JP3559574B2 - Startup method of single-shaft combined cycle power plant - Google Patents

Startup method of single-shaft combined cycle power plant Download PDF

Info

Publication number
JP3559574B2
JP3559574B2 JP21243193A JP21243193A JP3559574B2 JP 3559574 B2 JP3559574 B2 JP 3559574B2 JP 21243193 A JP21243193 A JP 21243193A JP 21243193 A JP21243193 A JP 21243193A JP 3559574 B2 JP3559574 B2 JP 3559574B2
Authority
JP
Japan
Prior art keywords
steam
temperature
pressure
turbine
main steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21243193A
Other languages
Japanese (ja)
Other versions
JPH0763010A (en
Inventor
武史 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21243193A priority Critical patent/JP3559574B2/en
Publication of JPH0763010A publication Critical patent/JPH0763010A/en
Application granted granted Critical
Publication of JP3559574B2 publication Critical patent/JP3559574B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/12Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled
    • F01K23/16Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled all the engines being turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Description

【0001】
【産業上の利用分野】
本発明は火力発電プラント、特に一軸型コンバインドサイクル発電設備の起動方法に関する。
【0002】
【従来の技術】
従来の一軸型コンバインドサイクル発電設備の起動は、蒸気タービンの最終段翼部での発熱・温度上昇を避けるため、軸系の回転数を軸系の定格回転数以下の回転数に保持して運転し、この運転状態で得られるガスタービン排気を利用して排熱回収ボイラの暖機を行い、所定の発生蒸気を確保した上で、これを冷却蒸気として蒸気タービンに通気した後に軸系の回転数を定格回転数にまで上昇させる起動方法を採用している。ただ、蒸気タービンのグランドシール蒸気については、補助蒸気を使用している場合もある。
【0003】
しかし、最近のガスタービンは、入口ガス温度の高温化を含む大容量化の傾向にあり、これに伴う排熱回収ボイラおよび蒸気タービンも大容量化の影響もあって、一軸型コンバインドサイクル発電設備も大容量化している。この傾向は、排熱回収ボイラおよび蒸気タービンの大形化であり、蒸気系の耐圧厚肉部の増加につながる。そして、この現象は軸の急速起動性を阻害する要因の増加を意味する。一方、ガスタービンの排気温度の上昇および排気ガス量の増加と運転方法との関係から主蒸気および再熱蒸気温度の上昇率増加にも影響を及ぼす。
【0004】
一般に、コンバインドサイクル発電設備は、起動時間の短さと高熱効率であることの二大特徴を有する。特に、一軸型コンバインドサイクル発電設備では、急速起動性を低下させる要因を軸系自体に含んでおり、これらの特徴を一つでも損なわない起動方法を採用することが望ましい。
【0005】
ところで、最近の一軸型コンバインドサイクル発電設備の起動方法は、次のような手順で行われる。すなわち、
(1)軸のターニング、(2)蒸気タービンのグランドシール、(3)復水器真空上昇、(4)軸起動、(5)回転上昇・パージ運転、(6)回転下降・点火、(7)回転上昇・無負荷定格回転数運転、(8)排熱回収ボイラ暖機運転、(9)併入・初負荷運転、(10)負荷上昇、(11)定格負荷運転。
【0006】
上記した起動手順と従来のガスタービン入口ガス温度が1100℃級ガスタービンを採用したコンバインドサイクル発電設備との起動手順の差異は、(7),(8)の起動手順部分である。すなわち、従来の1100℃級コンバインドサイクル発電設備の場合は、排熱回収ボイラの暖機と蒸気タービン最終段翼の冷却蒸気の確保を目的として、蒸気タービン最終段翼の発熱除去の不必要である軸回転数を定格回転数の50%程度で保持した運転を行い、排熱回収ボイラの蒸気の発生を俟って、回転上昇し定格回転数への上昇・同期・負荷上昇を一般的運転手順としている。
【0007】
一方、1300℃級ガスタービン採用のコンバインドサイクル発電設備の起動方法は、1100℃級ガスタービンを採用した場合と異なり、先に述べた(1)〜(11)の起動手順を採用しているのが一般的である。
【0008】
このような起動方法を採用した場合、無負荷定格回転数で排熱回収ボイラの暖機運転を行うため、ガスタービンの排気ガス量が最も少ない状態での排気ガス温度が400〜440℃に達するため発生蒸気の温度は、高圧主蒸気で380〜420℃程度になる。また、蒸気タービンに通気を開始した時点での再熱蒸気温度も主蒸気温度と同程度となる。これらの蒸気温度は、大気温度やガスタービンの機種によって違いがある。起動時に発生する蒸気温度は、ほぼ一定の温度であるのに対して、排熱回収ボイラや蒸気タービンの金属部温度および保有水の温度は、停止からの経過時間や大気温度の影響を受けて千差万別である。金属部温度と蒸気温度の差は、熱伝達に影響を及ぼす大きい因子であり、温度差が大きくなれば発生する熱応力も大きくなる。
【0009】
したがって、発電設備の起動・停止時においては金属部の肉厚および材料の熱伝導率によって定まる各部の金属温度と蒸気温度の差および蒸気の温度変化率に許容限界が生じ、起動停止の繰り返しで発生する熱応力のサイクルによる金属疲労の限界を考慮した起動停止方法が必要となる。
【0010】
また、通気時の金属温度と蒸気温度の差の制御は、蒸気温度が高い場合についてのみ制御可能領域があり、逆の場合には制御できないのが通例である。制御可能な場合でも限界があるのが現実である。一軸型コンバインドサイクル発電設備の場合は、常に自軸の発生蒸気が確保された状態で起動できるわけではないため、補助蒸気による蒸気系の暖機を採用しているのが現状である。
【0011】
次に、補助蒸気を使用した蒸気タービンの暖機によるコンバインドサイクル発電設備の起動方法を図7および図8について説明する。
図7は従来技術におけるコンバインドサイクル発電設備の構成図であり、図8は図7の排熱回収ボイラの高圧及び再熱蒸気部分の詳細な構成図である。
【0012】
同図において、ガスタービン1と蒸気タービン2と発電機3が、一軸に結合されている。ガスタービン1の排気ガスの保有熱を回収する排熱回収ボイラは、第1,第2高圧過熱器9,10、第1,第2再熱器13,14、高圧蒸発器25、高圧ドラム8、高圧節炭器28、中圧過熱器7、中圧ドラム6、中圧蒸発器(図示せず)、中圧節炭器(図示せず)、低圧過熱器5、低圧ドラム4、低圧炭節器(図示せず)の主要要素で構成されている。これらの他に、各ドラムに給水を送るためのポンプ(高圧給水ポンプ29、その他のポンプは図示せず)や配管類が設置される。また、第1高圧過熱器9と第2高圧過熱器10の中間に高圧主蒸気温度調節用減温器12を設置し、第1再熱器13と第2再熱器14の間に再熱蒸気減温器15を設置し、高圧主蒸気よび再熱蒸気の温度をスプレー水量により調節する。
【0013】
一方、補助蒸気系統は系列補助蒸気母管20および各軸補助蒸気母管19を設けている。系列補助蒸気母管20には各軸の低温再熱蒸気管16から分岐して補助蒸気を供給できるように構成されており、また各軸補助蒸気母管19への補助蒸気の供給は系列補助蒸気母管20から圧力調節弁を介して供給するように構成されている。なお、各軸への補助蒸気の供給は、各軸補助蒸気母管19から目的に応じて分岐し止め弁を介して供給する系統構成としてある。図7の場合、蒸気タービンの暖機は、ウォーミング・ロール用蒸気管17の止め弁を開として、高圧タービンの入口(高圧蒸気加減弁)の二次側に供給する。
【0014】
また、大気を吸入し圧縮した後、燃料と混合燃焼して高圧高温のガスとし、動力を発生したガスタービン1の排気ガスを導入し、排熱回収ボイラ熱回収を行った後、排気ガスを煙突(図示せず)を介して大気に放出する。さらに、低圧節炭器(図示せず)で予熱され低圧ドラム4に供給し、低圧蒸発器(図示せず)で熱吸収し、低圧ドラム4で気水分離された蒸気は、低圧過熱器5で加熱され過熱蒸気となって蒸気タービン2の中圧部の排気と合流させ低圧部に導入して動力を発生させる。
【0015】
一方、低圧節炭器(図示せず)の出口から分岐して、中圧給水ポンプ(図示せず)を介して中圧節炭器(図示せず)で予熱され、中圧ドラム6に供給され中圧蒸発器(図示せず)で熱吸収し、中圧ドラム6で気水分離された蒸気は、中圧過熱器7で加熱され過熱蒸気となって蒸気タービン2の高圧の排気である低温再熱蒸気と合流させ第1再熱器13および第2再熱器14で再加熱される。
【0016】
蒸気タービンの高圧排気は、低温再熱蒸気管16で第1再熱器13に接続するが、第1再熱器13に導入される前に中圧過熱器7の出口蒸気を低温再熱蒸気管16に合流させる。この蒸気は第1,第2再熱器13,14で加熱され、再熱蒸気温度調節用減温器15にて再熱器出口蒸気温度を制御した後、高温再熱蒸気として蒸気タービン2の中圧部に導入して動力を回収する。
【0017】
また、低圧節炭器(図示せず)の出口から分岐して、高圧給水ポンプ29および高圧給水管30を介して高圧節炭器28で予熱され、高圧連絡管27と高圧給水調節弁26を介して高圧ドラム8に供給し、高圧蒸発器25で熱吸収し、高圧ドラム8で気水分離した蒸気は、第1高圧過熱器9および第2高圧過熱器10で加熱され、高圧主蒸気温度調節用減温器12による温度調節を行った後、蒸気タービン2の高圧部に導入し動力を発生させる。ガスタービン1および蒸気タービン2で発生した動力は、発電機3で電気エネルギーに変換される。なお、11は高圧主蒸気管、18はグランドシール補助蒸気管、21は減温水供給管、22は高圧主蒸気減温水供給管、23は高圧主蒸気温度調節スプレー弁、24は再熱蒸気温度調節弁、31は高圧蒸気連絡管である。
【0018】
一方、蒸気タービンの高圧排気である低温再熱蒸気管16の中圧過熱器出口管の合流前から分岐して補助蒸気を系列補助蒸気母管20に供給する。コンバインドサイクル発電設備が複数軸から構成されている場合は、各軸の低温再熱蒸気管16から分岐した補助蒸気管を介して系列補助蒸気母管20に補助蒸気を供給する。各軸への補助蒸気は、系列補助蒸気母管20を通し各軸補助蒸気母管19を介して供給する。
【0019】
現状のコンバインドサイクル発電設備においては、主蒸気と再熱蒸気について、一定の温度以上に蒸気温度が上昇しないように過熱器や再熱器を分割し、第1と第2の過熱器9,10や再熱器13,14の中間部分に高圧主蒸気温度調節用減温器12および再熱蒸気減温器15を設置し、水をスプレーすることによる蒸気温度を制御するように構成されている。
【0020】
図9は従来のコンバインドサイクル発電設備の蒸気温度調節用のスプレー水量の制御方法の一例を示した図であり、同図において、35は第2過熱器入口蒸気下限値関数発生器、36は高圧主蒸気温度調節スプレー弁開度演算器、37は主蒸気温度調節器、38は低値優先回路である。この制御方法はスプレー部分の蒸気圧力の飽和温度以下にならないように制限を考慮したものである。
【0021】
【発明が解決しようとする課題】
上記したような起動方法を採用した場合は、補助蒸気を供給できる軸が存在するか補助蒸気供給設備を確保しておかなければならない。系列内の軸から補助蒸気を供給している間は、補助蒸気供給軸の軸出力および系列出力が低下する欠点がある。また、蒸気タービンの暖機用蒸気は、主蒸気止め弁・蒸気加減弁の二次側へ接続し、主蒸気止め弁・蒸気加減弁が閉状態のまま蒸気タービンに暖機用蒸気が供給でき、しかも単独で蒸気の供給停止ができる系統構成と主蒸気止め弁の開閉操作が自動的に行えるようにするための制御装置が必要である。
【0022】
補助蒸気は、定格負荷運転中の他軸の低温再熱蒸気管から供給する計画であり、この時の蒸気温度は350℃程度である。つまり、補助蒸気を使用した起動方法のメリットは、軸起動前からでも蒸気タービンの暖機が可能であり、排熱回収ボイラの暖機完了時点で蒸気温度と金属温度の差を許容限界以内に到達させることが可能となる。しかし、系統構成上の観点からは、設計圧力の大幅に異なる系統(例えば高圧主蒸気管11と各軸補助蒸気母管19)を接続しなければならならず、系統設計上の複雑さや蒸気の供給停止を行うための独立した開閉装置(弁)とその制御装置を必要とすることになり、設備や運転方法が複雑になりその効果も大きいとは言えない。
【0023】
排熱回収型コンバインドサイクルの場合は、図7および図8に示すようにガスタービンの排気ガスとの熱交換のみで主蒸気温度および再熱蒸気温度が定まってしまう。ガスタービンが無負荷定格回転数で運転を継続している場合、ガスタービンの排気ガス温度とその流量は、大気温度の影響を受けて変化する。したがって、排熱回収ボイラの暖機完了時点の主蒸気温度は積極的に操作しない限りガスタービンの排気ガス温度で定まる。このことは、蒸気タービンが排熱回収ボイラの暖機完了時点でどのような状態にあっても、ほぼ一定温度の蒸気が供給されることになる。
【0024】
しかし、蒸気タービンは、停止からの経過時間および周囲条件によって冷却速度が異なり、排熱回収ボイラ暖機完了時点での、ケーシングやロータ温度は千差万別である。ただし、蒸気タービンの高圧ケーシングやロータは冷機状態からの起動であっても回転上昇開始までに、グランドシール蒸気により、一般的に150〜160℃程度にまでは暖機される。従って、グランドシール蒸気温度が低い場合でも、金属部温度は脆性破壊の発生限界である遷移温度以上の金属温度に十分到達する。
【0025】
例えば蒸気タービンへの通気開始時の主蒸気圧力を40ata程度とし、蒸気タービン第1段シェル蒸気温度とロータ表面温度の差であるミスマッチ温度の許容値を最高で100℃程度とすると、蒸気タービン入口での主蒸気温度の最低値の許容値は、300〜320℃程度となる。さて、排熱回収ボイラ暖機完了時点での主蒸気温度は、主蒸気温度調節用減温器を使用し積極的に操作しない限り許容ミスマッチ温度以内の温度差を得る主蒸気温度とすることは、排熱回収ボイラの構造および特性上不可能である。更に、水を蒸気中にスプレーして蒸気温度を制御する方法では、スプレー点の蒸気圧力の飽和蒸気温度にまで蒸気温度を減温できないため、所定の蒸気温度が得られない運転の存在が推定される。
【0026】
本発明は上記事情に鑑みてなされたもので、その目的は複雑な系統構成や単独で蒸気の供給停止を制御するための制御装置を必要とせず、かつ、軸の起動時に系列出力の低下を伴わない軸の起動方法を提供することであり、またガスタービンの運転方法の影響を受けないように蒸気温度を直接調整することにより蒸気系の厚肉金属部に発生する熱応力を最小限にする一軸型コンバインドサイクル発電設備の起動方法を提供することにある。
【0027】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1は、ガスタービン蒸気タービンおよび発電機の回転軸を1本に結合し、ガスタービンの排気エネルギーを排熱回収ボイラで蒸気に変換し、蒸気タービンに導入し電力として回収する一軸型コンバインドサイクル発電設備であって、前記排熱回収ボイラの第1高圧過熱器出口と第2高圧過熱器入口とを結ぶ配管に高圧主蒸気温度調節用減温器を設けるとともに、定格無負荷回転もしくは初負荷運転を継続しながら起動前の蒸気タービン第1段シェル内面メタル温度に準拠して定めた主蒸気温度設定値と主蒸気温度上昇率を使用し、主蒸気温度設定値を上昇させて主蒸気温度を設定値に制御し、蒸気タービンに供給することにより蒸気タービンを暖機し、主蒸気温度設定値が起動時最高主蒸気温度に到達し、かつ、蒸気タービン第1段シェル内面メタル温度と主蒸気温度との差が、ある設定された許容値以内の状態に達した時点を蒸気タービンの暖機完了時点とし、この状態到達以後の操作制限を起動前の蒸気タービンの状態に無関係に設定できるようにした一軸型コンバインドサイクル発電設備の起動方法において、前記排熱回収ボイラの高圧ドラムと第1高圧過熱器入口とを結ぶ高圧蒸気連絡管から分岐して第2高圧過熱器出口とを結ぶ過熱器バイパス蒸気管を設けるとともに、この過熱器バイパス蒸気管の途中に主蒸気温度制御装置によって開閉制御される主蒸気温度調節弁を設け、主蒸気温度を前記高圧主蒸気温度調節用減温器のスプレー水量と、高圧ドラム内飽和蒸気の混合との併用によって制御するように構成したことを特徴とする。
【0033】
【作用】
主蒸気温度を積極的に調節しない状態での通気は、ミスマッチ温度差が大きいことから、蒸気タービンロータの熱応力が高くなる。したがって、蒸気タービンロータ温度に応じて通気条件および主蒸気温度を設定し制御する。一方、通気後、蒸気タービンロータ温度がある温度に到達し安定するまでの主蒸気温度の設定値を、蒸気タービン通気時のロータ温度によって定まる変化率で変化させ制御する。このように制御することにより、通気からある状態に到達するまでの蒸気タービンに発生する熱応力をある制限値以下に保持および350℃程度の補助蒸気を使用した蒸気タービンの暖機より熱応力を低減することができる。更に、蒸気タービンロータ温度がある一定の温度に到達した後は、蒸気タービン通気時の状態に拘らず同一の負荷上昇および蒸気圧力上昇制御が可能になる。
【0034】
本発明によると、補助蒸気による蒸気タービンの暖機なしで、グランド蒸気による蒸気タービンの暖機と自軸蒸気の通気による一軸型コンバインドサイクルの起動方法の採用により、蒸気タービンロータの熱応力を考慮した運転方法と起動軸への暖機蒸気提供等による暖機蒸気供給軸の出力低下および高圧・高温ラインと補助蒸気系の接続等を避け、運転手順の簡素化および設備の簡素化が実現できる。
【0035】
【実施例】
以下、本発明の実施例を図を参照して説明する。
図1は本発明の一実施例であるコンバインドサイクル発電設備の系統構成図であり、図2は図1の排熱回収ボイラの高圧部分の詳細な構成図である。なお、本実施例が従来例である図7と異なる部分は、高圧主蒸気系統と補助蒸気系統の一部分のみであり、その他は同一であるので同一部分には同一符号を付してその詳細な説明は省略する。
【0036】
また、補助蒸気系統のみでなく関連する機器および系統の部分を含めて表示してあり、ガスタービン・蒸気タービンについては、その構成要素を囲み代表名で表示してある。なお、図中の黒く塗りつぶした弁は、全閉で使用している弁であり、他の弁は全開で使用している状態を示している。ただし、図の中の弁の開閉状態は、一例であってこの状態に限定するものではない。
【0037】
図1及び図2に示すように、本実施例では、蒸気タービンのウォーミング(暖機)に補助蒸気を利用しないため、蒸気タービン最終翼の冷却蒸気供給管50を各軸補助蒸気母管19から分岐して設置し、止め弁を設けた構成としてあり、また、高圧主蒸気系統は過熱器バイパス蒸気管32、主蒸気温度調節弁33および主蒸気温度制御装置34を設置し高圧主蒸気温度の制御系統を設けた構成としてある。
【0038】
また、系列補助蒸気母管20を介し、各軸補助蒸気母管19へ他軸からの補助蒸気を供給し、各軸補助蒸気母管19から各軸へ補助蒸気を供給する系統構成とし、冷却蒸気供給管50とこの系統に蒸気の供給停止を行う供給元弁を設置する。また、この開操作を軸の回転数がある値以上(例えば、定格回転数の70%以上)、閉操作を併入・通気もしくは低圧蒸気加減弁の開度が一定値以上といった冷却蒸気が確保されている条件を確認して閉鎖するインターロックを設ける。
【0039】
一方、グランド蒸気が蒸気タービングランドの漏洩蒸気で十分確保できる運転状態に達するまでの間、各軸補助蒸気母管19からグランド蒸気供給管18を介して補助蒸気を供給する。
【0040】
さらに、図2に示すように高圧蒸気連絡管31から分岐し第1高圧過熱器9と第2高圧過熱器10をバイパスする主蒸気温度調節弁33を有する過熱器バイパス蒸気管32を経て高圧主蒸気管11に合流させ、主蒸気温度を調節する系統を設け、主蒸気温度の制御をスプレー水量と高圧ドラムの飽和蒸気の混合を併用する。この場合の蒸気温度制御方法を図3に示す。同図において35は関数発生器、36は演算器、37は主蒸気温度調節器、39は比較器である。ただし、主蒸気温度設定値を別途算出する必要がある。
【0041】
図3で示す主蒸気温度制御方法では、第2高圧過熱器10の入口温度下限値を関数発生器35で予測計算し、高圧ドラム圧力の飽和温度の高い方の値を設定値とし第2過熱器入口温度との差でスプレー水量の制御を行い、高圧主蒸気温度と設定値との差で飽和蒸気の混合量を調節して蒸気温度を制御する設計としてある。
【0042】
一方、蒸気タービンの暖機が完了した状態であっても、蒸気タービン第1段シェル内面メタル温度の方が主蒸気温度よりも高い状態であり、許容限界を超えている場合については、軸の負荷上昇は許可するが蒸気加減弁の開度を限定保持し、蒸気タービンの急激な冷却による熱応力の発生を抑える負荷上昇や加減弁操作についての監視機能を付加してある。比較器39は、[(主蒸気温度)−(蒸気タービン第1段シェル内面メタル温度)<C]の条件が成立した場合にのみ出力信号が得られるように計画し、Cの値は、例えば−85℃程度を考えればよい。なお、ガスタービン単体の運転状態量の変化の代表例を図6に示してある。
【0043】
図4は、通気監視・主蒸気温度制御装置による主蒸気温度の設定値を算出するフローを示す。同図に示すように、蒸気タービン第1段シェル内面メタル温度を入力とした主蒸気温度設定値の関数発生器40と主蒸気温度上昇率の関数発生器41を設ける。関数発生器40の出力は、信号切替器45の一方の入力とする。また、主蒸気温度上昇率を演算した関数発生器41の出力は、排熱回収ボイラ暖機完了の信号で温度上昇を行うため定数設定器46の設定値である零との切り替えを行う信号切替器45の一方の入力とする。これらの信号は、更に現状値を保持するためのそれぞれの回路に設けられた信号切替器45を介して加算器42で加算され主蒸気温度設定値の一つとして低値優先回路44に入力する。
【0044】
一方、高圧過熱器の特性から定まる温度差を定数設定器43に設定し、この値とガスタービン排気ガス温度とを加算器42で加算して得られた起動時最高主蒸気温度をもう一つの入力として低値優先回路44で低値を選択し、通常運転時主蒸気温度設定値と運転状態により切替器45でどちらかの値を主蒸気温度設定値として蒸気温度制御装置の入力とする。
【0045】
図5は、通気監視・主蒸気温度制御装置49を設け、これによる主蒸気温度の設定値を算出する他のフローを示す。
すなわち、この例では蒸気タービン第1段シェル内面メタル温度,ガスタービン排気ガス温度,主蒸気温度の三点を入力し主蒸気温度の設定値を算出する。この主蒸気温度を主蒸気温度制御装置設定値として出力し設定する。一方、通気監視・主蒸気温度制御装置49は、排熱回収ボイラ暖機完了時点での蒸気タービン第1段シェル内面メタル温度に基づいて設定温度の上昇率を演算し、主蒸気温度設定値の現在値に加算することにより新たな設定値を計算し主蒸気温度制御装置に設定する。更に、軸が停止して短時間で再起動するような場合、蒸気タービン第1段シェル内面メタル温度を主蒸気温度と比較して、ある限界以上に高い場合を考慮して、ガスタービンの負荷上昇許可および蒸気加減弁開度保持指令を出力する機能を備えている。本実施例の主蒸気温度制御方法は、スプレー水量と飽和蒸気の混合の両者を併用している。ただし、スプレー水量調節による主蒸気温度制御を主体としており、飽和蒸気混合による温度調節はあくまでも補助手段として計画している。
【0046】
次に、本実施例の作用について説明する。
本実施例では、軸を起動後、規定した回転数に到達すると冷却蒸気供給元弁を開操作し、冷却蒸気を冷却蒸気供給管50を介して蒸気タービンに供給する。高圧主蒸気温度は、通気監視・主蒸気温度制御装置48で、蒸気タービン第1段シェル内面メタル温度を基準に設定値を算出し、排熱回収ボイラ暖機完了時点ではこの蒸気温度に制御される。つまり、この時点での高圧主蒸気温度はミスマッチが極力小さくなるように設定されており、併入直後から通気可能な状態にある。通気開始後、高圧主蒸気温度を排熱回収ボイラ暖機完了時点の蒸気タービン第1段シェル内面メタル温度に準拠した温度上昇率で上昇させ軸が定格回転数の状態で蒸気タービンの暖機を行う。ただし、この場合の高圧主蒸気温度の設定値は、軸の無負荷定格回転数運転時もしくは初負荷運転時のガスタービンの出力から定まる排気ガス温度以上にはなり得ない。
【0047】
一方、高圧主蒸気温度より蒸気タービン第1段シェル内面メタル温度の方が高い状態の場合は、蒸気タービン暖機は行わない。したがって、併入後直ちに負荷上昇を開始する。ただし、蒸気タービン第1段シェル内面メタル温度の方が高く許容値を満足していない場合は、蒸気加減弁の開度を現状開度に維持し、主蒸気温度が上昇するのを待って蒸気加減弁の開度を調節する方法を採用する。これにより、蒸気タービンに発生する熱応力を小さく抑えながら特別の蒸気タービン暖機設備なしでの起動が可能となる。蒸気タービンの暖機完了の条件は、蒸気タービン第1段シェル内面メタル温度の変化が無くなった時点である。しかし、現実的には蒸気タービン第1段シェル内面メタル温度が、規定の値を超えた時点とすればよい。
【0048】
蒸気タービン暖機完了の判定としては、これに引き続く運転手順としての負荷上昇等の制約を蒸気タービンの状態に影響されないように定め、例えばウォーム起動時の蒸気タービン第1段シェル内面メタル温度の最低限度を採用しておく方法もある。
【0049】
以上説明したように、本実施例の効果の一部は既に説明したが、起動中の軸の発生蒸気を使用した蒸気タービンの暖機を採用し、軸起動中の系列負荷減少といった状態が発生しないし、高圧高温設計の管路や弁類も不要で系統の簡素化ができる。
【0050】
さらに、コールド起動の場合でも、通気開始時の高圧主蒸気温度および主蒸気温度設定値の上昇率の両者を起動時の蒸気タービン第1段シェル内面メタル温度を基準に設定する。蒸気タービン暖機完了条件は種々考えられるが、暖機起動のロータの最低温度とすれば暖機完了後の負荷上昇率に暖機起動時と同様の値が採用でき、暖機起動時の蒸気タービン熱応力と同等の発生応力で冷機起動が可能となる。
【0051】
ガスタービンのインレットガイドベーンを使用することによって空気量を調整して排気ガス温度を制御する方法は、コンバインドサイクル発電設備の運転方法としては良策である。しかし、冷機起動時,暖機起動時,部分負荷運転時および停止時のインレットガイドベーンの制御パターンが異なることになり、ガスタービンの制御としては好ましいことではない。つまり、本発明の主蒸気温度制御方法であればガスタービンの運転状態に対応した制御が可能になる。
【0052】
本発明は上記実施例に限定するものではなく、次のようにしても、同様の効果が得られる。
(1)上記実施例では、蒸気タービン暖機運転時の蒸気温度上昇率について蒸気タービン第1段シェル内面メタル温度に準拠して定める方法を採用しているが、一定値としても同様の効果が得られる。
【0053】
(2)上記実施例では、通気監視・主蒸気温度制御装置による通気開始時の主蒸気温度設定値および通気後の主蒸気温度上昇率を蒸気タービン第1段シェル内面メタル温度に準拠して定め、主蒸気温度の制御設定値を時間変化させる方法を採用しているが、蒸気タービンの暖機完了までは蒸気タービン第1段シェル内面メタル温度に準拠して主蒸気温度を設定し、主蒸気温度上昇率を使用しない方法もある。
【0054】
(3)上記実施例では、蒸気タービンの暖機を併入後に行う方法で説明したが、軸が無負荷定格回転数での運転中であっても同様の結果が得られる。ただし、この場合は蒸気タービン第1段シェル内面メタル温度がガスタービン排気ガス温度よりも高い場合については、運転方法を併入後に負荷上昇するように定める必要がある。
【0055】
(4)上記実施例では、蒸気タービン最終段翼の冷却蒸気の供給点を中圧タービンの入口としたが、この蒸気は高圧タービンの入口もしくは低圧タービン入口から供給しても同様の効果が得られる。
【0056】
【発明の効果】
以上説明したように、本発明によれば、起動中の軸の発生蒸気による蒸気タービンの暖機を行う方法を採用しており、起動軸が存在する場合の系列負荷の減少を最小限にとどめられ、さらに蒸気タービン暖機中も併入し初負荷で運転しているため起動損失を低減でき、かつ蒸気タービンに発生する熱応力を最小限に抑えた発電設備の起動ができる。また、蒸気タービンの暖機完了をホット起動の蒸気タービン第1段シェル内面メタル温度最低限度の温度程度に設定することにより、蒸気タービン暖機完了後の負荷上昇等に関する制限値や制御方法が一律にできる等の効果がある。
【図面の簡単な説明】
【図1】本発明の一実施例の構成図。
【図2】図1の排熱回収ボイラの高圧部分の詳細な構成図。
【図3】図1の蒸気温度制御方法を示す図。
【図4】図1の主蒸気温度の設定値を算出するフロー図。
【図5】図1の主蒸気温度の設定値を算出する他のフロー図。
【図6】ガスタービン単体の運転状態量の変化を示す図。
【図7】従来のコンバインドサイクル発電設備の構成図。
【図8】図7の排熱回収ボイラの高圧及び再熱蒸気部分の詳細な構成図。
【図9】図7の蒸気温度調節用スプレー水量の制御方法を示す図。
【符号の説明】
1…ガスタービン、2…蒸気タービン、3…発電機、4…低圧ドラム、5…低圧過熱器、6…中圧ドラム、7…中圧過熱器、8…高圧ドラム、9…第1高圧過熱器、10…第2高圧過熱器、11…高圧主蒸気管、12…高圧主蒸気温度調節用減温器、13…一次再熱器、14…二次再熱器、15…再熱蒸気温度調節用減温器、16…低温再熱蒸気管、17…ウォーミング・ロール用蒸気管、18…グランドシール補助蒸気管、19…各軸補助蒸気母管、20…系列補助蒸気母管、21…減温水供給管、22…高圧主蒸気減温水供給管、23…高圧主蒸気温度調節スプレー弁、24…再熱蒸気温度調節弁、25…高圧蒸発器、26…高圧給水調節弁、27…高圧連絡管、28…高圧節炭器、29…高圧給水ポンプ、30…高圧給水管、31…高圧蒸気連絡管、32…過熱器バイパス蒸気管、33…主蒸気温度調節弁、34…主蒸気温度制御装置、35…第2過熱器入口蒸気下限値関数発生器、36…高圧主蒸気温度調節スプレー弁開度演算器、37…主蒸気温度調節器、38…低値優先回路、39…比較器、40…主蒸気温度設定値用関数発生器、41…主蒸気温度上昇率用関数発生器、42…加算器、43…定数設定器、44…低値優先回路、45…信号切替器、46…定数設定器、47…比較器、48,49…通気監視・主蒸気温度制御装置、50…冷却蒸気供給管
[0001]
[Industrial applications]
The present invention relates to a method for starting a thermal power plant, particularly a single-shaft combined cycle power plant.
[0002]
[Prior art]
The conventional single-shaft combined cycle power plant is operated with the shaft speed kept at or below the rated speed of the shaft system in order to avoid heat generation and temperature rise at the last stage blade of the steam turbine. Then, the exhaust heat recovery boiler is warmed up using the gas turbine exhaust obtained in this operation state, a predetermined generated steam is secured, and this is passed through the steam turbine as cooling steam, and then the shaft system is rotated. A startup method that increases the number to the rated speed is adopted. However, auxiliary steam may be used for the gland seal steam of the steam turbine.
[0003]
However, recent gas turbines have tended to have large capacities, including higher inlet gas temperatures, and the exhaust heat recovery boilers and steam turbines have been affected by large capacities. Are also increasing in capacity. This tendency is due to an increase in the size of the exhaust heat recovery boiler and the steam turbine, which leads to an increase in the pressure-resistant thick portion of the steam system. This phenomenon means that factors that hinder the rapid startability of the shaft increase. On the other hand, the rise in the exhaust gas temperature of the gas turbine and the relationship between the increase in the amount of exhaust gas and the operation method affect the rate of increase in the temperature of the main steam and the reheat steam.
[0004]
In general, a combined cycle power generation facility has two major features: a short startup time and high thermal efficiency. In particular, in a single-shaft combined cycle power generation facility, it is desirable to employ a starting method that includes factors that reduce rapid startability in the shaft system itself and that does not impair any of these features.
[0005]
By the way, a recent method of starting a single-shaft combined cycle power generation facility is performed in the following procedure. That is,
(1) shaft turning, (2) steam turbine ground seal, (3) condenser vacuum rise, (4) shaft start, (5) rotation rise / purge operation, (6) rotation fall / ignition, (7) ) Rotation increase / No-load rated speed operation, (8) Exhaust heat recovery boiler warm-up operation, (9) Inclusion / initial load operation, (10) Load increase, (11) Rated load operation.
[0006]
The difference between the above-described startup procedure and the startup procedure of the conventional combined cycle power generation equipment employing a gas turbine having a gas turbine inlet gas temperature of 1100 ° C. class is the startup procedure part of (7) and (8). That is, in the case of the conventional 1100 ° C. combined cycle power generation facility, it is unnecessary to remove heat from the last stage blade of the steam turbine in order to warm up the exhaust heat recovery boiler and secure cooling steam for the last stage blade of the steam turbine. The operation is performed with the shaft rotation speed maintained at about 50% of the rated rotation speed, and the rotation of the exhaust heat recovery boiler is combined with the generation of steam. And
[0007]
On the other hand, the startup method of the combined cycle power generation equipment employing the 1300 ° C. class gas turbine employs the above-described startup procedures (1) to (11) differently from the case of employing the 1100 ° C. class gas turbine. Is common.
[0008]
When such a start-up method is adopted, the exhaust heat recovery boiler is warmed up at the no-load rated rotation speed, so that the exhaust gas temperature in the state where the exhaust gas amount of the gas turbine is the least reaches 400 to 440 ° C. Therefore, the temperature of the generated steam is about 380 to 420 ° C. for the high-pressure main steam. Further, the reheat steam temperature at the time of starting the ventilation to the steam turbine is also substantially equal to the main steam temperature. These steam temperatures vary depending on the atmospheric temperature and the type of gas turbine. The steam temperature generated at startup is almost constant, whereas the temperature of the metal part of the exhaust heat recovery boiler and steam turbine and the temperature of the retained water are affected by the time elapsed since the shutdown and the atmospheric temperature. There are many differences. The difference between the temperature of the metal part and the temperature of the steam is a large factor affecting the heat transfer, and the greater the temperature difference, the greater the thermal stress generated.
[0009]
Therefore, when starting and stopping the power generation equipment, the difference between the metal temperature and the steam temperature of each part determined by the thickness of the metal part and the thermal conductivity of the material and the rate of temperature change of the steam have an allowable limit, and the start and stop are repeated. It is necessary to provide a starting and stopping method in consideration of the limit of metal fatigue due to the cycle of generated thermal stress.
[0010]
In addition, the control of the difference between the metal temperature and the steam temperature during ventilation has a controllable region only when the steam temperature is high, and generally cannot be controlled when the steam temperature is high. The reality is that there is a limit even when controllable. In the case of a single-shaft combined cycle power generation facility, it is not always possible to start with the steam generated by the own shaft secured, and therefore, at present, a steam-based warm-up using auxiliary steam is employed.
[0011]
Next, a method of starting the combined cycle power generation equipment by warming up the steam turbine using the auxiliary steam will be described with reference to FIGS. 7 and 8.
FIG. 7 is a configuration diagram of a combined cycle power generation facility according to the related art, and FIG. 8 is a detailed configuration diagram of a high-pressure and reheat steam portion of the exhaust heat recovery boiler of FIG.
[0012]
In the figure, a gas turbine 1, a steam turbine 2, and a generator 3 are connected uniaxially. The exhaust heat recovery boiler that recovers the heat retained in the exhaust gas of the gas turbine 1 includes first and second high-pressure superheaters 9 and 10, first and second reheaters 13 and 14, a high-pressure evaporator 25, and a high-pressure drum 8. , High pressure economizer 28, medium pressure superheater 7, medium pressure drum 6, medium pressure evaporator (not shown), medium pressure economizer (not shown), low pressure superheater 5, low pressure drum 4, low pressure coal It is composed of the main elements of a joint (not shown). In addition to these, a pump (high-pressure water supply pump 29, other pumps are not shown) and piping for supplying water to each drum are installed. Further, a high-pressure main steam temperature control desuperheater 12 is installed between the first high-pressure superheater 9 and the second high-pressure superheater 10, and reheat is performed between the first reheater 13 and the second reheater 14. A steam desuperheater 15 is installed, and the temperatures of the high-pressure main steam and the reheat steam are adjusted by the amount of spray water.
[0013]
On the other hand, the auxiliary steam system is provided with a series auxiliary steam main pipe 20 and each axis auxiliary steam main pipe 19. The system auxiliary steam mother pipe 20 is configured so as to be able to supply auxiliary steam by branching from the low-temperature reheat steam pipe 16 of each shaft. It is configured to be supplied from the steam mother pipe 20 via a pressure control valve. The supply of the auxiliary steam to each shaft is configured such that the auxiliary steam is branched from each shaft auxiliary steam mother pipe 19 according to the purpose and supplied via a stop valve. In the case of FIG. 7, in order to warm up the steam turbine, the stop valve of the warming roll steam pipe 17 is opened, and the steam is supplied to the secondary side of the inlet (high pressure steam control valve) of the high pressure turbine.
[0014]
Also, after inhaling and compressing the atmosphere, the fuel is mixed and burned to produce high-pressure and high-temperature gas, and the exhaust gas of the gas turbine 1 that generates power is introduced. Release to atmosphere via chimney (not shown). Further, the steam preheated by a low-pressure economizer (not shown) and supplied to the low-pressure drum 4 is absorbed by a low-pressure evaporator (not shown), and the steam separated by the low-pressure drum 4 is separated into a low-pressure superheater 5 The superheated steam is turned into superheated steam, merges with the exhaust gas of the medium pressure section of the steam turbine 2, and is introduced into the low pressure section to generate power.
[0015]
On the other hand, it branches from the outlet of the low-pressure economizer (not shown), and is preheated by the intermediate-pressure economizer (not shown) via the intermediate-pressure water supply pump (not shown), and is supplied to the intermediate-pressure drum 6. The steam that has been absorbed by a medium-pressure evaporator (not shown) and separated into steam and water by a medium-pressure drum 6 is heated by a medium-pressure superheater 7 to become superheated steam, which is high-pressure exhaust gas from the steam turbine 2. It is combined with the low-temperature reheat steam and reheated by the first reheater 13 and the second reheater 14.
[0016]
The high-pressure exhaust of the steam turbine is connected to the first reheater 13 by a low-temperature reheat steam pipe 16, but before being introduced into the first reheater 13, the outlet steam of the intermediate-pressure superheater 7 is cooled by the low-temperature reheat steam. Merge into tube 16. This steam is heated by the first and second reheaters 13 and 14, and the reheater outlet steam temperature is controlled by the reheat steam temperature adjusting desuperheater 15. Power is recovered by introducing it to the medium pressure section.
[0017]
Further, it branches from the outlet of the low-pressure economizer (not shown), is preheated by the high-pressure economizer 28 via the high-pressure water supply pump 29 and the high-pressure water supply pipe 30, and is connected to the high-pressure communication pipe 27 and the high-pressure water supply control valve 26. The steam supplied to the high-pressure drum 8 via the high-pressure evaporator 25 and absorbed by the high-pressure evaporator 25 and separated into steam and water by the high-pressure drum 8 is heated by the first high-pressure superheater 9 and the second high-pressure superheater 10 to obtain a high-pressure main steam temperature. After the temperature is adjusted by the adjusting desuperheater 12, the power is introduced into the high-pressure section of the steam turbine 2 to generate power. Power generated by the gas turbine 1 and the steam turbine 2 is converted into electric energy by the generator 3. In addition, 11 is a high-pressure main steam pipe, 18 is a gland seal auxiliary steam pipe, 21 is a cooling water supply pipe, 22 is a high-pressure main steam cooling water supply pipe, 23 is a high-pressure main steam temperature control spray valve, and 24 is a reheat steam temperature. The control valve 31 is a high-pressure steam communication pipe.
[0018]
On the other hand, the auxiliary steam is branched from before the merging of the intermediate pressure superheater outlet pipe of the low temperature reheat steam pipe 16 which is the high pressure exhaust of the steam turbine, and the auxiliary steam is supplied to the series auxiliary steam mother pipe 20. When the combined cycle power generation equipment is composed of a plurality of shafts, the auxiliary steam is supplied to the series auxiliary steam mother pipe 20 via the auxiliary steam pipe branched from the low-temperature reheat steam pipe 16 of each shaft. Auxiliary steam to each shaft is supplied through a series auxiliary steam bus 20 and through each shaft auxiliary steam bus 19.
[0019]
In the current combined cycle power generation equipment, superheaters and reheaters are divided into main steam and reheat steam so that the steam temperature does not rise above a certain temperature, and the first and second superheaters 9 and 10 are divided. The reheaters 13 and 14 are provided with a high-pressure main steam temperature control desuperheater 12 and a reheat steam desuperheater 15 at an intermediate portion between the reheaters 13 and 14, so as to control the steam temperature by spraying water. .
[0020]
FIG. 9 is a diagram showing an example of a conventional method of controlling the amount of spray water for adjusting the steam temperature of the combined cycle power generation equipment. In FIG. 9, reference numeral 35 denotes a second superheater inlet steam lower limit function generator, and 36 denotes a high pressure. A main steam temperature control spray valve opening calculator, 37 is a main steam temperature controller, and 38 is a low value priority circuit. This control method takes into account restrictions so as not to fall below the saturation temperature of the vapor pressure of the spray portion.
[0021]
[Problems to be solved by the invention]
When the starting method as described above is adopted, it is necessary to ensure that there is a shaft capable of supplying the auxiliary steam or to provide auxiliary steam supply equipment. While the auxiliary steam is being supplied from a shaft in the series, there is a disadvantage that the axial output and the series output of the auxiliary steam supply shaft are reduced. In addition, the steam for warming up the steam turbine is connected to the secondary side of the main steam stop valve and steam control valve, and the steam for warming up can be supplied to the steam turbine with the main steam stop valve and steam control valve closed. In addition, a system configuration capable of independently stopping the supply of steam and a control device for automatically opening and closing the main steam stop valve are required.
[0022]
The auxiliary steam is planned to be supplied from the low-temperature reheat steam pipe of the other shaft during the rated load operation, and the steam temperature at this time is about 350 ° C. In other words, the advantage of the start-up method using auxiliary steam is that the steam turbine can be warmed up even before starting the shaft, and the difference between the steam temperature and the metal temperature is within the allowable limit when the exhaust heat recovery boiler is completely warmed up. Can be reached. However, from the viewpoint of the system configuration, it is necessary to connect systems (for example, the high-pressure main steam pipe 11 and the auxiliary steam main pipes 19 for each shaft) having greatly different design pressures. An independent opening / closing device (valve) for stopping the supply and its control device are required, and the equipment and the operation method are complicated, and the effect cannot be said to be great.
[0023]
In the case of the exhaust heat recovery combined cycle, the main steam temperature and the reheat steam temperature are determined only by heat exchange with the exhaust gas of the gas turbine as shown in FIGS. 7 and 8. When the gas turbine continues to operate at the no-load rated speed, the exhaust gas temperature and the flow rate of the gas turbine change under the influence of the atmospheric temperature. Therefore, the main steam temperature at the time of completion of the warm-up of the exhaust heat recovery boiler is determined by the exhaust gas temperature of the gas turbine unless it is actively operated. This means that steam of approximately constant temperature is supplied regardless of the state of the steam turbine when the exhaust heat recovery boiler is completely warmed up.
[0024]
However, the cooling rate of the steam turbine varies depending on the time elapsed since the shutdown and the ambient conditions, and the temperatures of the casing and the rotor at the completion of the exhaust heat recovery boiler warm-up vary widely. However, even if the high-pressure casing and the rotor of the steam turbine are started from a cold state, they are generally warmed up to about 150 to 160 ° C. by the gland seal steam before the rotation starts. Therefore, even when the gland seal vapor temperature is low, the metal temperature sufficiently reaches the metal temperature equal to or higher than the transition temperature, which is the limit of the occurrence of brittle fracture.
[0025]
For example, if the main steam pressure at the start of the ventilation to the steam turbine is about 40 ata and the allowable value of the mismatch temperature, which is the difference between the steam turbine first-stage shell steam temperature and the rotor surface temperature, is at most about 100 ° C., the steam turbine inlet The allowable value of the minimum value of the main steam temperature in the above is about 300 to 320 ° C. By the way, the main steam temperature at the time of completion of the exhaust heat recovery boiler warm-up shall be the main steam temperature that obtains a temperature difference within the allowable mismatch temperature unless a proactive operation is performed using a main steam temperature control desuperheater. However, this is not possible due to the structure and characteristics of the exhaust heat recovery boiler. Furthermore, in the method of controlling the steam temperature by spraying water into the steam, the steam temperature cannot be reduced to the saturated steam temperature of the steam pressure at the spray point, and therefore, it is estimated that there is an operation in which a predetermined steam temperature cannot be obtained. Is done.
[0026]
The present invention has been made in view of the above circumstances, and its purpose is to eliminate the need for a complicated system configuration or a control device for independently controlling the stop of steam supply, and to reduce the reduction in series output when the shaft is started. It is to provide a method of starting the shaft without the gas turbine, and to minimize the thermal stress generated in the thick metal part of the steam system by directly adjusting the steam temperature so as not to be affected by the operation method of the gas turbine. The present invention provides a method for starting a single-shaft combined cycle power generation facility.
[0027]
[Means for Solving the Problems]
In order to achieve the above object, claim 1 of the present invention provides a gas turbine , A single-shaft combined cycle power plant that combines the rotating shafts of a steam turbine and a generator into a single unit, converts the exhaust energy of the gas turbine into steam with an exhaust heat recovery boiler, introduces it into the steam turbine, and recovers it as electric power A high-pressure main steam temperature control desuperheater is provided in a pipe connecting the first high-pressure superheater outlet and the second high-pressure superheater inlet of the exhaust heat recovery boiler, Rated no-load times Rolling Or the main steam temperature determined based on the metal temperature inside the shell of the first stage of the steam turbine before startup while continuing the initial load operation Set value Using the main steam temperature rise rate, the main steam temperature set value is raised, the main steam temperature is controlled to the set value, and the steam turbine is warmed up by supplying it to the steam turbine. The time when the main steam temperature set value reaches the maximum main steam temperature at start-up and when the difference between the metal temperature of the inner surface of the shell of the first stage of the steam turbine and the main steam temperature has reached a state within a set allowable value. In the method for starting a single-shaft combined cycle power generation facility, in which the warming-up of the steam turbine is completed and the operation limit after reaching this state can be set irrespective of the state of the steam turbine before starting, the high pressure of the exhaust heat recovery boiler A superheater bypass steam pipe branching from a high pressure steam communication pipe connecting the drum and the first high pressure superheater inlet and connecting the second high pressure superheater outlet is provided. A main steam temperature control valve, which is controlled to be opened and closed by the device, is provided, and the main steam temperature is used in combination with the spray water amount of the high-pressure main steam temperature control desuperheater and the mixing of the saturated steam in the high-pressure drum. Therefore, it was configured to control It is characterized by the following.
[0033]
[Action]
Ventilation in a state where the main steam temperature is not actively adjusted increases the thermal stress of the steam turbine rotor due to a large mismatch temperature difference. Therefore, the ventilation conditions and the main steam temperature are set and controlled according to the steam turbine rotor temperature. On the other hand, after the ventilation, the set value of the main steam temperature until the steam turbine rotor temperature reaches a certain temperature and stabilizes is changed and controlled at a rate of change determined by the rotor temperature during the steam turbine ventilation. By controlling in this manner, the thermal stress generated in the steam turbine from the ventilation to reaching a certain state is kept below a certain limit value, and the thermal stress is reduced by the warming-up of the steam turbine using the auxiliary steam of about 350 ° C. Can be reduced. Furthermore, after the steam turbine rotor temperature reaches a certain temperature, the same load rise and steam pressure rise control can be performed regardless of the state during steam turbine ventilation.
[0034]
According to the present invention, the thermal stress of the steam turbine rotor is taken into account by employing the method of starting the single-shaft combined cycle by warming the steam turbine by the ground steam and venting the self-shaft steam without warming the steam turbine by the auxiliary steam. The operation procedure and the equipment can be simplified by avoiding the reduced operation of the warm-up steam supply shaft and the connection of the high-pressure / high-temperature line to the auxiliary steam system, etc. .
[0035]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a system configuration diagram of a combined cycle power generation facility according to one embodiment of the present invention, and FIG. 2 is a detailed configuration diagram of a high-pressure portion of the exhaust heat recovery boiler of FIG. It should be noted that the present embodiment is different from FIG. 7 which is a conventional example only in a part of the high-pressure main steam system and the auxiliary steam system, and the other parts are the same. Description is omitted.
[0036]
In addition, not only the auxiliary steam system but also related equipment and systems are shown, and for gas turbines and steam turbines, their components are enclosed and represented by representative names. In the drawings, the black-filled valves are valves used when fully closed, and the other valves are used when fully open. However, the open / closed state of the valve in the figure is an example, and is not limited to this state.
[0037]
As shown in FIGS. 1 and 2, in the present embodiment, the auxiliary steam is not used for warming (warm-up) of the steam turbine. Step Wing cooling steam supply pipe 50 The main high-pressure steam system includes a superheater bypass steam pipe 32, a main steam temperature control valve 33, and a main steam temperature control device. 34 is provided and a control system for the high-pressure main steam temperature is provided.
[0038]
Further, a system configuration is provided in which auxiliary steam from another axis is supplied to each axis auxiliary steam mother pipe 19 via the series auxiliary steam mother pipe 20, and auxiliary steam is supplied from each axis auxiliary steam mother pipe 19 to each axis. Steam supply pipe 50 And a supply valve for stopping the supply of steam is installed in this system. In addition, cooling steam is secured such that the opening operation is performed at a certain rotation speed or more (for example, 70% or more of the rated rotation speed), and the closing operation is performed with ventilation and ventilation or the opening of the low-pressure steam control valve is at least a certain value. An interlock that closes after confirming the conditions set is provided.
[0039]
On the other hand, auxiliary steam is supplied from each shaft auxiliary steam mother pipe 19 via the ground steam supply pipe 18 until the gland steam reaches an operation state in which the leak steam from the steam turbine gland can sufficiently be secured.
[0040]
Further, as shown in FIG. 2, the high-pressure main steam is passed through a superheater bypass steam pipe 32 having a main steam temperature control valve 33 that branches off from the high-pressure steam communication pipe 31 and bypasses the first high-pressure superheater 9 and the second high-pressure superheater 10. A system for adjusting the main steam temperature is provided by merging with the steam pipe 11, and the main steam temperature is controlled by using both the amount of spray water and the saturated steam of the high-pressure drum. FIG. 3 shows a steam temperature control method in this case. In the figure 35 is Function generator, 36 is an arithmetic unit, 37 is a main steam temperature controller , 3 9 is a comparator. However, it is necessary to separately calculate the main steam temperature set value.
[0041]
Main steam temperature control shown in FIG. Method Then, the second High pressure Superheater Ten of The lower limit of the inlet temperature is predicted and calculated by the function generator 35, and the higher value of the saturation temperature of the high-pressure drum pressure is used as the set value to control the amount of spray water based on the difference from the inlet temperature of the second superheater. It is designed to control the steam temperature by adjusting the mixing amount of the saturated steam based on the difference between the set value and the set value.
[0042]
On the other hand, even if the warm-up of the steam turbine is completed, the temperature of the inner surface metal of the first stage shell of the steam turbine is higher than the main steam temperature, and if the temperature exceeds the allowable limit, the shaft A load increase is permitted, but the opening degree of the steam control valve is kept limited, and a monitoring function is added to the load increase and the control valve operation to suppress the generation of thermal stress due to rapid cooling of the steam turbine. The comparator 39 is designed so that an output signal can be obtained only when the condition of [(main steam temperature) − (metal temperature of the inner surface of the shell of the first stage of the steam turbine) <C] is satisfied. It is sufficient to consider about -85 ° C. FIG. 6 shows a typical example of a change in the operating state quantity of the gas turbine alone.
[0043]
FIG. 4 shows a flow for calculating the set value of the main steam temperature by the ventilation monitoring / main steam temperature control device. As shown in the figure, a function generator 40 for a main steam temperature set value and a function generator 41 for a main steam temperature rise rate with the internal temperature of the inner surface metal of the first stage shell of the steam turbine as an input are provided. The output of the function generator 40 is one input of the signal switch 45. In addition, the output of the function generator 41 that has calculated the rate of increase in the main steam temperature is signal-switched to switch to zero, which is the set value of the constant setting unit 46, in order to raise the temperature with the exhaust heat recovery boiler warm-up completion signal. It is one input of the container 45. These signals are further added by the adder 42 via a signal switch 45 provided in each circuit for holding the current value, and input to the low value priority circuit 44 as one of the main steam temperature set values. .
[0044]
On the other hand, a temperature difference determined from the characteristics of the high-pressure superheater is set in the constant setting device 43, and the maximum start-up main steam temperature obtained by adding this value and the gas turbine exhaust gas temperature in the adder 42 is used as another temperature. A low value is selected as an input by the low value priority circuit 44, and one of the values is set as the main steam temperature set value by the switch 45 according to the main steam temperature set value during normal operation and the operating state, and is input to the steam temperature control device.
[0045]
FIG. 5 shows another flow for providing the ventilation monitoring / main steam temperature control device 49 and calculating the set value of the main steam temperature by this.
That is, in this example, three points of the temperature of the inner surface metal of the first stage shell of the steam turbine, the gas turbine exhaust gas temperature, and the main steam temperature are input, and the set value of the main steam temperature is calculated. The main steam temperature is output and set as a main steam temperature control device set value. On the other hand, the ventilation monitoring / main steam temperature control device 49 calculates the rate of increase of the set temperature based on the metal temperature of the inner surface of the first stage shell of the steam turbine at the time of completion of the warm-up of the exhaust heat recovery boiler, and calculates the main steam temperature set value. A new set value is calculated by adding to the present value and set in the main steam temperature control device. Further, in a case where the shaft stops and restarts in a short time, the internal temperature of the metal inside the first stage shell of the steam turbine is compared with the main steam temperature. It has a function to output a lift permission and a steam control valve opening degree maintenance command. The main steam temperature control method of this embodiment uses both the amount of spray water and the mixing of saturated steam. However, the main steam temperature control by controlling the amount of spray water is mainly used, and the temperature control by mixing saturated steam is planned as an auxiliary means.
[0046]
Next, the operation of the present embodiment will be described.
In the present embodiment, when the rotation speed reaches a specified value after starting the shaft, the cooling steam supply valve is opened, and the cooling steam is supplied to the cooling steam supply pipe. 50 To the steam turbine via The high-pressure main steam temperature is calculated by a ventilation monitoring / main steam temperature control device 48 based on the temperature of the inner surface metal of the first shell of the steam turbine, and is controlled to this steam temperature when the exhaust heat recovery boiler warm-up is completed. You. In other words, the high-pressure main steam temperature at this time is set so that the mismatch becomes as small as possible, and is in a state in which ventilation is possible immediately after the introduction. After the start of ventilation, the high-pressure main steam temperature is raised at a temperature rise rate in accordance with the metal temperature of the inner surface of the first stage shell of the steam turbine at the completion of warm-up of the exhaust heat recovery boiler, and the steam turbine is warmed up with the shaft at the rated speed. Do. However, the set value of the high-pressure main steam temperature in this case cannot be higher than the exhaust gas temperature determined from the output of the gas turbine during the no-load rated speed operation of the shaft or the initial load operation.
[0047]
On the other hand, if the temperature of the inner surface metal of the first stage shell of the steam turbine is higher than the high-pressure main steam temperature, the steam turbine is not warmed up. Therefore, the load increase starts immediately after the insertion. However, if the temperature of the metal inside the shell of the first stage of the steam turbine is higher and does not satisfy the allowable value, the opening of the steam control valve is maintained at the current opening and the steam is waited until the main steam temperature rises. A method of adjusting the opening of the control valve is adopted. As a result, it is possible to start without special steam turbine warm-up equipment while keeping the thermal stress generated in the steam turbine small. The condition for completing the warm-up of the steam turbine is when there is no change in the metal temperature inside the first stage shell of the steam turbine. However, actually, it is sufficient to set the time when the metal temperature of the inner surface metal of the first stage shell of the steam turbine exceeds a specified value.
[0048]
As the determination of the completion of the warming up of the steam turbine, a restriction such as a load increase as a subsequent operation procedure is determined so as not to be affected by the state of the steam turbine. There are also ways to keep limits.
[0049]
As described above, a part of the effect of the present embodiment has already been described.However, a state in which the series load is reduced during the startup of the shaft by adopting the warm-up of the steam turbine using the generated steam of the starting shaft occurs. No need for high pressure and high temperature design pipes and valves, so the system can be simplified.
[0050]
Furthermore, even in the case of a cold start, both the high-pressure main steam temperature at the start of ventilation and the rate of increase of the main steam temperature set value are set based on the metal temperature of the inner surface of the first stage shell of the steam turbine at the start. There are various possible conditions for completing the warm-up of the steam turbine.However, if the minimum temperature of the rotor for warming-up is used, the same value as that at the time of warming-up can be adopted for the load increase rate after warming-up. Cold start can be performed with generated stress equivalent to turbine thermal stress.
[0051]
The method of controlling the exhaust gas temperature by adjusting the amount of air by using the inlet guide vane of the gas turbine is a good measure as an operation method of the combined cycle power generation equipment. However, the control patterns of the inlet guide vanes at the time of cold start, warm-up start, partial load operation, and stop are different, which is not preferable for control of the gas turbine. That is, according to the main steam temperature control method of the present invention, control corresponding to the operating state of the gas turbine can be performed.
[0052]
The present invention is not limited to the above embodiment, and the same effect can be obtained by the following method.
(1) In the above embodiment, the method of determining the rate of increase in the steam temperature during the warm-up operation of the steam turbine based on the metal temperature on the inner surface of the shell of the first stage of the steam turbine is employed. can get.
[0053]
(2) In the above embodiment, the set value of the main steam temperature at the start of the ventilation and the rate of increase of the main steam temperature after the ventilation by the ventilation monitoring / main steam temperature control device are determined based on the metal temperature of the inner surface of the shell of the first stage of the steam turbine. The method of changing the control set value of the main steam temperature with time is adopted, but the main steam temperature is set according to the metal temperature on the inner surface of the shell of the first stage of the steam turbine until the completion of warming up of the steam turbine. Some methods do not use the rate of temperature rise.
[0054]
(3) In the above-described embodiment, the method in which the steam turbine is warmed up after being inserted has been described. However, a similar result can be obtained even when the shaft is operating at the no-load rated rotation speed. However, in this case, when the metal temperature on the inner surface of the shell of the first stage of the steam turbine is higher than the temperature of the exhaust gas of the gas turbine, it is necessary to determine the operation method so that the load increases after the operation method is used.
[0055]
(4) In the above embodiment, the supply point of the cooling steam for the last stage blade of the steam turbine is set to the inlet of the intermediate pressure turbine. However, the same effect can be obtained by supplying this steam from the inlet of the high pressure turbine or the inlet of the low pressure turbine. Can be
[0056]
【The invention's effect】
As described above, according to the present invention, the method of warming up the steam turbine by the generated steam of the starting shaft is adopted, and the reduction of the series load when the starting shaft is present is minimized. In addition, since the steam turbine is warmed up and operated at the initial load, the startup loss can be reduced, and the power generation equipment can be started with the thermal stress generated in the steam turbine minimized. Further, by setting the completion of the warming up of the steam turbine to about the minimum temperature of the inner surface metal temperature of the first stage shell of the hot-starting steam turbine, the limit value and the control method relating to the load rise after the completion of the warming up of the steam turbine are uniform. There are effects such as being able to.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an embodiment of the present invention.
FIG. 2 is a detailed configuration diagram of a high-pressure portion of the exhaust heat recovery boiler of FIG.
FIG. 3 is a diagram showing a steam temperature control method of FIG. 1;
FIG. 4 is a flowchart for calculating a set value of a main steam temperature in FIG. 1;
FIG. 5 is another flowchart for calculating the set value of the main steam temperature in FIG. 1;
FIG. 6 is a diagram showing a change in an operation state quantity of a single gas turbine.
FIG. 7 is a configuration diagram of a conventional combined cycle power generation facility.
FIG. 8 is a detailed configuration diagram of a high-pressure and reheat steam part of the exhaust heat recovery boiler of FIG. 7;
FIG. 9 is a diagram showing a method for controlling the amount of spray water for adjusting steam temperature in FIG. 7;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Gas turbine, 2 ... Steam turbine, 3 ... Generator, 4 ... Low pressure drum, 5 ... Low pressure superheater, 6 ... Medium pressure drum, 7 ... Medium pressure superheater, 8 ... High pressure drum, 9 ... First high pressure superheat , 10 ... second high-pressure superheater, 11 ... high-pressure main steam pipe, 12 ... high-temperature main steam temperature control desuperheater, 13 ... primary reheater, 14 ... secondary reheater, 15 ... reheat steam temperature Temperature reducer for adjustment, 16: low-temperature reheat steam pipe, 17: steam pipe for warming roll, 18: auxiliary steam pipe for ground seal, 19: auxiliary steam pipe for each shaft, 20: auxiliary steam pipe for series, 21 ... Dewatered water supply pipe, 22. High-pressure main steam deheated water supply pipe, 23... High-pressure main steam temperature control spray valve, 24. Reheat steam temperature control valve, 25. High-pressure evaporator, 26. High-pressure connecting pipe, 28 high-pressure economizer, 29 high-pressure water pump, 30 high-pressure water pipe, 31 high Steam connection pipe, 32: Superheater bypass steam pipe, 33: Main steam temperature control valve, 34: Main steam temperature control device, 35: Second superheater inlet steam lower limit function generator, 36: High pressure main steam temperature control spray Valve opening calculator, 37: Main steam temperature controller, 38: Low value priority circuit, 39: Comparator, 40: Function generator for main steam temperature set value, 41: Function generator for main steam temperature rise rate, 42 adder, 43 constant setting device, 44 low value priority circuit, 45 signal switcher, 46 constant setting device, 47 comparator, 48, 49 ventilation monitoring / main steam temperature control device , 50 ... cooling steam supply pipe .

Claims (1)

ガスタービン蒸気タービンおよび発電機の回転軸を1本に結合し、ガスタービンの排気エネルギーを排熱回収ボイラで蒸気に変換し、蒸気タービンに導入し電力として回収する一軸型コンバインドサイクル発電設備であって、前記排熱回収ボイラの第1高圧過熱器出口と第2高圧過熱器入口とを結ぶ配管に高圧主蒸気温度調節用減温器を設けるとともに、定格無負荷回転もしくは初負荷運転を継続しながら起動前の蒸気タービン第1段シェル内面メタル温度に準拠して定めた主蒸気温度設定値と主蒸気温度上昇率を使用し、主蒸気温度設定値を上昇させて主蒸気温度を設定値に制御し、蒸気タービンに供給することにより蒸気タービンを暖機し、主蒸気温度設定値が起動時最高主蒸気温度に到達し、かつ、蒸気タービン第1段シェル内面メタル温度と主蒸気温度との差が、ある設定された許容値以内の状態に達した時点を蒸気タービンの暖機完了時点とし、この状態到達以後の操作制限を起動前の蒸気タービンの状態に無関係に設定できるようにした一軸型コンバインドサイクル発電設備の起動方法において、前記排熱回収ボイラの高圧ドラムと第1高圧過熱器入口とを結ぶ高圧蒸気連絡管から分岐して第2高圧過熱器出口とを結ぶ過熱器バイパス蒸気管を設けるとともに、この過熱器バイパス蒸気管の途中に主蒸気温度制御装置によって開閉制御される主蒸気温度調節弁を設け、主蒸気温度を前記高圧主蒸気温度調節用減温器のスプレー水量と、高圧ドラム内飽和蒸気の混合との併用によって制御するように構成したことを特徴とする一軸型コンバインドサイクル発電設備の起動方法。A single-shaft combined cycle power generation facility that combines the rotating shafts of a gas turbine , a steam turbine, and a generator into a single unit, converts the exhaust energy of the gas turbine into steam with an exhaust heat recovery boiler, introduces the steam into the steam turbine, and recovers it as power . there are, provided with a high-pressure main steam temperature adjusting desuperheater to the pipe connecting the first high pressure superheater outlet and a second high pressure superheater inlet of the exhaust heat recovery boiler, the rated no-load rotation also properly the first load Main steam temperature set value is raised by using the main steam temperature set value and the main steam temperature rise rate determined based on the metal temperature of the inner surface of the first stage shell of the steam turbine before the start while continuing operation. controlled to the set value, and the steam turbine warm-up by feeding the steam turbine, a main steam temperature set point is reached highest main steam temperature at startup, and a steam turbine first stage shell inner surface menu When the difference between the steam temperature and the main steam temperature has reached a state within a set tolerance, the steam turbine warm-up completion point is considered, and the operation restriction after reaching this state is changed to the state of the steam turbine before startup. In the start-up method of the single-shaft combined cycle power generation facility which can be set independently, a second high-pressure superheater outlet branches off from a high-pressure steam communication pipe connecting a high-pressure drum of the exhaust heat recovery boiler and a first high-pressure superheater inlet. And a main steam temperature control valve, which is opened and closed by a main steam temperature control device, is provided in the middle of the superheater bypass steam pipe to control the main steam temperature to the high-pressure main steam temperature. and spray water in desuperheater, the single-shaft combined-cycle power plant which is characterized by being configured to be controlled by combination with the mixing of the high pressure drum saturated steam electromotive Method.
JP21243193A 1993-08-27 1993-08-27 Startup method of single-shaft combined cycle power plant Expired - Fee Related JP3559574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21243193A JP3559574B2 (en) 1993-08-27 1993-08-27 Startup method of single-shaft combined cycle power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21243193A JP3559574B2 (en) 1993-08-27 1993-08-27 Startup method of single-shaft combined cycle power plant

Publications (2)

Publication Number Publication Date
JPH0763010A JPH0763010A (en) 1995-03-07
JP3559574B2 true JP3559574B2 (en) 2004-09-02

Family

ID=16622488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21243193A Expired - Fee Related JP3559574B2 (en) 1993-08-27 1993-08-27 Startup method of single-shaft combined cycle power plant

Country Status (1)

Country Link
JP (1) JP3559574B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997049903A1 (en) * 1996-06-26 1997-12-31 Hitachi, Ltd. Single shaft combined cycle plant and method for operating the same
EP1455056A1 (en) * 1996-06-26 2004-09-08 Hitachi Ltd. Single shaft combined cycle plant and operating method thereof
US8484975B2 (en) * 2008-02-05 2013-07-16 General Electric Company Apparatus and method for start-up of a power plant
US20100229523A1 (en) * 2009-03-16 2010-09-16 General Electric Company Continuous combined cycle operation power plant and method
CN103758586A (en) * 2013-12-05 2014-04-30 镇江茂源环保科技有限公司 Rapid cooling system of steam turbine
JP2015227630A (en) * 2014-05-30 2015-12-17 株式会社東芝 Plant controller and plant activation method
JP7075306B2 (en) * 2018-08-01 2022-05-25 株式会社東芝 Plant controller, plant control method, and power plant
CN113123837B (en) * 2019-12-30 2022-12-20 上海电气电站设备有限公司 Steam turbine starting control method and compensation device for adjusting temperature of valve
CN115263446B (en) * 2022-08-02 2023-12-05 西安热工研究院有限公司 Protection control system for cold state pre-heating start of gas-steam combined cycle unit
CN115263448B (en) * 2022-08-02 2023-12-01 西安热工研究院有限公司 Cold state pre-heating start control test method for gas-steam combined cycle unit steam turbine

Also Published As

Publication number Publication date
JPH0763010A (en) 1995-03-07

Similar Documents

Publication Publication Date Title
JP3481983B2 (en) How to start a steam turbine
WO2013031121A1 (en) Steam turbine plant and operation method therefor
US8387388B2 (en) Turbine blade
CA2179867A1 (en) Method and apparatus of conversion of a reheat steam turbine power plant to a non-reheat combined cycle power plant
US20110209479A1 (en) Systems and Methods for Prewarming Heat Recovery Steam Generator Piping
JP3559574B2 (en) Startup method of single-shaft combined cycle power plant
JPH09112215A (en) Gas turbine power plant and method of operating thereof
JP4503995B2 (en) Reheat steam turbine plant and operation method thereof
US11879365B2 (en) Steam turbine plant and operation method, combined cycle plant and operation method
US9404395B2 (en) Selective pressure kettle boiler for rotor air cooling applications
JP3559573B2 (en) Startup method of single-shaft combined cycle power plant
JP4208397B2 (en) Start-up control device for combined cycle power plant
JP3672339B2 (en) Starting method and starting apparatus for single-shaft combined cycle plant
JP3660727B2 (en) Operation method of single-shaft combined cycle plant
JP2004245184A (en) Reheat steam turbine plant and starting method for the plant
JPH04148035A (en) Vapor cooled gas turbine system
JP3641518B2 (en) Steam temperature control method and apparatus for combined cycle plant
JP2558855B2 (en) Method of operating steam-gas combined cycle power plant and its power plant
JPH05209503A (en) Compound generating plant having steam drum
JPH0399101A (en) Controller of exhaust heat recovering heat exchanger
JPH04298602A (en) Steam turbine starting equipment
JPH04272409A (en) Cold starting method for one shaft type combined cycle power generating plant
JPH01313605A (en) Combined power generating set
JPH08121112A (en) Single-shaft combined-cycle power generating equipment
JP2004346945A (en) Steam temperature control method and device of combined cycle plant

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20040210

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Effective date: 20040524

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees