009293717 A JP2009293717 A JP 2009293717A JP 5205365 B2 JP5205365 B2 JP 5205365B2
Authority
JP
Japan
Prior art keywords
steam
pressure turbine
carbon dioxide
pipe
fossil fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009293717A
Other languages
Japanese (ja)
Other versions
JP2011132899A (en
Inventor
信義 三島
修 松浦
尊 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009293717A priority Critical patent/JP5205365B2/en
Priority to US12/952,969 priority patent/US20110120130A1/en
Priority to CA2722195A priority patent/CA2722195C/en
Priority to EP10192643.4A priority patent/EP2333255B1/en
Publication of JP2011132899A publication Critical patent/JP2011132899A/en
Application granted granted Critical
Publication of JP5205365B2 publication Critical patent/JP5205365B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Chimneys And Flues (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Description

本発明は、二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムに関する。   The present invention relates to a fossil fuel-fired thermal power generation system including a carbon dioxide separation and recovery device.

本発明に係る二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムとしては、高圧,中圧,低圧タービンを有し、化石燃料、例えば石炭焚ボイラで生成した蒸気で駆動する蒸気タービンと、前記ボイラで発生した排ガスから二酸化炭素を分離し回収する装置(PCC:Post Combustion CO2 Capture)を備えたものがある。 As a fossil fuel-fired thermal power generation system equipped with a carbon dioxide separation and recovery device according to the present invention, a high-pressure, medium-pressure, low-pressure turbine, a steam turbine driven by fossil fuel, for example, steam generated by a coal fired boiler, Some have a device (PCC: Post Combustion CO 2 Capture) for separating and collecting carbon dioxide from exhaust gas generated in the boiler.

例えば、特許第4274846号公報には、二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムとして、高圧タービン,中圧タービン及び低圧タービンを有する蒸気タービンと、これらを駆動する蒸気を発生させるためのボイラと、ボイラの燃焼排ガスから二酸化炭素を吸収除去するための二酸化炭素吸収液を備える二酸化炭素吸収塔と、二酸化炭素を吸収した該二酸化炭素吸収液を再生するための再生塔と、除去された二酸化炭素を圧縮するためのコンプレッサと、高圧タービンの排出蒸気の一部により駆動するコンプレッサ用のタービンと、中圧タービンの排出蒸気の一部により駆動する補機用タービンと、コンプレッサ用タービン及び補機用タービンの排出蒸気を再生塔のリボイラに加熱源として供給するための供給管とを有するシステムが開示されている。   For example, Japanese Patent No. 4274848 discloses a fossil fuel-fired thermal power generation system equipped with a carbon dioxide separation and recovery device for generating a steam turbine having a high-pressure turbine, an intermediate-pressure turbine and a low-pressure turbine, and steam for driving them. Boiler, a carbon dioxide absorption tower having a carbon dioxide absorption liquid for absorbing and removing carbon dioxide from the combustion exhaust gas of the boiler, and a regeneration tower for regenerating the carbon dioxide absorption liquid that has absorbed carbon dioxide are removed. A compressor for compressing the carbon dioxide, a compressor turbine driven by a part of the exhaust steam of the high pressure turbine, an auxiliary turbine driven by a part of the exhaust steam of the intermediate pressure turbine, a compressor turbine, A supply pipe for supplying the exhaust steam of the auxiliary turbine to the reboiler of the regeneration tower as a heating source; System having is disclosed.

一般的にボイラの排ガス中から二酸化炭素を回収する二酸化炭素回収装置では、吸収液循環ポンプを駆動して吸収液を吸収塔と再生塔との間で循環させ、吸収塔にてボイラ排ガスに含まれた二酸化炭素を吸収液に吸収させ、再生塔でこの吸収液に吸収した二酸化炭素を分離して回収している。   Generally, in a carbon dioxide recovery device that recovers carbon dioxide from boiler exhaust gas, the absorption liquid is circulated between the absorption tower and the regeneration tower by driving the absorption liquid circulation pump, and is contained in the boiler exhaust gas in the absorption tower. The absorbed carbon dioxide is absorbed in the absorption liquid, and the carbon dioxide absorbed in the absorption liquid is separated and recovered by the regeneration tower.

即ち、ボイラ排ガス中の二酸化炭素成分と吸収液を吸収塔内で接触させて約40℃程度の吸収液がガス中の二酸化炭素との化学反応(発熱反応)により二酸化炭素を吸収する。   That is, the carbon dioxide component in the boiler exhaust gas is brought into contact with the absorption liquid in the absorption tower, and the absorption liquid at about 40 ° C. absorbs carbon dioxide through a chemical reaction (exothermic reaction) with the carbon dioxide in the gas.

この時の吸収液と二酸化炭素の化学反応により約70℃程度の二酸化炭素に富んだリッチ吸収液は吸収塔を出た後で、再生塔から供給される再生された約120℃の吸収液(リーン吸収液と呼ぶ)と熱交換を行い、約110℃程度に加熱されて再び吸収塔に流入する
At this time, the rich absorption liquid rich in carbon dioxide of about 70 ° C. by the chemical reaction between the absorption liquid and carbon dioxide exits the absorption tower, and is then regenerated about 120 ° C. absorption liquid supplied from the regeneration tower ( Heat exchange is performed with a lean absorbent, which is heated to about 110 ° C. and flows again into the absorption tower.

熱交換された後のリッチ吸収液は再生塔でさらに120℃〜130℃程度に加熱されてリッチ吸収液に吸収した二酸化炭素を分離する。   The rich absorbent after the heat exchange is further heated to about 120 ° C. to 130 ° C. in the regeneration tower to separate carbon dioxide absorbed in the rich absorbent.

再生塔で二酸化炭素を分離した吸収液はリーン吸収液となって再度吸収塔に導入されてボイラ排ガス中の二酸化炭素を吸収する。   The absorption liquid from which carbon dioxide has been separated in the regeneration tower becomes a lean absorption liquid and is again introduced into the absorption tower to absorb the carbon dioxide in the boiler exhaust gas.

この際、再生塔内の吸収液を二酸化炭素を分離させてリーン吸収液となるように加熱するために、再生塔に加熱蒸気を供給するリボイラは多量の蒸気を発生させる必要がある。   At this time, in order to heat the absorption liquid in the regeneration tower so that carbon dioxide is separated to become a lean absorption liquid, the reboiler supplying heating steam to the regeneration tower needs to generate a large amount of steam.

特許第4274846号公報Japanese Patent No. 4274646

前記特許第4274846号公報に記載された二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムでは、何らかの原因によって二酸化炭素分離回収装置の吸収塔と再生塔との間で二酸化炭素を吸収、並びに分離する吸収液を循環させるポンプ塔がトリップして二酸化炭素分離回収装置が緊急停止する場合、蒸気タービンの高圧タービン及び中圧タービンの排出蒸気のリボイラへの供給を速やかに停止する必要がある。しかしながら、蒸気タービンの高圧タービン及び中圧タービンの排出蒸気のリボイラへの供給を緊急停止した場合、行き場を失い余剰となった排出蒸気が、蒸気タービンの低圧タービンに流入し、低圧タービンのタービン動翼の強度上許される許容飲み込み蒸気量を急激に超えて低圧タービンの動翼に大きな負荷がかかる可能性がある。   In the fossil fuel-fired thermal power generation system provided with the carbon dioxide separation and recovery device described in the above-mentioned Japanese Patent No. 4274646, carbon dioxide is absorbed between the absorption tower and the regeneration tower of the carbon dioxide separation and recovery device for some reason, and When the pump tower that circulates the absorption liquid to be separated trips and the carbon dioxide separation and recovery device stops urgently, it is necessary to quickly stop the supply of the high-pressure turbine of the steam turbine and the exhaust steam of the intermediate-pressure turbine to the reboiler. However, when the supply of exhaust steam from the high-pressure turbine and intermediate-pressure turbine of the steam turbine to the reboiler is stopped urgently, the surplus exhaust steam that has lost its place of flow flows into the low-pressure turbine of the steam turbine. There is a possibility that a large load is applied to the rotor blades of the low-pressure turbine by rapidly exceeding the allowable swallowed steam amount allowed for the blade strength.

そこで本発明の目的は、蒸気タービンの排出蒸気の一部を二酸化炭素分離回収装置のリボイラまたはリクレーマに用いる二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムにおいて、二酸化炭素分離回収装置が緊急停止し、リボイラおよびリクレーマへの蒸気供給が急に不要になった場合にも、化石燃料焚き火力発電システムの負荷変動を抑制し、継続して安定運転でき、かつ二酸化炭素分離回収装置が停止したことにより発生する余剰蒸気を回収して発電出力の増大を図ることができる二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムを提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a fossil fuel-fired thermal power generation system equipped with a carbon dioxide separation and recovery device that uses a part of steam discharged from a steam turbine for a reboiler or reclaimer of the carbon dioxide separation and recovery device. Even when the supply of steam to the reboiler and reclaimer suddenly becomes unnecessary, the load fluctuation of the fossil fuel-fired thermal power generation system is suppressed, stable operation can be continued, and the carbon dioxide separation and recovery device is stopped. An object of the present invention is to provide a fossil fuel-fired thermal power generation system equipped with a carbon dioxide separation and recovery device capable of recovering surplus steam generated thereby and increasing power generation output.

上記目的を達成するため、化石燃料を燃焼させて蒸気を発生させるボイラと、高圧タービンと、中圧タービンと、第1の低圧タービンと、復水器とを有する蒸気タービン装置とを備えた化石燃料焚き火力発電システムと、
ボイラから化石燃料を燃焼して排出されたボイラ排ガスに含まれる二酸化炭素を吸収液に吸収させて回収する吸収塔と、吸収塔との間で吸収液を循環させて二酸化炭素を吸収した吸収液から二酸化酸素を分離する吸収液の再生塔と、再生塔に蒸気を供給するリボイラとを備えた二酸化炭素分離回収装置と、を有する二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムにおいて、蒸気タービンの排出蒸気から抽気した抽気蒸気をリボイラに熱源として供給する抽気配管と、復水器と抽気配管とに連通する第1の蒸気配管と、前記蒸気タービン装置とは別設された第2の低圧タービンと、第2の低圧タービンの動力で発電する発電機と、抽気配管と前記第2の低圧タービンとに連通し、抽気配管を流下する抽気蒸気を第2の低圧タービンに導く第2の蒸気配管と、抽気配管、第1の蒸気配管、および第2の蒸気配管に設けられた、抽気蒸気が流下する流路を切り換え制御するための弁とを備えた。
In order to achieve the above object, a fossil comprising a steam turbine apparatus having a boiler that generates steam by burning fossil fuel, a high pressure turbine, an intermediate pressure turbine, a first low pressure turbine, and a condenser. A fuel-fired thermal power generation system,
Absorption liquid in which carbon dioxide is absorbed by circulating the absorption liquid between the absorption tower that absorbs and recovers carbon dioxide contained in the boiler exhaust gas discharged by burning fossil fuel from the boiler, and the absorption tower In a fossil fuel-fired thermal power generation system equipped with a carbon dioxide separation and recovery device comprising a regeneration tower for absorbing liquid from which oxygen dioxide is separated from, and a carbon dioxide separation and recovery device comprising a reboiler for supplying steam to the regeneration tower, An extraction pipe for supplying extracted steam extracted from the exhaust steam of the steam turbine as a heat source to the reboiler, a first steam pipe communicating with the condenser and the extraction pipe, and a second provided separately from the steam turbine device. A low-pressure turbine, a generator that generates electric power using the power of the second low-pressure turbine, an extraction pipe and the second low-pressure turbine, and the extracted steam flowing down the extraction pipe is supplied to the second low-pressure turbine. A second steam line leading to down, the bleed pipe, the first steam pipe, and a second provided to the steam pipe, and a valve for controlling switching a channel extraction steam flows down.

本発明によれば、蒸気タービンの排出蒸気の一部を二酸化炭素分離回収装置のリボイラまたはリクレーマに用いる二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムにおいて、二酸化炭素分離回収装置が緊急停止し、リボイラおよびリクレーマへの蒸気供給が急に不要になった場合にも、化石燃料焚き火力発電システムの負荷変動を抑制し、継続して安定運転でき、かつ二酸化炭素分離回収装置が停止したことにより発生する余剰蒸気を回収して発電出力の増大を図ることができる。   According to the present invention, in a fossil fuel-fired thermal power generation system equipped with a carbon dioxide separation and recovery device that uses a part of the steam discharged from the steam turbine for a reboiler or reclaimer of the carbon dioxide separation and recovery device, the carbon dioxide separation and recovery device is urgently stopped. However, even when the supply of steam to the reboiler and reclaimer suddenly becomes unnecessary, fluctuations in the load of the fossil fuel-fired thermal power generation system can be suppressed, stable operation can be continued, and the carbon dioxide separation and recovery device must be stopped. The surplus steam generated by the above can be recovered to increase the power generation output.

本発明の第1実施例である二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムを示す概略系統図。1 is a schematic system diagram showing a fossil fuel-fired thermal power generation system including a carbon dioxide separation and recovery device according to a first embodiment of the present invention. 図1に示した第1実施例における化石燃料焚き火力発電システムを示す部分図。FIG. 2 is a partial view showing a fossil fuel-fired thermal power generation system in the first embodiment shown in FIG. 1. 本発明の第2実施例である二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムを示す概略系統図。The schematic system | strain diagram which shows the fossil fuel-fired thermal power generation system provided with the carbon dioxide separation-and-recovery apparatus which is 2nd Example of this invention. 図3に示した第1実施例における化石燃料焚き火力発電システムを示す部分図。FIG. 4 is a partial view showing the fossil fuel-fired thermal power generation system in the first embodiment shown in FIG. 3.

本発明の実施例である二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムについて図面を参照して以下に説明する。なお、各図面を通し、同等の構成要素には同一の符号を付してある。   A fossil fuel-fired thermal power generation system equipped with a carbon dioxide separation and recovery device according to an embodiment of the present invention will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected to the equivalent component through each drawing.

本発明の第1実施例である二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムについて図1及び図2を引用して説明する。   A fossil fuel-fired thermal power generation system equipped with a carbon dioxide separation and recovery device according to a first embodiment of the present invention will be described with reference to FIGS.

図1は本発明の第1実施例である二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムを示すものである。   FIG. 1 shows a fossil fuel-fired thermal power generation system equipped with a carbon dioxide separation and recovery device according to a first embodiment of the present invention.

図1に示した第1実施例の二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムを構成する化石燃料焚き火力発電システム100は、化石燃料を燃焼させて復水器から供給された復水を加熱し、高温高圧の蒸気を発生する化石燃料焚きボイラ1と、このボイラ1で発生した蒸気を該ボイラ1から主蒸気管2を通じて導いて駆動する高圧タービン3を備えている。   A fossil fuel-fired thermal power generation system 100 constituting the fossil-fuel-fired thermal power generation system including the carbon dioxide separation and recovery apparatus of the first embodiment shown in FIG. 1 is a condensate that is supplied from a condenser by burning fossil fuel. A fossil fuel-fired boiler 1 that heats water and generates high-temperature and high-pressure steam, and a high-pressure turbine 3 that drives the steam generated in the boiler 1 through the main steam pipe 2 from the boiler 1 are provided.

高圧タービン3で動力を発生して減圧され、高圧タービン排気管4を流下した蒸気は前記ボイラ1に供給され、このボイラ1で再度加熱されて再熱蒸気となる。   Steam generated by the high-pressure turbine 3 and depressurized to flow down the high-pressure turbine exhaust pipe 4 is supplied to the boiler 1 and is heated again by the boiler 1 to become reheated steam.

化石燃料焚き火力発電システム100は、前記ボイラ1で加熱された再熱蒸気を該ボイラ1から高温再熱蒸気管5を通じて導いて駆動する中圧タービン6と、この中圧タービン6で動力を発生して減圧された蒸気を、中圧タービン排気管7を通じて導いて駆動する第1低圧タービン8と、低圧タービン8で動力を発生して減圧された蒸気を復水する第1の復水器9とを備える。   The fossil fuel-fired thermal power generation system 100 generates a power by an intermediate pressure turbine 6 that drives the reheat steam heated by the boiler 1 through the high temperature reheat steam pipe 5 from the boiler 1 and drives it. The first low-pressure turbine 8 that guides and drives the decompressed steam through the intermediate-pressure turbine exhaust pipe 7 and the first condenser 9 that generates power in the low-pressure turbine 8 to condense the decompressed steam. With.

前記復水器9は、冷却水配管10を備えており、復水器9に導かれた蒸気と冷却水配管内を流れる冷却水とを熱交換させて蒸気を復水する。復水器9で復水された復水は再びボイラ1に送られ、蒸気となって高圧タービン3に送気されており、蒸気タービンヒートサイクルが構成されている。   The condenser 9 includes a cooling water pipe 10, and condenses the steam by exchanging heat between the steam guided to the condenser 9 and the cooling water flowing in the cooling water pipe. The condensate condensate in the condenser 9 is sent again to the boiler 1 and is sent as steam to the high-pressure turbine 3 to constitute a steam turbine heat cycle.

前記高圧タービン3,中圧タービン6及び低圧タービン8は、タービンロータ11によって連結されている。また、タービンロータ11には発電機12が連結されており、前記高圧タービン3,中圧タービン6及び低圧タービン8の回転動力によって発電機12は駆動され、蒸気タービンの出力が電力として取り出されている。   The high-pressure turbine 3, the intermediate-pressure turbine 6 and the low-pressure turbine 8 are connected by a turbine rotor 11. A generator 12 is connected to the turbine rotor 11, and the generator 12 is driven by the rotational power of the high-pressure turbine 3, the intermediate-pressure turbine 6 and the low-pressure turbine 8, and the output of the steam turbine is taken out as electric power. Yes.

前記化石燃料焚き火力発電システム100には、中圧タービン6の中圧タービン排気管7から分岐して、中圧タービン排気管7を流下する排出蒸気の一部を抽気して導く第1抽気管40と、第1抽気管40と接続し、第1の抽気管40を流下した抽気蒸気を後述する二酸化炭素分離回収装置200に設置されたリボイラ25及びリクレーマ26に送気するPCC装置送気配管41とが備えられている。PCC装置送気配管41には止め弁50が設けてある。   In the fossil fuel-fired thermal power generation system 100, a first extraction pipe branched from the intermediate pressure turbine exhaust pipe 7 of the intermediate pressure turbine 6 and extracting and guiding a part of the exhaust steam flowing down the intermediate pressure turbine exhaust pipe 7. 40 and a first bleed pipe 40, and a PCC device air supply pipe for supplying bleed steam flowing down through the first bleed pipe 40 to a reboiler 25 and a reclaimer 26 installed in a carbon dioxide separation and recovery device 200 described later. 41. A stop valve 50 is provided in the PCC device air supply pipe 41.

図1に示した第1実施例の二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムには、前記した化石燃料焚き火力発電システム100と、この化石燃料焚き火力発電システム100のボイラ1から化石燃料を燃焼して排出されたボイラ排ガスに含まれる二酸化炭素を分離し回収する二酸化炭素分離回収装置(PCC装置)200とが設置されている。   The fossil fuel-fired thermal power generation system equipped with the carbon dioxide separation and recovery device of the first embodiment shown in FIG. 1 includes the fossil fuel-fired thermal power generation system 100 and the boiler 1 of the fossil fuel-fired thermal power generation system 100. A carbon dioxide separation and recovery device (PCC device) 200 that separates and recovers carbon dioxide contained in boiler exhaust gas discharged by burning fossil fuel is installed.

図1に示した二酸化炭素分離回収装置200では、ボイラ1から排出され、ボイラ排ガス系統13から分岐供給される二酸化炭素を含んだボイラ排ガスは、ボイラ排ガス管14を通じて流下し、該ボイラ排ガス管14に設けたボイラ排ガス昇圧ファン15によって昇圧された後に、ボイラ排ガス冷却器16に供給されて冷却され、ボイラ排ガス冷却器16から二酸化炭素ガスを吸収液に吸収させる吸収塔17に供給される。   In the carbon dioxide separation and recovery apparatus 200 shown in FIG. 1, boiler exhaust gas containing carbon dioxide discharged from the boiler 1 and branched and supplied from the boiler exhaust gas system 13 flows down through the boiler exhaust gas pipe 14. After being boosted by the boiler exhaust gas booster fan 15 provided in the boiler exhaust gas, the boiler exhaust gas cooler 16 is supplied to the boiler exhaust gas cooler 16 to be cooled, and the boiler exhaust gas cooler 16 is supplied to the absorption tower 17 for absorbing the carbon dioxide gas in the absorption liquid.

前記吸収塔17でボイラ排ガスに含まれた二酸化炭素ガスを吸収液に吸収され、二酸化炭素を含まないボイラ排ガスとなった処理ガスは、吸収塔17から吸収塔出口ボイラ排ガス管18を通じて煙突19に供給され、この煙突19から大気に排出される。   The treatment gas that has been absorbed in the absorption liquid by the absorption tower 17 into the boiler exhaust gas and becomes boiler exhaust gas that does not contain carbon dioxide passes through the absorption tower 17 through the absorption tower outlet boiler exhaust pipe 18 to the chimney 19. It is supplied and discharged from the chimney 19 to the atmosphere.

また、ボイラ1からボイラ排ガス系統13を通じて供給される二酸化炭素を含んだボイラ排ガスのうち、前記吸収塔17に供給しないボイラ排ガスは、二酸化炭素分離回収装置200をバイパスするバイパスガス管20に設けたバイパスバタフライ弁21の開弁操作によって、前記バイパスガス管20を通じて煙突19に直接導かれるようになっている。   Of the boiler exhaust gas containing carbon dioxide supplied from the boiler 1 through the boiler exhaust gas system 13, the boiler exhaust gas not supplied to the absorption tower 17 is provided in the bypass gas pipe 20 that bypasses the carbon dioxide separation and recovery device 200. By opening the bypass butterfly valve 21, the bypass butterfly valve 21 is directly led to the chimney 19 through the bypass gas pipe 20.

前記吸収塔17にてボイラ排ガスに含まれた二酸化炭素ガスを吸収して二酸化炭素を多く含むリッチ吸収液は、吸収塔17の吸収液を再生塔22に供給する吸収液の供給経路に設けたリッチ吸収液移送ポンプ23によって昇圧され、同じく吸収液の供給経路に設けた吸収液熱交換器24に供給されて該吸収液熱交換器24で加熱された後に再生塔22に供給される。   The rich absorption liquid containing a large amount of carbon dioxide by absorbing the carbon dioxide gas contained in the boiler exhaust gas in the absorption tower 17 is provided in the supply path of the absorption liquid for supplying the absorption liquid of the absorption tower 17 to the regeneration tower 22. The pressure is increased by the rich absorbing liquid transfer pump 23, supplied to the absorbing liquid heat exchanger 24 provided in the absorbing liquid supply path, heated by the absorbing liquid heat exchanger 24, and then supplied to the regeneration tower 22.

吸収塔17から再生塔22に供給されたリッチ吸収液は、リボイラ25及びリクレーマ26で生成された水蒸気を該リボイラ25及びリクレーマ26から再生塔22に供給することによって加熱されて、前記再生塔22の内部にて吸収した二酸化炭素ガスを分離する。   The rich absorption liquid supplied from the absorption tower 17 to the regeneration tower 22 is heated by supplying the steam generated by the reboiler 25 and the reclaimer 26 from the reboiler 25 and the reclaimer 26 to the regeneration tower 22, and the regeneration tower 22. The carbon dioxide gas absorbed inside is separated.

リボイラ25から供給された水蒸気による加温によって前記再生塔22の内部でリッチ吸収液から分離した二酸化炭素は再生塔22から排出され、再生塔22の出口側に設けた出口ガス冷却器27で冷却された後に、水分を分離するリフラックスドラム28に供給されて二酸化炭素のガスに含まれる水分が分離される。水分が分離された二酸化炭素ガスは、該リフラックスドラム28から二酸化炭素ガス排気管29を通じて二酸化炭素の液化貯留設備(図示せず)に供給され貯留される。   Carbon dioxide separated from the rich absorption liquid inside the regeneration tower 22 by heating with the steam supplied from the reboiler 25 is discharged from the regeneration tower 22 and cooled by an outlet gas cooler 27 provided on the outlet side of the regeneration tower 22. After that, the water contained in the carbon dioxide gas is separated by being supplied to the reflux drum 28 for separating the water. The carbon dioxide gas from which moisture has been separated is supplied from the reflux drum 28 through a carbon dioxide gas exhaust pipe 29 to a carbon dioxide liquefaction storage facility (not shown) and stored.

また、前記リフラックスドラム28で分離された水分はリフラックスドラムポンプ30で昇圧されて前記再生塔22に戻されるように構成されている。   Further, the water separated by the reflux drum 28 is pressurized by a reflux drum pump 30 and returned to the regeneration tower 22.

そして前記再生塔22内の吸収液の一部は、再生塔内吸収液抜き出し管31を通じて抜き出されてリボイラ25及びリクレーマ26にそれぞれ分岐して供給され、化石燃料焚き火力発電システム100の蒸気タービンサイクルから抽気した加熱蒸気、即ち中圧タービン6から抽気した抽気蒸気を熱源として供給されるリボイラ25によって加温される。   A part of the absorption liquid in the regeneration tower 22 is extracted through the regeneration tower absorption liquid extraction pipe 31 and branched and supplied to the reboiler 25 and the reclaimer 26, respectively, and the steam turbine of the fossil fuel-fired thermal power generation system 100 is supplied. Heated steam extracted from the cycle, that is, extracted steam extracted from the intermediate pressure turbine 6 is heated by the reboiler 25 supplied as a heat source.

リクレーマ26は中圧タービン6から抽気した抽気蒸気を熱源として吸収液を加熱し、この吸収液に含まれる不純物を分離させて系外に排出する吸収液の浄化装置である。   The reclaimer 26 is a device for purifying the absorbing liquid that uses the extracted steam extracted from the intermediate-pressure turbine 6 as a heat source to heat the absorbing liquid, separates impurities contained in the absorbing liquid, and discharges them outside the system.

このリボイラ25及びリクレーマ26の加熱に必要な加熱蒸気は、化石燃料焚き火力発電システム100を構成する前記中圧タービン6を流下した排出蒸気の一部を抽気して第1抽気管40およびPCC装置送気配管41を通じてリボイラ25とリクレーマ26にそれぞれ送気することによって得ている。   As the heating steam necessary for heating the reboiler 25 and the reclaimer 26, a part of the exhaust steam flowing down the intermediate pressure turbine 6 constituting the fossil fuel-fired thermal power generation system 100 is extracted, and the first extraction pipe 40 and the PCC device are extracted. It is obtained by supplying air to the reboiler 25 and the reclaimer 26 through the air supply pipe 41.

前記再生塔22での吸収液の加熱によって二酸化炭素を分離した吸収液は、再生塔22から吸収液を吸収塔17に戻す吸収液の戻し経路に設けたリーン吸収液移送ポンプ32によって昇圧され、同じく吸収液の戻し経路に設けたリーン吸収液冷却器33に供給されて該リーン吸収液冷却器33で冷却された後に前記吸収塔17に戻されて、吸収液が前記吸収塔17と前記再生塔22との間を循環するようになっている。   The absorption liquid obtained by separating carbon dioxide by heating the absorption liquid in the regeneration tower 22 is pressurized by a lean absorption liquid transfer pump 32 provided in the return path of the absorption liquid for returning the absorption liquid from the regeneration tower 22 to the absorption tower 17. Similarly, it is supplied to the lean absorption liquid cooler 33 provided in the return path of the absorption liquid, cooled by the lean absorption liquid cooler 33, and then returned to the absorption tower 17, so that the absorption liquid and the regeneration tower 17 are regenerated. It circulates between the towers 22.

そして二酸化炭素分離回収装置200は、前記第1の抽気管40およびPCC装置送気配管41を通じて中圧タービン6から抽気した抽気蒸気をリボイラ25とリクレーマ26に熱源として供給し、再生塔22から再生塔内吸収液抜き出し管31を通じて抜き出された吸収液を前記リボイラ25で間接的に加熱して所望の温度,圧力の正常な蒸気をそれぞれ発生させ、これらの発生蒸気をリボイラ出口蒸気配管34を通じて再生塔22に供給するように構成されている。   The carbon dioxide separation and recovery apparatus 200 supplies the extracted steam extracted from the intermediate pressure turbine 6 through the first extraction pipe 40 and the PCC apparatus supply pipe 41 to the reboiler 25 and the reclaimer 26 as a heat source and regenerates from the regeneration tower 22. The absorption liquid extracted through the tower absorption liquid extraction pipe 31 is indirectly heated by the reboiler 25 to generate normal steam at a desired temperature and pressure, and the generated steam is supplied through the reboiler outlet steam pipe 34. It is configured to supply to the regeneration tower 22.

前記リボイラ25及びリクレーマ26の上流側となるPCC装置送気配管41は、リボイラ側配管35,リクレーマ側配管36に分岐し、リボイラ側配管35はリボイラ25に、リクレーマ側配管36はリクレーマ26に繋がっている。また、リボイラ側配管34には流量制御弁37が、リクレーマ側配管35には流量制御弁38がそれぞれ設置されており、前記リボイラ25で発生する蒸気が所望の温度,圧力となるようにリボイラ25に供給する中圧タービンからの抽気蒸気の流量を調節するようになっている。   The PCC device air supply pipe 41 on the upstream side of the reboiler 25 and the reclaimer 26 branches to a reboiler side pipe 35 and a reclaimer side pipe 36, the reboiler side pipe 35 is connected to the reboiler 25, and the reclaimer side pipe 36 is connected to the reclaimer 26. ing. The reboiler side pipe 34 is provided with a flow rate control valve 37, and the reclaimer side pipe 35 is provided with a flow rate control valve 38. The reboiler 25 is configured so that steam generated in the reboiler 25 has a desired temperature and pressure. The flow rate of the extracted steam from the intermediate pressure turbine supplied to the engine is adjusted.

前記化石燃料焚き火力発電システム100は、さらに、前記第1抽気管40から分岐した第2低圧タービン送気管46と、タービンロータ11で連結された主蒸気タービン装置とは別個独立して設置され、第2低圧タービン送気管46を通じて導入された中圧タービン6からの抽気蒸気で駆動する第2低圧タービン42と、第2低圧タービン42を駆動して減圧した蒸気を導入し、導入した蒸気と冷却管10内を流れる冷却水とを熱交換させて蒸気を冷却し、復水させる第2復水器45とが設置されている。第2復水器45で復水された復水は、再びボイラ1に送られる。   The fossil fuel-fired thermal power generation system 100 is further installed separately from the second low-pressure turbine air supply pipe 46 branched from the first extraction pipe 40 and the main steam turbine device connected by the turbine rotor 11, The second low-pressure turbine 42 driven by the extracted steam from the intermediate-pressure turbine 6 introduced through the second low-pressure turbine air supply pipe 46, the steam decompressed by driving the second low-pressure turbine 42 are introduced, and the introduced steam and cooling are introduced. A second condenser 45 is provided for heat exchange with the cooling water flowing in the pipe 10 to cool the steam and condense it. The condensate that has been condensed by the second condenser 45 is sent to the boiler 1 again.

第2低圧タービン42の入口側には、第2低圧タービン42の流入蒸気量を制御して、第2低圧タービン42の出力を制御する低圧タービン入口制御弁43が設けられている。また、第2低圧タービン42には発電機44が接続されており、第2低圧タービン42の動力を電力として取り出すように構成されている。   On the inlet side of the second low-pressure turbine 42, a low-pressure turbine inlet control valve 43 that controls the amount of steam flowing into the second low-pressure turbine 42 to control the output of the second low-pressure turbine 42 is provided. In addition, a generator 44 is connected to the second low-pressure turbine 42 so that the power of the second low-pressure turbine 42 is taken out as electric power.

また、前記化石燃料焚き火力発電システム100は、第2低圧タービン送気管46より上流側で第1抽気管40から分岐して、第1抽気管40を流下する蒸気を第1復水器9に導く復水器送気管48を備える。   Further, the fossil fuel-fired thermal power generation system 100 branches from the first extraction pipe 40 upstream from the second low-pressure turbine air supply pipe 46, and the steam flowing down the first extraction pipe 40 flows to the first condenser 9. A condenser condenser pipe 48 is provided.

中圧タービン排気管7には、中圧タービンの排気蒸気圧力を調整する中圧タービン排気圧力調整弁55が設けられている。   The intermediate pressure turbine exhaust pipe 7 is provided with an intermediate pressure turbine exhaust pressure adjustment valve 55 for adjusting the exhaust steam pressure of the intermediate pressure turbine.

第2低圧タービン送気管38には、切り換え弁47が設けられており、復水器送気管48には、切り換え弁49が設けられている。   The second low-pressure turbine air supply pipe 38 is provided with a switching valve 47, and the condenser air supply pipe 48 is provided with a switching valve 49.

図2は図1に示した第1実施例の二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムにおける化石燃料焚き火力発電システム100の部分を示す部分図である。   FIG. 2 is a partial view showing a part of the fossil fuel-fired thermal power generation system 100 in the fossil fuel-fired thermal power generation system provided with the carbon dioxide separation and recovery device of the first embodiment shown in FIG.

図2に示した化石燃料焚き火力発電システム100には、中圧タービン排気管7に設けられ、中圧タービン排気圧力を検出する中圧タービン排気圧力検出器52と、PCC装置送気配管41に設けられ、送気圧力を検出する送気圧力検出器53とが設けられている。   The fossil fuel-fired thermal power generation system 100 shown in FIG. 2 includes an intermediate pressure turbine exhaust pressure detector 52 that is provided in the intermediate pressure turbine exhaust pipe 7 and detects the intermediate pressure turbine exhaust pressure, and a PCC device air supply pipe 41. An air supply pressure detector 53 that detects the air supply pressure is provided.

また、制御装置300が設置されており、このタービン制御装置300によって前記第2低圧タービン42の運転は制御されている。即ち、制御装置300の指令信号によって第2低圧タービン入口制御弁43の開度を調節し、前記低圧タービン42に供給される蒸気の流量を制御する。   A control device 300 is installed, and the operation of the second low-pressure turbine 42 is controlled by the turbine control device 300. That is, the opening degree of the second low-pressure turbine inlet control valve 43 is adjusted by a command signal from the control device 300 to control the flow rate of the steam supplied to the low-pressure turbine 42.

ところで、二酸化炭素分離回収装置200の主要機器が何らかの原因によってトリップした場合、例えば、吸収液を移送するリッチ吸収液移送ポンプ23又はリーン吸収液移送ポンプ31がトリップして二酸化炭素分離回収装置200の運転が緊急停止した際、化石燃料焚き火力発電システム100から二酸化炭素分離回収装置200への蒸気供給を直ちに停止する必要が生じる場合がある。   By the way, when the main equipment of the carbon dioxide separation and recovery apparatus 200 trips for some reason, for example, the rich absorption liquid transfer pump 23 or the lean absorption liquid transfer pump 31 that transfers the absorption liquid trips and the carbon dioxide separation and recovery apparatus 200 When the operation is urgently stopped, it may be necessary to immediately stop the supply of steam from the fossil fuel-fired thermal power generation system 100 to the carbon dioxide separation and recovery device 200.

二酸化炭素分離回収装置200への蒸気供給を直ちに停止した場合、余剰となった蒸気が中圧タービン排気管7および中圧タービン排気圧力調整弁52を経て蒸気タービンの第1低圧タービン8に流入することになり、第1低圧タービン8を流れる蒸気量が急増して、第1低圧タービン8のタービン動翼の強度上許される許容飲み込み蒸気量を急激に超えて低圧タービンの動翼に許容範囲を超える負荷がかかる可能性がある。このような二酸化炭素分離回収装置200の緊急停止に起因する急激な低圧タービンの負荷変動を回避する手段として、本願発明では、第2低圧タービンを設け、余剰となった蒸気の緊急の逃し先を設けたものである。   When the supply of steam to the carbon dioxide separation and recovery device 200 is immediately stopped, surplus steam flows into the first low-pressure turbine 8 of the steam turbine through the intermediate-pressure turbine exhaust pipe 7 and the intermediate-pressure turbine exhaust pressure adjustment valve 52. As a result, the amount of steam flowing through the first low-pressure turbine 8 suddenly increases, and the allowable swallowing steam amount allowed for the strength of the turbine blades of the first low-pressure turbine 8 is rapidly exceeded, and the allowable range for the blades of the low-pressure turbine is increased. Excessive load may be applied. As a means for avoiding a sudden load fluctuation of the low-pressure turbine due to such an emergency stop of the carbon dioxide separation and recovery device 200, in the present invention, a second low-pressure turbine is provided, and an emergency escape destination of surplus steam is provided. It is provided.

図2に示した化石燃料焚き火力発電システム100に設けられた制御装置300は、第2低圧タービン42の運転制御、及び二酸化炭素分離回収装置200の緊急停止時に第1抽気管40を流れる抽気蒸気の供給先を二酸化炭素分離回収装置200から第1復水器9と、第2低圧タービン42とに順次切り換えるための制御を行う。   The control device 300 provided in the fossil fuel-fired thermal power generation system 100 shown in FIG. 2 controls the operation of the second low-pressure turbine 42 and the extraction steam that flows through the first extraction pipe 40 during the emergency stop of the carbon dioxide separation and recovery device 200. For sequentially switching the supply destination of the carbon dioxide from the carbon dioxide separation and recovery device 200 to the first condenser 9 and the second low-pressure turbine 42.

二酸化炭素分離回収装置200が緊急停止した場合、例えば二酸化炭素分離回収装置200の主要機器であるリッチ吸収液移送ポンプ23又はリーン吸収液移送ポンプ32がトリップして二酸化炭素分離回収装置200の運転が緊急停止し、化石燃料焚き火力発電システム100の蒸気タービンサイクルからリボイラ25に供給される蒸気を直ちに停止する必要が生じた場合には、リッチ吸収液移送ポンプ23及びリーン吸収液移送ポンプ32に夫々設置したセンサーからリッチ吸収液移送ポンプのトリップ信号23a又はリーン吸収液移送ポンプのトリップ信号32aが前記制御装置に送られる。   When the carbon dioxide separation / recovery device 200 is urgently stopped, for example, the rich absorption liquid transfer pump 23 or the lean absorption liquid transfer pump 32, which is the main device of the carbon dioxide separation / recovery device 200, trips and the carbon dioxide separation / recovery device 200 is operated. When it is necessary to immediately stop the steam supplied to the reboiler 25 from the steam turbine cycle of the fossil fuel-fired thermal power generation system 100, the rich absorbing liquid transfer pump 23 and the lean absorbing liquid transfer pump 32 are respectively connected. A rich absorption liquid transfer pump trip signal 23a or a lean absorption liquid transfer pump trip signal 32a is sent from the installed sensor to the control device.

また、その他の二酸化炭素分離回収装置200内の異常を検出する手段として、送気圧力検出器53でPCC装置送気配管41内を流下する蒸気の圧力の変動を検知し、検出器53が圧力の異常変動を検出した場合は、検出器53から制御装置300へトリップ信号が送られる。   As another means for detecting an abnormality in the carbon dioxide separation / recovery device 200, the air supply pressure detector 53 detects a change in the pressure of the steam flowing down in the PCC device air supply pipe 41, and the detector 53 detects the pressure. When an abnormal variation is detected, a trip signal is sent from the detector 53 to the control device 300.

制御装置300がトリップ信号の入力を検知すると、制御装置300からの指令信号によって、止め弁50が自動的に全閉して二酸化炭素分離回収装置200への抽気蒸気の流入を遮断する。また、制御装置300からの指令信号によって切り換え弁49を開けて、抽気蒸気の供給先を二酸化炭素分離回収装置200から第1復水器9に切り換え、余剰となった抽気蒸気を一旦復水器送気管48を通じて第1復水器9に流入させ回収する。その後、制御装置300の指令信号によって切り換え弁49を徐々に閉めつつ、第2切り換え弁47および第2低圧タービン入口制御弁43の開度を調節して、抽気蒸気の行き先を第2低圧タービン42に徐々に切り換え制御する。また、二酸化炭素分離回収装置200から第1復水器9および第2低圧タービン42に余剰蒸気の供給先を切り換える際、制御装置300は、中圧タービン排気の圧力変動を検知する中圧タービン排気圧力検出器52の信号に基づき、流路切り換えによって中圧タービン排気が予め定めた設定値を超えて過度に圧力低下しないように切り換え弁49,切り換え弁47,第2低圧タービン入口制御弁43の開度を制御する。供給流路の切り換えによって、中圧タービン排出蒸気が過度に抽気された場合、中圧タービン排気が過度に圧力低下し、中圧タービン最終段翼に許容量を超える負荷がかかる可能性があるが、本構成によれば中圧タービン最終段翼への負荷を回避しつつ、流路切り換え制御を行うことができる。   When the control device 300 detects the input of the trip signal, the stop valve 50 is automatically fully closed by the command signal from the control device 300 to block the flow of the extracted steam into the carbon dioxide separation and recovery device 200. Further, the switching valve 49 is opened by a command signal from the control device 300, the supply destination of the extracted steam is switched from the carbon dioxide separation and recovery device 200 to the first condenser 9, and the excess extracted steam is temporarily recovered. It flows into the first condenser 9 through the air pipe 48 and is collected. Thereafter, the opening of the second switching valve 47 and the second low-pressure turbine inlet control valve 43 is adjusted while the switching valve 49 is gradually closed by the command signal of the control device 300, and the destination of the extracted steam is changed to the second low-pressure turbine 42. Gradually switch control to. Further, when the surplus steam supply destination is switched from the carbon dioxide separation and recovery device 200 to the first condenser 9 and the second low-pressure turbine 42, the control device 300 detects the pressure fluctuation of the medium-pressure turbine exhaust. Based on the signal from the pressure detector 52, the switching valve 49, the switching valve 47, and the second low-pressure turbine inlet control valve 43 are controlled so that the intermediate-pressure turbine exhaust does not excessively decrease pressure by switching the flow path. Control the opening. If medium-pressure turbine exhaust steam is extracted excessively by switching the supply flow path, the pressure of the intermediate-pressure turbine exhaust may drop excessively, and the intermediate-pressure turbine final stage blade may be subjected to a load exceeding the allowable amount. According to this configuration, it is possible to perform flow path switching control while avoiding a load on the final stage blade of the intermediate pressure turbine.

流路切り換えによって中圧タービンから第2低圧タービンに流入した余剰蒸気は、第2低圧タービンを駆動し、発電機44を駆動して電力が得られる。第2低圧タービンを駆動して排出された蒸気は、復水器45に回収されて復水され、ボイラ1へ送水される。   The surplus steam that has flowed into the second low pressure turbine from the intermediate pressure turbine by switching the flow path drives the second low pressure turbine and drives the generator 44 to obtain electric power. The steam discharged by driving the second low-pressure turbine is collected in the condenser 45, condensed, and sent to the boiler 1.

リボイラ25が必要とする蒸気量はリクレーマ26が必要とする蒸気量よりもはるかに多くボイラ全蒸発量の約15%〜20%程度必要であり、よって二酸化炭素分離回収装置200が緊急停止した場合、大量の余剰蒸気が発生するが、制御装置300で上記した制御操作を行うことによって、有効に余剰蒸気の緊急逃がし機能を発揮できる。よって、蒸気タービン装置の低圧タービン(第1低圧タービン)側に急激に許容量を超える蒸気が流入することを回避でき、余剰蒸気によるボイラ1や蒸気タービンの負荷変動が抑制されるので、二酸化炭素分離回収装置200の緊急停止の際にも化石燃料焚き火力発電システム100の安定した運転が継続可能となる。   The amount of steam required by the reboiler 25 is much larger than the amount of steam required by the reclaimer 26, and about 15% to 20% of the total amount of evaporation of the boiler is required. Although a large amount of surplus steam is generated, the emergency escape function of surplus steam can be effectively exhibited by performing the control operation described above with the control device 300. Therefore, it is possible to avoid the steam that exceeds the allowable amount from abruptly flowing into the low-pressure turbine (first low-pressure turbine) side of the steam turbine apparatus, and the load fluctuations of the boiler 1 and the steam turbine due to surplus steam are suppressed, so carbon dioxide The stable operation of the fossil fuel-fired thermal power generation system 100 can be continued even when the separation and recovery device 200 is in an emergency stop.

また、二酸化炭素分離回収装置200の停止中においても、大量の余剰蒸気を捨てることなく第2低圧タービンに送気して電力として回収でき、発電量を増大できる。   Further, even when the carbon dioxide separation / recovery device 200 is stopped, it is possible to supply the second low-pressure turbine to recover the electric power without throwing away a large amount of surplus steam, thereby increasing the power generation amount.

本発明の第2実施例である二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムについて図3及び図4を用いて説明する。   A fossil fuel-fired thermal power generation system equipped with a carbon dioxide separation and recovery device according to a second embodiment of the present invention will be described with reference to FIGS.

本実施例である第2実施例の二酸化炭素分離回収装置を備えた化石燃料焚き火力発電シ
ステムは、先に説明した第1実施例の二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムと基本的な構成は共通しているので、両者に共通した構成の説明は省略し、相違する部分についてのみ以下に説明する。
The fossil fuel-fired thermal power generation system provided with the carbon dioxide separation and recovery device of the second embodiment, which is the present embodiment, is a fossil fuel-fired thermal power generation system provided with the carbon dioxide separation and recovery device of the first embodiment described above. Since the basic configuration is common, description of the configuration common to both will be omitted, and only different parts will be described below.

図3に示した第2実施例である二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムには、蒸気タービン装置を構成する化石燃料焚き火力発電システム100と、ボイラ排ガスから二酸化炭素を分離し回収する二酸化炭素分離回収装置200とが備えられている。   The fossil fuel-fired thermal power generation system equipped with the carbon dioxide separation and recovery device according to the second embodiment shown in FIG. 3 separates carbon dioxide from the fossil fuel-fired thermal power generation system 100 constituting the steam turbine device and the boiler exhaust gas. And a carbon dioxide separation and recovery device 200 for recovery.

本実施例では、前記化石燃料焚き火力発電システム100は、高圧タービン3の高圧タービン排気管4から分岐して、高圧タービン排気管4を流下する蒸気の一部が流下する第2抽気管54と、中圧タービン排気管7を流下する蒸気の一部が流下する第1抽気管40と接続する背圧タービン送気管55と、第2抽気管54および背圧タービン送気管55を通じ導かれた抽気蒸気によって駆動する背圧タービン56と、背圧タービン56の動力によって発電する発電機65とが設置されている。   In this embodiment, the fossil fuel-fired thermal power generation system 100 includes a second extraction pipe 54 that branches from the high-pressure turbine exhaust pipe 4 of the high-pressure turbine 3 and a part of the steam that flows down the high-pressure turbine exhaust pipe 4 flows down. The back pressure turbine air supply pipe 55 connected to the first extraction pipe 40 through which part of the steam flowing down the intermediate pressure turbine exhaust pipe 7 flows, and the extraction extracted through the second extraction pipe 54 and the back pressure turbine air supply pipe 55 A back pressure turbine 56 driven by steam and a generator 65 that generates electric power by the power of the back pressure turbine 56 are installed.

前記背圧タービン56の入口側には、第2抽気管54側から背圧タービン56への流入蒸気量を制御する第1背圧タービン入口制御弁59と、背圧タービン送気管55側から背圧タービン56への流入蒸気量を制御する第2背圧タービン入口制御弁60とが設けられている。また、前記背圧タービン56の出口側には、該背圧タービン56を駆動して減圧した背圧タービン排気を流下させる背圧タービン排気管路61と、この背圧タービン排気管路61に設けられた止め弁62と、前記背圧タービン排気管路61と接続し、後述する二酸化炭素分離回収装置200に設置されたリボイラ25及びリクレーマ26に背圧タービン排気を送気するPCC装置送気配管41とが備えられている。   On the inlet side of the back pressure turbine 56, there are a first back pressure turbine inlet control valve 59 for controlling the amount of steam flowing from the second extraction pipe 54 side to the back pressure turbine 56, and a back pressure turbine supply pipe 55 side. A second back-pressure turbine inlet control valve 60 that controls the amount of steam flowing into the pressure turbine 56 is provided. Further, on the outlet side of the back pressure turbine 56, a back pressure turbine exhaust pipe 61 for driving the back pressure turbine 56 to flow down the reduced back pressure turbine exhaust and a back pressure turbine exhaust pipe 61 are provided. PCC device air supply piping which is connected to the stop valve 62 and the back pressure turbine exhaust pipe 61 and supplies back pressure turbine exhaust to the reboiler 25 and the reclaimer 26 installed in the carbon dioxide separation and recovery device 200 described later. 41.

第2抽気管54には止め弁64を備えた第2低圧タービン入口配管63が接続されている。第2低圧タービン入口配管63は第2低圧タービン42に接続しており、第2低圧タービン入口配管63を流下する蒸気を第2低圧タービン42に導くように構成されている。   A second low pressure turbine inlet pipe 63 having a stop valve 64 is connected to the second extraction pipe 54. The second low-pressure turbine inlet pipe 63 is connected to the second low-pressure turbine 42, and is configured to guide the steam flowing down the second low-pressure turbine inlet pipe 63 to the second low-pressure turbine 42.

また、第2低圧タービン入口配管63から分岐し、第1復水器9に連通する第2復水器送気管66が設けられており、第2復水器送気管66には切り換え弁67が設けられている。   Further, a second condenser air supply pipe 66 that branches from the second low-pressure turbine inlet pipe 63 and communicates with the first condenser 9 is provided, and a switching valve 67 is provided in the second condenser air supply pipe 66. Is provided.

また、化石燃料焚き火力発電システム100は、前記第1抽気管40から分岐して第2低圧タービン入口配管63に連通し、第1抽気管40を流下する抽気蒸気を第2低圧タービン42に導く第3抽気管70を備える。第3抽気管70には、第2低圧タービン側へ抽気蒸気の流路を切り換え制御する切り換え弁71が設けられている。   The fossil fuel-fired thermal power generation system 100 branches from the first extraction pipe 40 and communicates with the second low-pressure turbine inlet pipe 63, and guides the extraction steam flowing down the first extraction pipe 40 to the second low-pressure turbine 42. A third bleed pipe 70 is provided. The third extraction pipe 70 is provided with a switching valve 71 that switches and controls the flow path of the extraction steam to the second low-pressure turbine side.

さらに第1抽気管40は、復水器送気管48および第3抽気管70より下流側で分岐し、PCC装置送気配管41に接続して、第1抽気管40を流下する抽気蒸気を背圧タービン56をバイパスしてPCC装置送気配管41に導く第1背圧タービンバイパス管72を有する。背圧タービンバイパス管72は切り換え弁73を備える。   Further, the first extraction pipe 40 branches downstream from the condenser air supply pipe 48 and the third extraction pipe 70, and is connected to the PCC device air supply pipe 41 so that the extraction steam flowing down the first extraction pipe 40 is back-flowed. A first back pressure turbine bypass pipe 72 that bypasses the pressure turbine 56 and leads to the PCC device air supply pipe 41 is provided. The back pressure turbine bypass pipe 72 includes a switching valve 73.

また高圧タービン排気管4は、第2抽気管54の下流側で分岐して前記第1背圧タービンバイパス管72に接続し、高圧タービンの抽気蒸気を背圧タービン56をバイパスしてPCC装置送気配管41に通し、二酸化炭素分離回収装置200のリボイラ25およびリクレーマ26に導く第2背圧タービンバイパス管74を設けている。第2背圧タービンバイパス管74は、背圧タービンをバイパスする抽気蒸気量を制御する切り換え弁68を備える。   The high-pressure turbine exhaust pipe 4 is branched downstream of the second extraction pipe 54 and connected to the first back-pressure turbine bypass pipe 72, and the extraction steam of the high-pressure turbine bypasses the back-pressure turbine 56 and is sent to the PCC device. A second back pressure turbine bypass pipe 74 is provided that passes through the air pipe 41 and leads to the reboiler 25 and the reclaimer 26 of the carbon dioxide separation and recovery device 200. The second back pressure turbine bypass pipe 74 includes a switching valve 68 that controls the amount of extracted steam that bypasses the back pressure turbine.

図4は図3に示した第2実施例の二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムにおける化石燃料焚き火力発電システム100の部分を示す部分図である。   FIG. 4 is a partial view showing a part of the fossil fuel-fired thermal power generation system 100 in the fossil fuel-fired thermal power generation system equipped with the carbon dioxide separation and recovery device of the second embodiment shown in FIG.

化石燃料焚き火力発電システム100には、制御装置400が設置されており、この制御装置400によって、前記第2低圧タービン42および背圧タービン56の運転は制御されている。   The fossil fuel-fired thermal power generation system 100 is provided with a control device 400, and the operation of the second low-pressure turbine 42 and the back pressure turbine 56 is controlled by the control device 400.

本第2実施例に係る化石燃料焚き火力発電システム100においては、蒸気タービン定格負荷運転時には、中圧タービン排気管7から抽気して第1抽気管40,背圧タービン送気管55、及び第2背圧タービン入口制御弁60を通じて背圧タービン56に中圧タービン排気を供給する方式を採る。一方、蒸気タービンが定格負荷運転時から部分負荷運転に移行した場合には中圧タービン6の排気の蒸気圧力は下がり、背圧タービンに十分圧送できなくなるので、中圧タービン排気管7から抽気して第1抽気管40,背圧タービン送気管55、及び背圧タービン送気管側制御弁60を通じて背圧タービン56に中圧タービン排気を供給する方式に換えて、高圧タービン3から高圧タービン排気管4に流下した高圧の蒸気の一部を第2抽気管54及び第1背圧タービン入口制御弁59を通じて背圧タービン56に供給する方式に切り換えて、前記背圧タービン56の駆動に必要な蒸気圧力を確保している。   In the fossil fuel-fired thermal power generation system 100 according to the second embodiment, the steam is extracted from the intermediate pressure turbine exhaust pipe 7 during the steam turbine rated load operation, and the first extraction pipe 40, the back pressure turbine air supply pipe 55, and the second A system in which medium-pressure turbine exhaust is supplied to the back-pressure turbine 56 through the back-pressure turbine inlet control valve 60 is adopted. On the other hand, when the steam turbine shifts from the rated load operation to the partial load operation, the steam pressure of the exhaust of the intermediate pressure turbine 6 decreases and cannot be sufficiently pumped to the back pressure turbine. The high pressure turbine 3 to the high pressure turbine exhaust pipe instead of the system for supplying the intermediate pressure turbine exhaust to the back pressure turbine 56 through the first extraction pipe 40, the back pressure turbine air supply pipe 55, and the back pressure turbine air supply pipe side control valve 60. 4 is switched to a system in which a part of the high-pressure steam flowing down to 4 is supplied to the back-pressure turbine 56 through the second extraction pipe 54 and the first back-pressure turbine inlet control valve 59, and the steam necessary for driving the back-pressure turbine 56. The pressure is secured.

前記化石燃料焚き火力発電システム100においては、蒸気タービンが部分負荷運転時にあるときには、制御装置400から指令信号を送信して第2抽気管に設けられた切り換え弁57を開いて、高圧タービン3の抽気蒸気を背圧タービン56に導き、第1背圧タービン入口制御弁59の開度を調節して流量を制御し、高圧タービンからの抽気蒸気で背圧タービン56を駆動制御する。   In the fossil fuel-fired thermal power generation system 100, when the steam turbine is in partial load operation, a command signal is transmitted from the control device 400 to open the switching valve 57 provided in the second extraction pipe, and the high-pressure turbine 3 The extracted steam is guided to the back pressure turbine 56, the opening degree of the first back pressure turbine inlet control valve 59 is adjusted to control the flow rate, and the back pressure turbine 56 is driven and controlled by the extracted steam from the high pressure turbine.

次に、蒸気タービンが部分負荷運転から定格負荷運転に移行するとともに、中圧タービン排気管7を流れる蒸気圧が、背圧タービン56へ圧送するのに十分な圧力まで上昇した後、制御装置400から指令信号を送信して切り換え弁54,第1背圧タービン入口制御弁59を閉じるとともに、切り換え弁58を開き、中圧タービンの抽気蒸気を背圧タービン56に導き、第2背圧タービン入口制御弁60の開度を調節して流量を制御し、中圧タービン排気から抽気した蒸気で背圧タービン56を駆動制御する。背圧タービン56を駆動した後の背圧タービン排気は、背圧タービン排気管路61,PCC装置送気配管41を通じて二酸化炭素分離回収装置200のリボイラ25,リクレーマ26に送気される。   Next, after the steam turbine shifts from the partial load operation to the rated load operation, the steam pressure flowing through the intermediate pressure turbine exhaust pipe 7 rises to a pressure sufficient to pump to the back pressure turbine 56, and then the control device 400. The control valve 54 and the first back pressure turbine inlet control valve 59 are closed and the switch valve 58 is opened to guide the bleed steam of the intermediate pressure turbine to the back pressure turbine 56, and the second back pressure turbine inlet. The flow rate is controlled by adjusting the opening degree of the control valve 60, and the back pressure turbine 56 is driven and controlled by the steam extracted from the intermediate pressure turbine exhaust. The back pressure turbine exhaust after driving the back pressure turbine 56 is sent to the reboiler 25 and the reclaimer 26 of the carbon dioxide separation and recovery device 200 through the back pressure turbine exhaust pipe 61 and the PCC device air supply pipe 41.

ところで、蒸気タービンの部分負荷運転時において、背圧タービン56が何らかの理由でトリップした場合、例えば、制御装置400に背圧タービン56の発電機出力信号の異常値が入力された場合、制御装置400から指令信号を送信して切り換え弁54,第1背圧タービン入口制御弁59を閉める。また、切り換え弁68を開き、抽気蒸気を第2背圧タービンバイパス管74および第1背圧タービンバイパス管72を通じてPCC装置送気配管41に導く。   By the way, when the back pressure turbine 56 trips for some reason during partial load operation of the steam turbine, for example, when an abnormal value of the generator output signal of the back pressure turbine 56 is input to the control device 400, the control device 400. A command signal is transmitted from the control valve 54 to close the switching valve 54 and the first back pressure turbine inlet control valve 59. Further, the switching valve 68 is opened, and the extracted steam is guided to the PCC device air supply pipe 41 through the second back pressure turbine bypass pipe 74 and the first back pressure turbine bypass pipe 72.

また蒸気タービンの部分負荷運転時において、二酸化炭素分離回収装置200がトリップした場合、例えば二酸化炭素分離回収装置200の主要機器であるリッチ吸収液移送ポンプ23又はリーン吸収液移送ポンプ32がトリップして二酸化炭素分離回収装置200の運転が緊急停止し、化石燃料焚き火力発電システム100の蒸気タービンサイクルからリボイラ25に供給される蒸気を直ちに停止する必要が生じた場合には、リッチ吸収液移送ポンプ23及びリーン吸収液移送ポンプ32に夫々設置したセンサーから入力するリッチ吸収液移送ポンプのトリップ信号23a又はリーン吸収液移送ポンプのトリップ信号32aが前記制御装置400に送られる。   Further, when the carbon dioxide separation and recovery device 200 trips during partial load operation of the steam turbine, for example, the rich absorbent transfer pump 23 or the lean absorbent transfer pump 32 that is the main equipment of the carbon dioxide separation and recovery device 200 trips. When the operation of the carbon dioxide separation and recovery device 200 is urgently stopped and the steam supplied to the reboiler 25 from the steam turbine cycle of the fossil fuel-fired thermal power generation system 100 needs to be immediately stopped, the rich absorbent transfer pump 23 In addition, a rich absorption liquid transfer pump trip signal 23 a or a lean absorption liquid transfer pump trip signal 32 a input from sensors installed in the lean absorption liquid transfer pump 32 is sent to the control device 400.

また、その他の二酸化炭素分離回収装置200内の異常を検出する手段として、背圧タービン送気管55に設けられた第1送気圧力検出器75でPCC装置送気配管41内を流下する蒸気の圧力の変動を検知し、検出器75が圧力の異常変動を検出した場合は、検出器75から制御装置400へトリップ信号が送られる。   As another means for detecting an abnormality in the carbon dioxide separation / recovery apparatus 200, the first air supply pressure detector 75 provided in the back pressure turbine air supply pipe 55 causes the steam flowing down in the PCC apparatus air supply pipe 41 to flow. When a change in pressure is detected and the detector 75 detects an abnormal change in pressure, a trip signal is sent from the detector 75 to the control device 400.

前記背圧タービン56が停止し、バイパス系統を利用している場合には、背圧タービン送気管55は使用しておらず、第1送気圧力検出器75は使用できない。そこでPCC装置送気配管41と第1背圧タービンバイパス管72との合流点の下流側に設けた第2送気圧力検出器76で送気の圧力変動を検知し、検出器76が圧力の異常変動を検出した場合は、検出器76から制御装置400へトリップ信号が送られる。   When the back pressure turbine 56 is stopped and the bypass system is used, the back pressure turbine air supply pipe 55 is not used, and the first air supply pressure detector 75 cannot be used. Therefore, the second air supply pressure detector 76 provided on the downstream side of the junction of the PCC device air supply pipe 41 and the first back pressure turbine bypass pipe 72 detects the pressure fluctuation of the air supply, and the detector 76 detects the pressure. When an abnormal fluctuation is detected, a trip signal is sent from the detector 76 to the control device 400.

制御装置400がトリップ信号の入力を受信すると、制御装置400からの指令信号によって、切り換え弁57および68を閉じるとともに切り換え弁67をあけて、抽気蒸気を第2低圧タービン入口配管63および第2復水器送気管66を通じて第1復水器9へ導いて回収する。その後、制御装置400の指令信号によって切り換え弁67を徐々に閉めつつ、止め弁64および第2低圧タービン42の入口制御弁43の開度を調節して、抽気蒸気の行き先を第2低圧タービン42に徐々に切り換え制御する。   When the control device 400 receives the input of the trip signal, the switching valves 57 and 68 are closed and the switching valve 67 is opened by the command signal from the control device 400, and the extracted steam is supplied to the second low-pressure turbine inlet pipe 63 and the second recovery valve. It is guided to the first condenser 9 through the water supply pipe 66 and collected. Thereafter, the opening of the stop valve 64 and the inlet control valve 43 of the second low-pressure turbine 42 is adjusted while the switching valve 67 is gradually closed by the command signal of the control device 400, and the destination of the extracted steam is changed to the second low-pressure turbine 42. Gradually switch control to.

一方、蒸気タービンの定格負荷運転時において、背圧タービン56が何らかの理由でトリップした場合、制御装置400から指令信号を送信して、切り換え弁58を閉じ、切り換え弁73を開け、抽気蒸気を第1背圧タービンバイパス管72を通じてPCC装置送気配管41に導く。   On the other hand, when the back pressure turbine 56 trips for some reason during the rated load operation of the steam turbine, a command signal is transmitted from the control device 400, the switching valve 58 is closed, the switching valve 73 is opened, and the extracted steam is discharged. 1 It is led to the PCC device air supply pipe 41 through the back pressure turbine bypass pipe 72.

また、二酸化炭素回収装置がトリップした場合には、リッチ吸収液移送ポンプ23,リーン吸収液移送ポンプ32,検出器75,76等からトリップ信号が制御装置400に入力される。   When the carbon dioxide recovery device trips, a trip signal is input to the control device 400 from the rich absorbing liquid transfer pump 23, the lean absorbing liquid transfer pump 32, the detectors 75 and 76, and the like.

制御装置400が二酸化炭素分離回収装置200のトリップ信号を受信すると、制御装置400からの指令信号によって、切り換え弁58および73を閉め、切り換え弁49を開き、一旦余剰蒸気を第1復水器9で回収する。その後、制御装置400の指令信号によって切り換え弁49を徐々に閉めつつ、切り換え弁71および第2低圧タービン42の入口制御弁43の開度を調節して、抽気蒸気の供給先を第2低圧タービン42に徐々に切り換え制御する。また、抽気蒸気を第3抽気管70および復水器送気管48を通じて第1復水器9および第2低圧タービン42に流路を切り換える際、制御装置400は、中圧タービン排気の圧力変動を検知する中圧タービン排気圧力検出器52の信号に基づき、流路切り換えによって中圧タービン排気が予め定めた設定値を超えて過度に圧力低下しないように切り換え弁49,切り換え弁71,第2低圧タービン入口制御弁43の開度を制御する。流路切り換えによって、中圧タービン排出蒸気が過度に抽気された場合、中圧タービン排気が過度に圧力低下し、中圧タービン最終段翼に許容量を超える負荷がかかる可能性があるが、本構成によれば中圧タービン最終段翼への負荷を回避しつつ、流路切り換え制御を行うことができる。   When the control device 400 receives the trip signal of the carbon dioxide separation and recovery device 200, the switching valves 58 and 73 are closed by the command signal from the control device 400, the switching valve 49 is opened, and the excess steam is temporarily removed from the first condenser 9. Collect with. Thereafter, the switching valve 49 is gradually closed according to the command signal of the control device 400, and the opening degree of the switching valve 71 and the inlet control valve 43 of the second low-pressure turbine 42 is adjusted so that the supply destination of the extracted steam is the second low-pressure turbine. The control is gradually switched to 42. Further, when switching the flow of the extracted steam to the first condenser 9 and the second low-pressure turbine 42 through the third extraction pipe 70 and the condenser supply pipe 48, the control device 400 changes the pressure fluctuation of the intermediate pressure turbine exhaust. Based on the signal of the intermediate pressure turbine exhaust pressure detector 52 to be detected, the switching valve 49, the switching valve 71, and the second low pressure are set so that the intermediate pressure turbine exhaust does not drop excessively beyond a predetermined set value by switching the flow path. The opening degree of the turbine inlet control valve 43 is controlled. If the medium-pressure turbine exhaust steam is extracted excessively due to the switching of the flow path, the pressure of the intermediate-pressure turbine exhaust will drop excessively, and there may be a load exceeding the allowable amount on the final stage blade of the intermediate-pressure turbine. According to the configuration, the flow path switching control can be performed while avoiding a load on the final stage blade of the intermediate pressure turbine.

上記した構成の二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムでは、定格負荷運転時には、中圧タービン6の排気を背圧タービン56に供給して電力を生成でき、部分負荷運転時には、高圧タービン3の排気を背圧タービン56に供給して電力を生成できる。   In the fossil fuel-fired thermal power generation system equipped with the carbon dioxide separation and recovery device having the above-described configuration, during rated load operation, the exhaust of the intermediate pressure turbine 6 can be supplied to the back pressure turbine 56 to generate electric power, and during partial load operation, The exhaust from the high pressure turbine 3 can be supplied to the back pressure turbine 56 to generate electric power.

また、上記制御によれば、部分負荷運転時および定格負荷運転時において背圧タービン56が何らかの理由でトリップした場合においても、背圧タービン56の運転を停止しつつ、抽気蒸気は背圧タービン56をバイパスして二酸化炭素分離回収装置200側に供給でき、二酸化炭素分離回収装置を継続運転させることができる。   Further, according to the control described above, even when the back pressure turbine 56 trips for some reason during partial load operation and rated load operation, the extracted steam is discharged from the back pressure turbine 56 while stopping the operation of the back pressure turbine 56. Can be supplied to the carbon dioxide separation and recovery device 200 side, and the carbon dioxide separation and recovery device can be continuously operated.

さらに二酸化炭素分離回収装置200が停止した場合にも、第2低圧タービンに余剰蒸気を逃がすことができ、蒸気タービンの低圧タービン(第1低圧タービン)側に急激に許容量を超える蒸気が流入することを回避でき、余剰蒸気によるボイラ1や蒸気タービンの負荷変動が抑制されるので、化石燃料焚き火力発電システム100の安定した運転が継続可能となる。   Further, even when the carbon dioxide separation and recovery device 200 is stopped, surplus steam can escape to the second low-pressure turbine, and steam exceeding the allowable amount suddenly flows into the low-pressure turbine (first low-pressure turbine) side of the steam turbine. This can be avoided, and load fluctuations of the boiler 1 and the steam turbine due to surplus steam are suppressed, so that stable operation of the fossil fuel-fired thermal power generation system 100 can be continued.

また、二酸化炭素分離回収装置200および背圧タービンの停止中においても、大量の余剰蒸気を捨てることなく第2低圧タービンに送気して電力として回収でき、発電量を増大できる。   Further, even when the carbon dioxide separation / recovery device 200 and the back pressure turbine are stopped, a large amount of surplus steam can be sent to the second low pressure turbine without being discarded and recovered as electric power, thereby increasing the power generation amount.

1 ボイラ
3 高圧タービン
6 中圧タービン
7 中圧タービン排気管
8 第1低圧タービン
9 復水器
17 吸収塔
22 再生塔
25 リボイラ
26 リクレーマ
40 第1抽気管
41 PCC装置送気配管
42 第2低圧タービン
44,65 発電機
46 第2低圧タービン送気管
47,49,57,58,67,68,71,73 切り換え弁
50,62,64 止め弁
48 復水器送気管
52 送気圧力検出器
54 第2抽気管
55 背圧タービン送気管
56 背圧タービン
61 背圧タービン排気管路
63 第2低圧タービン入口配管
66 第2復水器送気管
70 第3抽気管
72 第1背圧タービンバイパス弁
74 第2背圧タービンバイパス弁
100 化石燃料焚き火力発電システム
200 二酸化炭素分離回収装置
300,400 制御装置
1 Boiler 3 High Pressure Turbine 6 Medium Pressure Turbine 7 Medium Pressure Turbine Exhaust Pipe 8 First Low Pressure Turbine 9 Condenser 17 Absorption Tower 22 Regeneration Tower 25 Reboiler 26 Reclaimer 40 First Extraction Pipe 41 PCC Device Air Supply Pipe 42 Second Low Pressure Turbine 44, 65 Generator 46 Second low pressure turbine air supply pipe 47, 49, 57, 58, 67, 68, 71, 73 Switching valve 50, 62, 64 Stop valve 48 Condenser air supply pipe 52 Air supply pressure detector 54 2 Extraction pipe 55 Back pressure turbine supply pipe 56 Back pressure turbine 61 Back pressure turbine exhaust pipe 63 Second low pressure turbine inlet pipe 66 Second condenser supply pipe 70 Third extraction pipe 72 First back pressure turbine bypass valve 74 Two back-pressure turbine bypass valve 100 Fossil fuel-fired thermal power generation system 200 Carbon dioxide separation and recovery device 300, 400 Control device

Claims (5)

化石燃料を燃焼させて蒸気を発生させるボイラと、前記ボイラで発生した蒸気によって
駆動される高圧タービンと、前記高圧タービンから排出され前記ボイラで再熱された蒸気
で駆動する中圧タービンと、前記中圧タービンから排出された蒸気で駆動する第1の低圧
タービンと、前記第1の低圧タービンから排出された蒸気を復水する復水器とを有する蒸
気タービン装置とを備えた化石燃料焚き火力発電システムと、
前記ボイラから化石燃料を燃焼して排出されたボイラ排ガスに含まれる二酸化炭素を吸
収液に吸収させて回収する吸収塔と、前記吸収塔との間で吸収液を循環させて二酸化炭素
を吸収した吸収液から二酸化酸素を分離する吸収液の再生塔と、前記再生塔に蒸気を供給
するリボイラとを備えた二酸化炭素分離回収装置と、を有する二酸化炭素分離回収装置を
備えた化石燃料焚き火力発電システムであって、
前記中圧タービンの排出蒸気から抽気した抽気蒸気を前記リボイラに熱源として供給す
る抽気配管と、
前記復水器と前記抽気配管とに連通する第1の蒸気配管と、
前記蒸気タービン装置とは別設された第2の低圧タービンと、
前記第2の低圧タービンの動力で発電する発電機と、
前記抽気配管と前記第2の低圧タービンとに連通し、前記抽気配管を流下する抽気蒸気
を前記第2の低圧タービンに導く第2の蒸気配管と、
前記抽気配管、前記第1の蒸気配管、および前記第2の蒸気配管に設けられた、前記抽
気蒸気が流下する流路を切り換え制御するための弁と、を備えることを特徴とする二酸化
炭素分離回収装置を備えた化石燃料焚き火力発電システム。
A boiler that burns fossil fuel to generate steam, a high-pressure turbine that is driven by steam generated in the boiler, an intermediate-pressure turbine that is driven by steam that is discharged from the high-pressure turbine and reheated by the boiler, and Fossil fuel-fired thermal power comprising a first low-pressure turbine driven by steam discharged from an intermediate-pressure turbine, and a steam turbine device having a condenser for condensing steam discharged from the first low-pressure turbine. A power generation system;
Absorbing carbon dioxide by circulating the absorption liquid between the absorption tower for absorbing and recovering carbon dioxide contained in the boiler exhaust gas discharged by burning fossil fuel from the boiler and the absorption tower Fossil fuel-fired thermal power generation equipped with a carbon dioxide separation and recovery device comprising: an absorption liquid regeneration tower for separating oxygen dioxide from the absorption liquid; and a carbon dioxide separation and recovery device comprising a reboiler for supplying steam to the regeneration tower A system,
An extraction pipe for supplying the extracted steam extracted from the exhaust steam of the intermediate pressure turbine to the reboiler as a heat source;
A first steam pipe communicating with the condenser and the extraction pipe;
A second low-pressure turbine provided separately from the steam turbine device;
A generator for generating power with the power of the second low-pressure turbine;
A second steam pipe that communicates with the extraction pipe and the second low-pressure turbine and guides the extraction steam that flows down the extraction pipe to the second low-pressure turbine;
And a valve for switching and controlling the flow path through which the extraction steam flows, provided in the extraction pipe, the first steam pipe, and the second steam pipe. Fossil fuel-fired thermal power generation system equipped with a recovery device.
請求項1記載の二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムであっ
て、
前記中圧タービンから排出された蒸気の圧力を検出する圧力検出器と、
前記二酸化炭素分離回収装置からのトリップ信号を受信し、前記圧力検出器から入力さ
れた圧力値を用いて、前記抽気配管、前記第1および第2の蒸気配管に設けられた弁の開
閉制御を行う制御装置とを備え、
前記制御装置は、前記二酸化炭素分離回収装置からトリップ信号を受信した場合、前記
抽気配管に設けられた弁を閉制御し、前記圧力値が予め定められた値を超えないように、
前記第1の蒸気配管に設けられた弁を開制御し、その後前記第1の蒸気配管に設けられた
弁を閉制御するとともに前記第2の蒸気配管に設けられた弁を開制御して、前記第2の低
圧タービンを起動制御することを特徴とする化石燃料焚き火力発電システム。
A fossil fuel-fired thermal power generation system comprising the carbon dioxide separation and recovery device according to claim 1,
A pressure detector for detecting the pressure of steam discharged from the intermediate pressure turbine;
The trip signal from the carbon dioxide separation and recovery device is received, and the opening / closing control of the valves provided in the extraction pipe and the first and second steam pipes is performed using the pressure value input from the pressure detector. A control device for performing,
When the control device receives a trip signal from the carbon dioxide separation and recovery device, the control device closes a valve provided in the extraction pipe so that the pressure value does not exceed a predetermined value.
Open control of the valve provided in the first steam pipe, and then close control of the valve provided in the first steam pipe and open control of the valve provided in the second steam pipe, A fossil fuel-fired thermal power generation system characterized in that start-up control of the second low-pressure turbine is performed.
化石燃料を燃焼させて蒸気を発生させるボイラと、前記ボイラで発生した蒸気によって
駆動される高圧タービンと、前記高圧タービンから排出され前記ボイラで再熱された蒸気
で駆動する中圧タービンと、前記中圧タービンから排出された蒸気で駆動する第1の低圧
タービンと、前記第1の低圧タービンから排出された蒸気を復水する復水器とを有する蒸
気タービン装置とを備えた化石燃料焚き火力発電システムと、
前記ボイラから化石燃料を燃焼して排出されたボイラ排ガスに含まれる二酸化炭素を吸
収液に吸収させて回収する吸収塔と、前記吸収塔との間で吸収液を循環させて二酸化炭素
を吸収した吸収液から二酸化酸素を分離する吸収液の再生塔と、前記再生塔に蒸気を供給
するリボイラとを備えた二酸化炭素分離回収装置と、を有する二酸化炭素分離回収装置を
備えた化石燃料焚き火力発電システムであって、
背圧タービンと、
前記背圧タービンの動力で駆動する発電機と、
前記中圧タービンの排出蒸気から抽気した蒸気を前記背圧タービンに作動流体として供
給する第1の抽気配管と、
前記高圧タービンの排出蒸気から抽気した蒸気を前記背圧タービンに作動流体として供
給する第2の抽気配管と、
前記背圧タービンの排出蒸気を前記リボイラに供給する第1の蒸気配管と、
前記蒸気タービン装置とは別設された第2の低圧タービンと、
前記第2の低圧タービンの動力で発電する発電機と、
前記第1の抽気配管を流下する抽気蒸気を前記復水器に導く第2の蒸気配管と、
前記第1の抽気配管を流下する抽気蒸気を前記第2の低圧タービンに導く第1の蒸気供
給系統と、
前記第2の抽気配管を流下する抽気蒸気を前記復水器に導く第3の蒸気配管と、
前記第2の抽気配管を流下する抽気蒸気を前記第2の低圧タービンに導く第2の蒸気供給系統と、
前記第1および2の抽気配管と、第1ないし3の蒸気配管と、第1および第2の蒸気供給系統とに設けられ、前記抽気蒸気が流下する流路を切り換え制御するための弁と、
を備えたことを特徴とする二酸化炭素分離回収装置を備えた化石燃料焚き火力発電シス
テム。
A boiler that burns fossil fuel to generate steam, a high-pressure turbine that is driven by steam generated in the boiler, an intermediate-pressure turbine that is driven by steam that is discharged from the high-pressure turbine and reheated by the boiler, and Fossil fuel-fired thermal power comprising a first low-pressure turbine driven by steam discharged from an intermediate-pressure turbine, and a steam turbine device having a condenser for condensing steam discharged from the first low-pressure turbine. A power generation system;
Absorbing carbon dioxide by circulating the absorption liquid between the absorption tower for absorbing and recovering carbon dioxide contained in the boiler exhaust gas discharged by burning fossil fuel from the boiler and the absorption tower Fossil fuel-fired thermal power generation equipped with a carbon dioxide separation and recovery device comprising: an absorption liquid regeneration tower for separating oxygen dioxide from the absorption liquid; and a carbon dioxide separation and recovery device comprising a reboiler for supplying steam to the regeneration tower A system,
A back pressure turbine,
A generator driven by the power of the back pressure turbine;
A first extraction pipe for supplying steam extracted from the exhaust steam of the intermediate pressure turbine as a working fluid to the back pressure turbine;
A second extraction pipe that supplies steam extracted from the exhaust steam of the high-pressure turbine to the back-pressure turbine as a working fluid;
A first steam pipe for supplying the exhaust steam of the back pressure turbine to the reboiler;
A second low-pressure turbine provided separately from the steam turbine device;
A generator for generating power with the power of the second low-pressure turbine;
A second steam pipe for guiding the extracted steam flowing down the first extraction pipe to the condenser;
A first steam supply system that guides extracted steam flowing down the first extracted piping to the second low-pressure turbine;
A third steam pipe for guiding the extracted steam flowing down the second extracted pipe to the condenser;
A second steam supply system for guiding the extracted steam flowing down the second extracted piping to the second low-pressure turbine;
It said first and second bleed pipe, third and steam pipe to the first free, provided the first and second steam supply system, the valve for the extraction steam to control switching of the flow channel flowing down When,
A fossil fuel-fired thermal power generation system equipped with a carbon dioxide separation and recovery device.
請求項3記載の二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムであっ
て、
前記中圧タービンから排出された蒸気の圧力を検出する圧力検出器と、
前記二酸化炭素分離回収装置からのトリップ信号を受信し、前記圧力検出器から入力さ
れた圧力値を用いて、前記第1および2の抽気配管と、第1ないし3の蒸気配管と、第1および第2の蒸気供給系統とに設けられた弁の開閉制御を行う制御装置とを備え、
前記制御装置は、前記蒸気タービン装置の部分負荷運転時に前記二酸化炭素分離回収装
置からトリップ信号を受信した場合、前記第2の抽気配管に設けられた弁を閉制御し、前
記圧力値が予め定められた値を超えないように、前記第の蒸気配管に設けられた弁を開
制御し、その後前記第の蒸気配管に設けられた弁を閉制御するとともに前記第2の蒸気
供給系統に設けられた弁を開制御して、前記第2の低圧タービンを起動制御し、
前記蒸気タービン装置の定格負荷運転時に前記二酸化炭素分離回収装置からトリップ信
号を受信した場合、前記第1の抽気配管に設けられた弁を閉制御し、前記圧力値が予め定
められた値を超えないように、前記第の蒸気配管に設けられた弁を開制御し、その後前
記第の蒸気配管に設けられた弁を閉制御するとともに前記第1の蒸気供給系統に設けら
れた弁を開制御して、前記第2の低圧タービンを起動制御することを特徴とする化石燃料
焚き火力発電システム。
A fossil fuel-fired thermal power generation system comprising the carbon dioxide separation and recovery device according to claim 3,
A pressure detector for detecting the pressure of steam discharged from the intermediate pressure turbine;
Receiving a trip signal from the carbon dioxide separation and recovery device, using the pressure value input from the pressure detector, and said first and second bleed pipe, and a third steam pipe to the first free, second A control device that controls opening and closing of valves provided in the first and second steam supply systems,
When the control device receives a trip signal from the carbon dioxide separation and recovery device during partial load operation of the steam turbine device, the control device closes a valve provided in the second extraction pipe, and the pressure value is determined in advance. The valve provided in the third steam pipe is opened and controlled so that the valve provided in the third steam pipe is closed and the second steam supply system is closed. Controlling the opening of the second low-pressure turbine by opening the provided valve;
When a trip signal is received from the carbon dioxide separation and recovery device during rated load operation of the steam turbine device, the valve provided in the first extraction pipe is closed and the pressure value exceeds a predetermined value. So that the valve provided in the second steam pipe is controlled to open, and then the valve provided in the second steam pipe is closed and the valve provided in the first steam supply system is controlled. A fossil fuel-fired thermal power generation system characterized in that the second low-pressure turbine is controlled to open and controlled to start.
請求項3記載の二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システムであっ
て、
前記第1の抽気配管を流下する抽気蒸気を前記背圧タービンをバイパスして前記リボイ
ラに供給する第1の背圧タービンバイパス系統と、
前記2の抽気配管を流下する抽気蒸気を前記背圧タービンをバイパスして前記リボイラに供給する第2の背圧タービンバイパス系統と、
前記第1および第2の背圧タービンバイパス系統に設けられた弁と、
前記背圧タービンからトリップ信号を受信した場合に、前記第1および第2の抽気配管
に設けられた弁を閉制御し、前記第1および第2の背圧タービンバイパス系統に設けられた弁を開制御する制御装置とを備えたことを特徴とする二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システム。
A fossil fuel-fired thermal power generation system comprising the carbon dioxide separation and recovery device according to claim 3,
A first back pressure turbine bypass system for supplying the extracted steam flowing down the first extraction pipe to the reboiler by bypassing the back pressure turbine;
A second back pressure turbine bypass system for supplying the extracted steam flowing down the second extraction pipe to the reboiler by bypassing the back pressure turbine;
Valves provided in the first and second back pressure turbine bypass systems;
When a trip signal is received from the back pressure turbine, the valves provided in the first and second extraction pipes are closed and controlled, and the valves provided in the first and second back pressure turbine bypass systems are controlled. A fossil fuel-fired thermal power generation system comprising a carbon dioxide separation and recovery device.
JP2009293717A 2009-11-25 2009-12-25 Fossil fuel fired thermal power generation system equipped with carbon dioxide separation and recovery device Expired - Fee Related JP5205365B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009293717A JP5205365B2 (en) 2009-12-25 2009-12-25 Fossil fuel fired thermal power generation system equipped with carbon dioxide separation and recovery device
US12/952,969 US20110120130A1 (en) 2009-11-25 2010-11-23 Fossil Fuel Combustion Thermal Power System Including Carbon Dioxide Separation and Capture Unit
CA2722195A CA2722195C (en) 2009-11-25 2010-11-23 Fossil fuel combustion thermal power system including carbon dioxide separation and capture unit
EP10192643.4A EP2333255B1 (en) 2009-11-25 2010-11-25 Fossil fuel combustion thermal power system including carbon dioxide separation and capture unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009293717A JP5205365B2 (en) 2009-12-25 2009-12-25 Fossil fuel fired thermal power generation system equipped with carbon dioxide separation and recovery device

Publications (2)

Publication Number Publication Date
JP2011132899A JP2011132899A (en) 2011-07-07
JP5205365B2 true JP5205365B2 (en) 2013-06-05

Family

ID=44345893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009293717A Expired - Fee Related JP5205365B2 (en) 2009-11-25 2009-12-25 Fossil fuel fired thermal power generation system equipped with carbon dioxide separation and recovery device

Country Status (1)

Country Link
JP (1) JP5205365B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5584040B2 (en) * 2010-08-02 2014-09-03 株式会社東芝 CO2 recovery steam turbine system and operation method thereof
JP5921905B2 (en) * 2012-02-13 2016-05-24 三菱日立パワーシステムズ株式会社 Steam turbine, steam exhaust adjustment system and thermal power generation system
JP5826089B2 (en) * 2012-03-29 2015-12-02 三菱日立パワーシステムズ株式会社 Thermal power generation system and steam turbine equipment
JP5885614B2 (en) * 2012-07-31 2016-03-15 株式会社東芝 Steam turbine plant, control method thereof, and control system thereof
JP5951424B2 (en) * 2012-09-14 2016-07-13 株式会社東芝 Wind power generation system
JP6329159B2 (en) 2013-02-08 2018-05-23 東洋エンジニアリング株式会社 Carbon dioxide recovery process from combustion exhaust gas
JP6163994B2 (en) * 2013-09-18 2017-07-19 株式会社Ihi Oxygen combustion boiler exhaust gas cooler steam generation prevention device
CN108534126A (en) * 2018-03-23 2018-09-14 中国大唐集团科学技术研究院有限公司火力发电技术研究院 It is a kind of with pressure matcher machine stove waste heat coupling utilize system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4274846B2 (en) * 2003-04-30 2009-06-10 三菱重工業株式会社 Carbon dioxide recovery method and system

Also Published As

Publication number Publication date
JP2011132899A (en) 2011-07-07

Similar Documents

Publication Publication Date Title
JP5205365B2 (en) Fossil fuel fired thermal power generation system equipped with carbon dioxide separation and recovery device
CA2722195C (en) Fossil fuel combustion thermal power system including carbon dioxide separation and capture unit
JP5704937B2 (en) Thermal power generation system with carbon dioxide separation and recovery device
JP5526219B2 (en) Thermal power generation system and operation method thereof, thermal power generation system modification method, steam turbine equipment used in thermal power generation system, carbon dioxide separation and recovery device, overheat reducer
JP5050071B2 (en) Boiler equipment
JP5320423B2 (en) Thermal power plant, steam turbine equipment, and control method thereof
JP5558310B2 (en) Carbon dioxide recovery method and carbon dioxide recovery steam power generation system
JP2010275925A (en) Steam turbine power generation facility and operating method for the same
AU2009259589B2 (en) Method and device for operating a steam power station comprising a steam turbine and a process steam consumer
JP2011047364A (en) Steam turbine power generation facility and operation method for the same
JP6577745B2 (en) Coal-fired oxygen plant using heat integration
JP5885614B2 (en) Steam turbine plant, control method thereof, and control system thereof
JP3068925B2 (en) Combined cycle power plant
JP2010242753A (en) Combined cycle power plant including heat recovery steam generator
JP2013513063A (en) Power plant with CO2 capture and operation method thereof
WO2012090517A1 (en) Heat recovery and utilization system
EP2899462B1 (en) Heat recovery system and heat recovery method
JP5355358B2 (en) Fossil fuel fired thermal power generation system equipped with carbon dioxide separation and recovery device
JP3919883B2 (en) Combined cycle power plant
JP4004800B2 (en) Combined cycle power generation system
US8984892B2 (en) Combined cycle power plant including a heat recovery steam generator
JP4488631B2 (en) Combined cycle power generation facility and operation method thereof
JP2001090507A (en) Electric power plant
JP2023003302A (en) Heating steam system for carbon dioxide recovery system, carbon dioxide recovery system, and method for operating heating steam system for carbon dioxide recovery system
JP5918810B2 (en) Waste treatment facility and heat retention method for dust collector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees