JPS62159705A - Intermediate pressure turbine warming apparatus of reheating condensing turbine - Google Patents

Intermediate pressure turbine warming apparatus of reheating condensing turbine

Info

Publication number
JPS62159705A
JPS62159705A JP237286A JP237286A JPS62159705A JP S62159705 A JPS62159705 A JP S62159705A JP 237286 A JP237286 A JP 237286A JP 237286 A JP237286 A JP 237286A JP S62159705 A JPS62159705 A JP S62159705A
Authority
JP
Japan
Prior art keywords
pressure turbine
turbine
intermediate pressure
steam
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP237286A
Other languages
Japanese (ja)
Inventor
Takao Yamamoto
隆夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP237286A priority Critical patent/JPS62159705A/en
Publication of JPS62159705A publication Critical patent/JPS62159705A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To aim at shortening of warming time for an intermediate pressure turbine, by mounting a freely adjustable valve for controlling the flow of the steam passing an intermediate pressure turbine for warming, downstream from the exhaust side of the intermediate pressure turbine. CONSTITUTION:A reheating condensing turbine consists of a high pressure turbine 3 driven by a steam generated by the steam generator 2 of a boiler 1, an intermediate pressure turbine 6 in which a steam reheated by a reheater 5 after finishing the work is introduced, and a double flow type flow pressure turbine 9 in which the exhaust of the intermediate pressure turbine 6 is introduced through cross over tube 25. And a generator 10 is driven by the power generated by turbines 3, 6 and 9. In such a turbine, a valve 11 with freely adjustable opening is mounted to the cross over tube 25. And at the turbine starting, both high pressure and intermediate pressure steam control valves 4, 7 are slightly opened, while a bypass valve 11 is set at smaller opening than that of the intermediate pressure steam control valve 7, so that warming by steam is available.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

本発明は、再熱復水タービンを冷機状態からの起動時の
タービンメタルウオーミングに関する。 特にタービンバイパス系統を有する再熱蒸気タービンの
中圧タービンのウオーミング装置に関する。
The present invention relates to turbine metal warming when starting a reheat condensing turbine from a cold state. In particular, the present invention relates to a warming device for an intermediate pressure turbine of a reheat steam turbine having a turbine bypass system.

【従来技術とその問題点】[Prior art and its problems]

一最に蒸気タービンを冷機状態から起動するには、ター
ビン車軸の定格回転数以下の低速度領域にてボイラから
の蒸気を蒸気タービンに送入し、タービンの車軸やケー
シングを徐々に温度上昇させ、各部の温度差による熱応
力や熱膨張差を緩和しながらウオーミングした後、定格
回転数に上昇させている。以下図面を用いて従来技術に
ついて説明する。 第3図は従来の再熱復水タービンの系統図である0図に
おいて、ボイラ1の蒸気発生器2にて発生した高圧高温
の蒸気は主蒸気管路20を通って高圧タービン3に高圧
蒸気加減弁4を通って流入し、高圧タービン3内にて仕
事した後、中圧低温の蒸気となって逆止弁22を備えた
低温再熱管路21を経てボイラ1の再熱器5に流入する
。そして再熱器5にて再び加熱されて高温となった高圧
タービン背気は、高温再熱管路23を通り、中圧タービ
ン6に中圧蒸気加減弁7を通って流入し、中圧タービン
内にて仕事をして低圧低温の蒸気になる。中圧タービン
6の背気はクロスオーバ管25を通って複流式の低圧タ
ービン8に導かれる。低圧タービン8の排気口は復水器
9に接続され、低圧タービン8を通流した蒸気は復水器
9の真空まで膨張して仕事をして復水となる。そして復
水は図示しないポンプによりボイラに送り帰される。な
お再熱復水タービンの軸に結合された発電機10は前記
のようにタービンが仕事をすることにより電力を発生す
る。 なお主蒸気管路20から分岐して高圧タービン3をバイ
パスし、バイパス弁26を介装したバイパス管路27は
低温再熱管路21に接続されている。また再加熱蒸気管
路23から分岐して中圧タービン6と低圧タービン8と
をバイパスし、バイパス弁28を介装した低圧タービン
バイパス管路29は復水器9に接続されている。したが
ってボイラ1の蒸気発生器2からの蒸気は高圧タービン
3をバイパスして再熱器5に、一方再熱器5からの再加
熱蒸気は中圧と低圧タービン6.8をバイパスして復水
器9に流入させることが可能となるので、各管路に配設
されているバイパス弁の開度を調整することによって高
圧タービンや中圧、低圧タービンへの送流蒸気量をそれ
ぞれ制御することができる。 このように構成された再熱復水タービンを冷機状態から
起動するには復水器9を図示しないエゼクタ等により真
空にした後、ボイラ1からの蒸気を再熱復水タービンに
送流し、定格回転数以下の低速度領域でタービンを回転
させながらウオーミングを行ない、ウオーミング終了後
回転数を上昇させて定格回転数にしている。この際行な
われるウオーミングは高圧蒸気加減弁4と中圧1気加減
弁7を微開にして高圧タービン3には主蒸気管路20を
通る蒸気発生器2からの蒸気を、中圧タービンには再熱
器5を経由してきた高圧タービン背気の再加熱蒸気を再
加熱蒸気管路23.24を通流させて行なわれる。なお
、この際バイパス管路27.29を備えている場合には
タービンに通気する前に高圧タービンのバイパス弁26
と低圧タービンバイパス弁28の開度調整により再熱ラ
インの圧力、すなわち低温再熱蒸気管路21と、再加熱
蒸気管路23等からなる管路の圧力を所定の圧力、例え
ば約10atgに保持することができる。 したがって低速度にてウオーミングする際高圧タービン
3の内圧は再熱ラインの所定の圧力が作用することにな
り、高圧タービン内部のメタル表面は凝縮熱伝達により
短時間で所定の圧力の飽和温度、例えばlQatgなら
ば185℃位迄になる。したがって所定の状態までのヒ
ートソークはあまり時間をかけないで終了することがで
きる。 しかし中圧タービンは、クロスオーバ管25と低圧ター
ビン8とを介して復水器9に接続されているので、中圧
蒸気加減弁7の微開状態程度の流量では中圧1気加減弁
7以降のタービン内部の圧力は、はとんどの場合負圧(
復水器による真空)状態にある。したがってウオーミン
グのため流入した蒸気のa縮による短時間の熱伝達では
真空の飽和温度、すなわち100℃ (latgの飽和
温度)未満までしか昇温し得ない。したがって中圧ター
ビンは100℃未満でメタル表面がドライアウトした後
対流熱伝達で所定の温度までウオーミングするため、定
格回転数以下の速度でのヒートソークが必要となる。 しかしドライアウト後のヒートソーク時の対流熱伝達令
頁域においても、中圧タービンの内圧が低いため、蒸気
の熱伝導率が小さく、中圧タービンは円滑なウオーミン
グが困難になる。このためヒートソークの時間を長くし
たりしてウオーミングを行なう必要があり、プラント全
体の起動時間が長くなり、また起動時間中、バイパス管
を流れる蒸気は余分となりエネルギー損失が大きくなる
という欠点がある。
First, to start a steam turbine from a cold state, steam from the boiler is fed into the steam turbine at a low speed below the rated rotational speed of the turbine axle, and the temperature of the turbine axle and casing is gradually raised. After warming up while alleviating thermal stress and thermal expansion differences due to temperature differences between various parts, the engine speed is increased to the rated rotation speed. The prior art will be described below with reference to the drawings. FIG. 3 is a system diagram of a conventional reheat condensing turbine. In FIG. After flowing through the control valve 4 and working in the high-pressure turbine 3, it becomes medium-pressure and low-temperature steam and flows into the reheater 5 of the boiler 1 through the low-temperature reheat pipe 21 equipped with a check valve 22. do. The high-pressure turbine back air, which has been heated again to a high temperature in the reheater 5, passes through the high-temperature reheat pipe 23, flows into the intermediate-pressure turbine 6 through the intermediate-pressure steam control valve 7, and enters the intermediate-pressure turbine. It works at a low-pressure low-temperature steam. Back air from the intermediate pressure turbine 6 is guided to a double flow type low pressure turbine 8 through a crossover pipe 25. The exhaust port of the low-pressure turbine 8 is connected to a condenser 9, and the steam flowing through the low-pressure turbine 8 expands to the vacuum of the condenser 9, performs work, and becomes condensed water. The condensate is then sent back to the boiler by a pump (not shown). Note that the generator 10 connected to the shaft of the reheat condensation turbine generates electric power as the turbine performs work as described above. A bypass line 27 that branches off from the main steam line 20 and bypasses the high-pressure turbine 3 and is provided with a bypass valve 26 is connected to the low-temperature reheat line 21 . Further, a low-pressure turbine bypass line 29 that branches off from the reheating steam line 23 and bypasses the intermediate-pressure turbine 6 and the low-pressure turbine 8 and is equipped with a bypass valve 28 is connected to the condenser 9 . Therefore, the steam from the steam generator 2 of the boiler 1 bypasses the high pressure turbine 3 and goes to the reheater 5, while the reheated steam from the reheater 5 bypasses the intermediate and low pressure turbines 6.8 and condenses. By adjusting the opening degree of the bypass valve installed in each pipe, the amount of steam sent to the high-pressure turbine, intermediate pressure, and low-pressure turbine can be controlled. I can do it. To start the reheat condensing turbine configured in this way from a cold state, the condenser 9 is evacuated by an ejector (not shown), and then the steam from the boiler 1 is sent to the reheat condensing turbine. Warming is performed while rotating the turbine in a low speed region below the rotation speed, and after warming is completed, the rotation speed is increased to the rated rotation speed. At this time, warming is performed by slightly opening the high-pressure steam control valve 4 and the intermediate-pressure 1-air control valve 7 to allow steam from the steam generator 2 passing through the main steam pipe 20 to the high-pressure turbine 3 and to the intermediate-pressure turbine. The reheating steam of the high pressure turbine back air that has passed through the reheater 5 is passed through the reheating steam pipes 23 and 24. In this case, if bypass pipes 27 and 29 are provided, the bypass valve 26 of the high pressure turbine is installed before ventilating the turbine.
By adjusting the opening of the low-pressure turbine bypass valve 28, the pressure in the reheat line, that is, the pressure in the pipeline consisting of the low-temperature reheat steam pipeline 21, the reheat steam pipeline 23, etc., is maintained at a predetermined pressure, for example, about 10 atg. can do. Therefore, when warming at a low speed, the internal pressure of the high-pressure turbine 3 is affected by the predetermined pressure of the reheat line, and the metal surface inside the high-pressure turbine reaches the saturation temperature of the predetermined pressure in a short time due to condensation heat transfer, e.g. If it is lQatg, it will be up to about 185°C. Therefore, heat soaking to a predetermined state can be completed in a short period of time. However, since the intermediate-pressure turbine is connected to the condenser 9 via the crossover pipe 25 and the low-pressure turbine 8, when the intermediate-pressure steam regulator 7 is slightly open, the intermediate-pressure steam regulator 7 After that, the pressure inside the turbine is mostly negative pressure (
(vacuum caused by the condenser). Therefore, the temperature can only be raised to less than the vacuum saturation temperature, that is, 100° C. (latg saturation temperature), by short-term heat transfer due to a-condensation of steam that has flown in for warming. Therefore, in an intermediate pressure turbine, after the metal surface dries out at a temperature below 100° C., the metal surface is warmed up to a predetermined temperature by convection heat transfer, and thus heat soaking is required at a speed below the rated rotation speed. However, even in the convective heat transfer range during heat soak after dryout, the internal pressure of the intermediate pressure turbine is low, so the thermal conductivity of the steam is low, making it difficult for the intermediate pressure turbine to warm smoothly. For this reason, it is necessary to perform warming by increasing the heat soak time, which lengthens the start-up time of the entire plant.Additionally, during the start-up time, the steam flowing through the bypass pipe becomes redundant, resulting in a large energy loss.

【発明の目的】[Purpose of the invention]

本発明は、前述のような点に鑑み、再熱復水タービンの
中圧タービンのウオーミング時間を短縮することのでき
る再熱復水タービンの中圧タービンウオーミング装置を
提供することを目的とする。
In view of the above-mentioned points, an object of the present invention is to provide an intermediate-pressure turbine warming device for a reheat-condensing turbine that can shorten the warming time of the intermediate-pressure turbine of the reheat-condensing turbine.

【発明の要点】[Key points of the invention]

上記の目的は、本発明によれば高圧タービンならびに中
圧タービンをそれぞれバイパスする管路を備えてなる再
熱復水タービンにおいて、中圧タービンの背気側にあっ
て、タービン起動時のみ働くようにした、中圧タービン
への給気量に対しその背気量を半減させる手段を付加す
ることによって達成される。
According to the present invention, the reheat condensing turbine is provided with a pipe line that bypasses both the high pressure turbine and the intermediate pressure turbine. This is achieved by adding a means to reduce the amount of back air by half compared to the amount of air supplied to the intermediate pressure turbine.

【発明の実施例】[Embodiments of the invention]

以下図面に基づいて本発明の詳細な説明する。 第1図は本発明の実施例による再熱復水タービンの系統
図である。なお第1図および後述する第2図において第
3図の従来例と同一部品には同じ符号を付している。第
1図においてボイラ1.蒸気発生器2.再熱器5.高圧
タービン3.中圧タービン6、低圧タービン8.復水器
99発電機10゜バイパス弁26.28等の構成1作用
は従来技術と同じなので説明を省略する0本実施例では
中圧タービン6の背気が低圧タービン8を介して復水器
9に至る管路であるクロスオーバ管25に開度調整自在
な弁11を設けている。 ところで再熱復水タービンの冷機状態から起動する時は
前述のように復水器を真空にし、低速度にて高圧蒸気加
減弁4と中圧蒸気加減弁゛7とをそれぞれ微開にして蒸
気によるウオーミングが行なわれるが、この時さらにバ
イパス弁11を中圧蒸気加減弁7の開度以下に設定する
。この結果、高圧タービンの内圧は前述のように高圧タ
ービンのバイパス弁26と中圧、低圧タービンのバイパ
ス弁28との開度調整により再熱ラインの圧力、すなわ
ち10atg程度に保持され、一方、中圧タービン7の
内圧は弁11の開度調整により前記10atg程度から
復水器の真空との間の圧力に調整できるので弁11の開
度調整によりウオーミングに適切な7 atg程度近く
の圧力にすることができる。 したがって従来技術の項で説明したように中圧タービン
のメタル表面は凝縮熱伝達により短時間で約170℃ 
(7atgの飽和温度)までウオーミングされ、従来の
ウオーミングがより短い時間で行なうことができる。 第2図は本発明の異なる実施例による中圧タービンのウ
オーミング装置を備えた再熱復水タービンの系統図であ
る。第2図においてクロスオーバ管25には開閉自在な
弁12を設け、さらに中圧タービンの背気を復水器に導
く管路30を設け、この管路30に開度調整自在な弁1
1を設けている。このような構成により再熱復水タービ
ンの冷機状態から起動時打なうウオーミングは弁12を
閉にし、弁11を前述のように開度調整して中圧タービ
ン内の圧力を高めることにより前述と同じ作用が得られ
る。
The present invention will be described in detail below based on the drawings. FIG. 1 is a system diagram of a reheat condensing turbine according to an embodiment of the present invention. In FIG. 1 and FIG. 2, which will be described later, the same parts as in the conventional example shown in FIG. 3 are given the same reference numerals. In Figure 1, boiler 1. Steam generator2. Reheater5. High pressure turbine 3. Medium pressure turbine 6, low pressure turbine 8. The functions of the condenser 99, generator 10, bypass valves 26, 28, etc. are the same as those of the prior art, so their explanation will be omitted. A valve 11 whose opening degree can be freely adjusted is provided in a crossover pipe 25 which is a conduit leading to the pipe 9. By the way, when starting the reheat condensing turbine from a cold state, the condenser is evacuated as described above, and the high-pressure steam control valve 4 and the intermediate-pressure steam control valve 7 are slightly opened at low speed to allow the steam to flow. At this time, the bypass valve 11 is further set to the opening degree of the intermediate pressure steam control valve 7 or less. As a result, the internal pressure of the high-pressure turbine is maintained at the reheat line pressure, that is, about 10 atg, by adjusting the opening of the high-pressure turbine bypass valve 26 and the intermediate-pressure and low-pressure turbine bypass valves 28, as described above. The internal pressure of the pressure turbine 7 can be adjusted from about 10 atg to a pressure between the vacuum of the condenser by adjusting the opening of the valve 11, so by adjusting the opening of the valve 11, the pressure can be adjusted to about 7 atg, which is appropriate for warming. be able to. Therefore, as explained in the prior art section, the metal surface of an intermediate pressure turbine can reach approximately 170°C in a short time due to condensation heat transfer.
(saturation temperature of 7atg), and conventional warming can be performed in a shorter time. FIG. 2 is a system diagram of a reheat condensing turbine equipped with a warming device for an intermediate pressure turbine according to a different embodiment of the present invention. In FIG. 2, the crossover pipe 25 is provided with a valve 12 that can be opened and closed, and is further provided with a pipe 30 that guides the back air of the intermediate pressure turbine to the condenser.
1 is provided. With this configuration, the warming that occurs when the reheat condensation turbine is started from a cold state is achieved by closing the valve 12 and adjusting the opening of the valve 11 as described above to increase the pressure inside the intermediate pressure turbine. The same effect can be obtained.

【発明の効果】【Effect of the invention】

以上の説明から明らかなように、本発明によれば再熱復
水タービンの冷機状態からの起動時打なうウオーミング
のために中圧タービンに通流する蒸気の流量を制限する
ように調整自在な弁を、中圧タービンの排気側以降に設
けることにより、この弁開度を調整して中圧タービンを
ウオーミングするために流れる蒸気の圧力を高めること
ができるので、中圧タービンのメタル表面は凝縮伝達に
より短時間で高い圧力の飽和温度に昇温させることが可
能となり、ウオーミングを従来より短い時間で行なうこ
とができる。さらにウオーミング時間を短縮させた結果
ウオーミング時バイパス管路に逃がす蒸気の量も減少し
、起動時のエネルギー損失を少なくするという効果があ
る。
As is clear from the above description, according to the present invention, the flow rate of steam flowing through the intermediate pressure turbine can be freely adjusted for warming when the reheat condensation turbine is started from a cold state. By installing a valve after the exhaust side of the intermediate pressure turbine, the pressure of the steam flowing to warm the intermediate pressure turbine can be increased by adjusting the opening degree of this valve. Condensation transfer makes it possible to raise the temperature to a high pressure saturation temperature in a short time, and warming can be performed in a shorter time than conventionally. Furthermore, as a result of shortening the warming time, the amount of steam released into the bypass line during warming is also reduced, which has the effect of reducing energy loss during startup.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例による中圧タービンウオーミン
グ装置を備えた再熱復水タービンの系統図、第2図は本
発明の異なる実施例による中圧タービンウオーミング装
置を備えた再熱復水タービンの系統図、第3図は再熱復
水タービンの系統図である。
FIG. 1 is a system diagram of a reheat condensing turbine equipped with an intermediate pressure turbine warming device according to an embodiment of the present invention, and FIG. 2 is a system diagram of a reheat condensing turbine equipped with an intermediate pressure turbine warming device according to a different embodiment of the present invention. Turbine System Diagram FIG. 3 is a system diagram of a reheat condensation turbine.

Claims (1)

【特許請求の範囲】 1)ボイラからの蒸気を高圧タービンに通し、その背気
を再熱器で加熱して中圧タービンに送り、その背気をク
ロスオーバ管を経て低圧タービンに供給した後、復水器
に導いて復水となるようにするとともに、前記高圧ター
ビンへの主蒸気管路から分岐し前記高圧タービンをバイ
パスして前記高圧タービンの背気管路にバイパス弁を介
して接続される管路と、前記再熱器からの再加熱蒸気を
中圧タービンと低圧タービンとをバイパスして前記復水
器にバイパス弁を介して接続される管路とを備えてなる
再熱復水タービンにおいて、中圧タービンの背気側にあ
って、タービン起動時のみに働くようにした中圧タービ
ンへの給気量に対し背気量を半減する手段を付加したこ
とを特徴とする再熱復水タービンの中圧タービンウォー
ミング装置。 2)特許請求の範囲第1項記載の中圧タービン背気量を
半減する手段とは、中圧タービンと低圧タービンとの間
を結ぶクロスオーバ管の途中に制御弁を介装してなるこ
とを特徴とする再熱復水タービンの中圧タービンウォー
ミング装置。 2)特許請求の範囲第1項記載の中圧タービン背気量を
半減する手段とは、中圧タービンと復水器との間を結ぶ
管路を制御弁を介装して設けるとともに前記クロスオー
バ管の途中に止め弁を介装してなることを特徴とする再
熱復水タービンの中圧タービンウォーミング装置。
[Claims] 1) Steam from the boiler is passed through a high-pressure turbine, its back air is heated in a reheater and sent to an intermediate-pressure turbine, and the back air is supplied to a low-pressure turbine through a crossover pipe. , which is led to a condenser to become condensed water, and which is branched from the main steam line to the high-pressure turbine, bypasses the high-pressure turbine, and is connected to the back air line of the high-pressure turbine via a bypass valve. and a pipe line that connects the reheated steam from the reheater to the condenser via a bypass valve, bypassing an intermediate pressure turbine and a low pressure turbine. In a turbine, a reheating system is provided on the back air side of the intermediate pressure turbine, and is characterized by an additional means for reducing the amount of back air by half compared to the amount of air supplied to the intermediate pressure turbine, which is activated only when the turbine is started. Medium pressure turbine warming device for condensing turbine. 2) The means for reducing the back air amount of the intermediate pressure turbine by half as described in claim 1 means that a control valve is interposed in the middle of a crossover pipe that connects the intermediate pressure turbine and the low pressure turbine. An intermediate pressure turbine warming device for a reheat condensing turbine, characterized by: 2) The means for reducing the back air amount of the intermediate pressure turbine by half as described in claim 1 means that a pipe line connecting the intermediate pressure turbine and the condenser is provided with a control valve interposed therebetween, and the cross An intermediate pressure turbine warming device for a reheat condensing turbine, characterized in that a stop valve is interposed in the middle of an overpipe.
JP237286A 1986-01-09 1986-01-09 Intermediate pressure turbine warming apparatus of reheating condensing turbine Pending JPS62159705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP237286A JPS62159705A (en) 1986-01-09 1986-01-09 Intermediate pressure turbine warming apparatus of reheating condensing turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP237286A JPS62159705A (en) 1986-01-09 1986-01-09 Intermediate pressure turbine warming apparatus of reheating condensing turbine

Publications (1)

Publication Number Publication Date
JPS62159705A true JPS62159705A (en) 1987-07-15

Family

ID=11527416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP237286A Pending JPS62159705A (en) 1986-01-09 1986-01-09 Intermediate pressure turbine warming apparatus of reheating condensing turbine

Country Status (1)

Country Link
JP (1) JPS62159705A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5526219B2 (en) * 2010-02-26 2014-06-18 株式会社日立製作所 Thermal power generation system and operation method thereof, thermal power generation system modification method, steam turbine equipment used in thermal power generation system, carbon dioxide separation and recovery device, overheat reducer
KR20160147034A (en) * 2014-06-04 2016-12-21 지멘스 악티엔게젤샤프트 Method for heating up a steam turbine or for keeping a steam turbine hot
CN109162765A (en) * 2018-08-23 2019-01-08 哈尔滨汽轮机厂有限责任公司 A kind of high revolving speed steam turbine of resuperheat of super-pressure 45MW

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5526219B2 (en) * 2010-02-26 2014-06-18 株式会社日立製作所 Thermal power generation system and operation method thereof, thermal power generation system modification method, steam turbine equipment used in thermal power generation system, carbon dioxide separation and recovery device, overheat reducer
KR20160147034A (en) * 2014-06-04 2016-12-21 지멘스 악티엔게젤샤프트 Method for heating up a steam turbine or for keeping a steam turbine hot
JP2017522483A (en) * 2014-06-04 2017-08-10 シーメンス アクティエンゲゼルシャフト Method for warming up or keeping warm of steam turbine
US10100665B2 (en) 2014-06-04 2018-10-16 Siemens Aktiengesellschaft Method for heating up a steam turbine or for keeping a steam turbine hot
CN109162765A (en) * 2018-08-23 2019-01-08 哈尔滨汽轮机厂有限责任公司 A kind of high revolving speed steam turbine of resuperheat of super-pressure 45MW
CN109162765B (en) * 2018-08-23 2023-10-10 哈尔滨汽轮机厂有限责任公司 Ultrahigh-pressure 45MW once intermediate reheating high-rotation-speed steam turbine

Similar Documents

Publication Publication Date Title
JP3481983B2 (en) How to start a steam turbine
EP2423460B1 (en) Systems and methods for pre-warming a heat recovery steam generator and associated steam lines
JP3977909B2 (en) Recoverable steam cooled gas turbine
JP4503995B2 (en) Reheat steam turbine plant and operation method thereof
WO2020217719A1 (en) Steam turbine plant and operation method, combined cycle plant and operation method
JP3559574B2 (en) Startup method of single-shaft combined cycle power plant
JPS6336004A (en) Method for starting steam turbine plant
JPS62159705A (en) Intermediate pressure turbine warming apparatus of reheating condensing turbine
JPS62101809A (en) Single-shaft combined plant having reheating system
JP2004245184A (en) Reheat steam turbine plant and starting method for the plant
JPH09303114A (en) Steam cycle for combined cycle using steam cooling type gas turbine
JP4395275B2 (en) Operation method of combined plant
JP3559573B2 (en) Startup method of single-shaft combined cycle power plant
JPH02259301A (en) Waste heat recovery boiler
JP2677598B2 (en) Start-up method for two-stage reheat steam turbine plant.
JPH10331608A (en) Closed steam cooling gas turbine combined plant
JP2563375B2 (en) How to start up a two-stage reheat steam turbine plant
JP2558855B2 (en) Method of operating steam-gas combined cycle power plant and its power plant
JPH11210407A (en) Method and device for warming up bypass valve in steam plant
JPS5912105A (en) Starting system of reheat condensing steam turbine
JPH0475363B2 (en)
JP3553314B2 (en) Cooling steam supply method for combined cycle power plant
JPS60119304A (en) Steam turbine
JP2001342808A (en) Combined plant and starting method therefor
JPH04272409A (en) Cold starting method for one shaft type combined cycle power generating plant