JPS5912105A - Starting system of reheat condensing steam turbine - Google Patents

Starting system of reheat condensing steam turbine

Info

Publication number
JPS5912105A
JPS5912105A JP12097882A JP12097882A JPS5912105A JP S5912105 A JPS5912105 A JP S5912105A JP 12097882 A JP12097882 A JP 12097882A JP 12097882 A JP12097882 A JP 12097882A JP S5912105 A JPS5912105 A JP S5912105A
Authority
JP
Japan
Prior art keywords
steam
turbine
warming
reheat
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12097882A
Other languages
Japanese (ja)
Inventor
Masami Nose
能勢 正見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP12097882A priority Critical patent/JPS5912105A/en
Publication of JPS5912105A publication Critical patent/JPS5912105A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/10Heating, e.g. warming-up before starting

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)

Abstract

PURPOSE:To enable to safely start the intermediate pressure stage turbine by a method wherein low pressure, intermediate temperature steam is poured from a separate auxiliary steam system through a lead-in line of warming steam into the steam inflowing part of the intermediate pressure stage turbine at the starting and during the low speed turning of the turbine. CONSTITUTION:The lead-in line 7 of warming steam, to which steam is supplied from an auxiliary steam source in a steam power plant in lain to the reheat steam inflowing part of the intermediate pressure stage turbine 2 in the steam turbine, in which a high pressure stage turbine 1, the intermediate pressure stage turbine 2, and a low pressure stage turbine 3 are arranged in tandem. By piercing a guide ring 25 which guides the reheat steam radially flowed-in through a reheat steam inflowing passage 27 toward the cascade of stator blades 23, the line 7 is connected so as to open in an auxiliary steam lead-in chamber 26. Furthermore, the line 7 is connected with an extraction pipe 8 for extracting steam from the cooling reheat steam system of the high pressure stage turbine 1 in order to be able to supply rotor cooling steam to the rotor of the turbine 2 during load running.

Description

【発明の詳細な説明】 この発明は高圧段、中圧段および低圧段からなる大容量
の再熱復水式蒸気タービンの起動方式の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in the starting method of a large capacity reheat condensing steam turbine comprising a high pressure stage, an intermediate pressure stage and a low pressure stage.

蒸気タービンは尚温、高圧の蒸気により起動されるもの
であり、したかっ又急速な起動はロータ。
Steam turbines are started by hot, high-pressure steam, and the rotor starts up quickly.

ケーシング等に大きな熱的υ・ずみの発生をもたらすの
で、起動に際してはタービン谷部の温度差。
This causes a large thermal υ・strain to occur in the casing, etc., so when starting up, there is a temperature difference at the bottom of the turbine.

温度変化、熱応力を十分低い値に抑制しながら起動を行
う必要がある。特に冷機起動の場合には条件が厳しくこ
の点についての十分な配慮が必要となる。ところで頭韻
再熱復水式蒸気タービンでは、冷機起動に際して最も苛
酷な状態にさらされるのは中圧段タービンである。その
理由はタービンの起動に先立って、タービン内部各所に
残留しているドレンを復水器へ回収排出させるために復
水器を真空引き運転する結果、この真空領域が中圧段タ
ービンにまで及ぶことになる。そしてこの状態のままで
高温の再熱蒸気が中圧段タービンに導入されると、中圧
段タービンは高圧段、低圧段タービンに較べて大きな熱
応力の発生する恐れがあるためである。なおこの場合の
熱応力は起動過程での昇温中と昇温速度によって決まる
It is necessary to start up while suppressing temperature changes and thermal stress to sufficiently low values. Particularly in the case of cold start, the conditions are severe and sufficient consideration must be given to this point. In the alliterative reheat condensing steam turbine, it is the intermediate-pressure turbine that is exposed to the most severe conditions during cold start-up. The reason for this is that prior to starting the turbine, the condenser is vacuumed in order to collect and discharge the condensate remaining in various parts inside the turbine to the condenser, and as a result, this vacuum region extends to the intermediate-pressure turbine. It turns out. If high-temperature reheated steam is introduced into the intermediate-pressure turbine in this state, there is a risk that greater thermal stress will occur in the intermediate-pressure turbine than in the high-pressure and low-pressure turbines. Note that the thermal stress in this case is determined by the temperature increase during the startup process and the rate of temperature increase.

ところで従来のタービン起動は周知の如く第3図に示す
起動チャートにおける実線のように行われていた。図中
Aは主蒸気温度、Bは再熱蒸気温度、Cは中圧段タービ
ン回転数のメタル温度、Nはタービン回転数、Wはター
ビンで駆動される発1!機の出力である。すなわち起動
に先立って低速でp−タターニングを行い、その後に主
蒸気止弁および再熱蒸気止弁ン開き、ガバナ制御により
調速を行いながら1500rpm 8度まで昇速しでヒ
ートソークを行い、この期間にウオーミングさせる。
By the way, as is well known, conventional turbine startup has been performed as indicated by the solid line in the startup chart shown in FIG. In the figure, A is the main steam temperature, B is the reheat steam temperature, C is the metal temperature of the intermediate pressure stage turbine rotation speed, N is the turbine rotation speed, and W is the steam driven by the turbine. This is the output of the machine. In other words, prior to startup, p-turning is performed at low speed, then the main steam stop valve and reheat steam stop valve are opened, and while the speed is controlled by the governor, the speed is increased to 1500 rpm and 8 degrees to perform a heat soak. Warm up during the period.

史にヒートソータが終ればここから更に定格回転数まで
昇速し、発電機′?:を力系統へ同期並入させた後に除
々に負荷を上昇させる。しかして上記従来の起動方式で
は起動に十分な時間を掛けてもなお、先記した理由によ
り、起動中には特に中圧段タービンのメタル温度と再熱
蒸気との間に非常に大きな温度差が生じ、これが基で大
きな熱応力が発生することが避けられない。−例では、
図中における同期並入時点で再熱蒸気温度とメタル温度
この発明は上記の点にかんがみなきれたものであり、そ
の目的は最も苛酷な状態にさらされる中圧段タービンの
ウオーミングに関して、その起動過程での昇温中を少な
(して熱応力の軽減を図る・ようにした、巧みなウオー
ミング方法を採り入れた一1f3.熱復水式蒸気タービ
ンの新規な起動方式を提供することにある。
Once the heat sorter is finished, the speed will further increase to the rated speed and the generator'? : After synchronously entering the power system, the load is gradually increased. However, in the conventional startup method described above, even if sufficient time is taken for startup, for the reasons mentioned above, there is a large temperature difference between the metal temperature of the intermediate-pressure turbine and the reheated steam, especially during startup. occurs, and it is inevitable that large thermal stress will be generated due to this. - In the example,
Reheat steam temperature and metal temperature at the time of synchronization in the figure This invention has been made in consideration of the above points, and its purpose is to warm up the intermediate pressure stage turbine, which is exposed to the most severe conditions, and to improve its startup. An object of the present invention is to provide a new starting method for a thermal condensing steam turbine that incorporates a clever warming method that reduces the temperature increase during the process and reduces thermal stress.

かかる目的はこの発明により、中圧段タービンの再熱蒸
気流入部に所内の補助蒸気系統から蒸気の供給を受ける
ウオーミング蒸気導入ラインを配管し、タービンの冷機
起動に際して、低速ケーシング中に前記ウオーミング蒸
気導入ラインを通じて低圧、中温の蒸気を中圧段タービ
ンへ注入し、ウオーミングを行うようにしたことにより
達成される。
According to the present invention, a warming steam introduction line that receives steam from an auxiliary steam system in the plant is piped to the reheated steam inlet of the intermediate-pressure turbine, and when the turbine is cold started, the warming steam is injected into the low-speed casing. This is achieved by injecting low-pressure, medium-temperature steam into the medium-pressure turbine through the introduction line to perform warming.

以下この発明を図示実施例に基づい(説明する。The present invention will be explained below based on the illustrated embodiments.

第1図において、1は高圧段タービン、2は中圧段ター
ビン、3は低圧段タービン、4は復水器、5は再熱器で
ある。かかる蒸気系統に対し、中圧段タービン2の再熱
蒸気流入部には、蒸気原動所所内の補助蒸気源6より蒸
気の供給を受けるウオーミング蒸気導入ライン7が配管
されている。その蒸気導入部の詳細構造は第2図のごと
(である。
In FIG. 1, 1 is a high-pressure turbine, 2 is an intermediate-pressure turbine, 3 is a low-pressure turbine, 4 is a condenser, and 5 is a reheater. In this steam system, a warming steam introduction line 7 that receives steam from an auxiliary steam source 6 in a steam power station is installed at the reheated steam inlet of the intermediate-pressure turbine 2. The detailed structure of the steam introduction part is as shown in Fig. 2.

図中21は中圧段タービン2のケーシング、22は一一
タ、詔は静翼、冴は動翼、25が点線矢印のように再熱
蒸気流入通路27を通じて半径方向から流入して米た再
熱蒸気な翼列の方へ向けてガイドする整流リングであっ
て、前記のウオーミング蒸気導入ライン7の配管は、こ
の整流リング25を貫通して整流リング25の裏面側で
p−夕22との間に画成されている補助蒸気導入室26
に開口されている。
In the figure, 21 is the casing of the intermediate-pressure turbine 2, 22 is the casing of the intermediate-pressure turbine 2, 22 is the stator blade, 2 is the rotor blade, and 25 is the casing of the intermediate-pressure turbine 2 through the reheat steam inlet passage 27 as shown by the dotted arrow. The piping of the warming steam introduction line 7 passes through the rectifying ring 25 and connects to the p-tube 22 on the back side of the rectifying ring 25. Auxiliary steam introduction chamber 26 defined between
It is opened to

前記整流り/グ25自身はよく知られていて従来から多
くのタービンに採用されているものであり、最も蒸気温
度の高い再熱蒸気流入部にてp−夕22の外周な取囲む
ように配備されていて、538℃〜560℃の高温再熱
蒸気が直接ロータ22に吹付けられるのを防ぎ、ロータ
の過大な熱応力発生およびこれに基づくクリープを抑制
する。また補助蒸気導入室26は殆ど閉じた空間として
画成されており、整流リング250両サイドで微小ギャ
ップを介して翼列内の蒸気通路に通じ合っている。また
第1@に戻り、ウオーミング蒸気導入ライン7には開閉
弁71および逆止弁72が介挿されている。ここまでの
構成で、ウオーミング蒸気導入ライン7を通じて補助蒸
気源6から圧力lO〜30ψ−・g、温度250〜40
0℃程度の低圧、中温蒸気を中圧段タービン2へ注入す
れば、この蒸気は第2図の実線矢印のように補助蒸気導
入室26内へ吐出されてロータ22を加温した後に整流
す〕/グ25の左右ザイドより微小ギヤノブを通じて翼
列通路の方へ流出する。この過程で、補助蒸気導入室2
6の空間は殆んど閉じていて、室内では注入蒸気の圧力
が十分維持されるので、p−夕22に対する効率のよい
熱伝達が行える。
The rectifier 25 itself is well known and has been conventionally employed in many turbines. This prevents high-temperature reheated steam of 538° C. to 560° C. from being directly blown onto the rotor 22, and suppresses generation of excessive thermal stress in the rotor and creep based on this. Further, the auxiliary steam introduction chamber 26 is defined as a nearly closed space, and communicates with the steam passage in the blade row through a small gap on both sides of the rectifying ring 250. Returning to the first @, an on-off valve 71 and a check valve 72 are inserted in the warming steam introduction line 7. With the configuration so far, the auxiliary steam source 6 is supplied through the warming steam introduction line 7 at a pressure of lO~30ψ-・g and a temperature of 250~40.
When low-pressure, medium-temperature steam of about 0°C is injected into the intermediate-pressure turbine 2, this steam is discharged into the auxiliary steam introduction chamber 26 as shown by the solid arrow in Fig. 2, warms the rotor 22, and then rectifies it. ] / It flows out from the left and right side of the blade 25 to the blade cascade passage through a minute gear knob. In this process, the auxiliary steam introduction chamber 2
Since the space 6 is almost closed and the pressure of the injected steam is maintained sufficiently inside the room, efficient heat transfer to the tank 22 can be performed.

さて、この発明により、タービンの起動時には、上記の
ウオーミング蒸気導入ライン7を通じて再熱蒸気供給前
の段階での低速ターニング中にウオーング蒸気を注入し
てウオーミングを行う。したがって中圧段タービン2の
メタル温度は第3図における点線曲線C′のように、従
来の起動方式によるメタル温度Cに較べて昇温されるこ
とになる。
Now, according to the present invention, when starting up the turbine, warming is performed by injecting the warming steam through the above-mentioned warming steam introduction line 7 during low-speed turning at a stage before reheating steam is supplied. Therefore, the metal temperature of the intermediate-pressure turbine 2 is increased compared to the metal temperature C according to the conventional startup method, as indicated by the dotted line curve C' in FIG.

特に同期並入時点における再熱蒸気温度t、と同じ時点
でのメタル温度t3との温度差は従来の温度差1、−1
2に較べて大巾に減少し、それだけ−一部に加わる熱応
力が軽減されるし、その後の定格運転に至るまでの昇温
中も小になるので昇温変化率も小さくなる。なおウオー
ミング蒸気は補助蒸気導入室26かも流出して翼列に流
れ、僅かながら翼列に対して仕事をする。このためにタ
ーニング中のタービン回転数が第3図における点線N′
のように多少昇速さねるため、この場合にタービン回転
数が規定の回転数を超えないようにウオーミング蒸気凌
が予じめ制限される。この流量制限は、ライン7の中に
絞り等の流量−節機構と適宜設けることによって実施で
きる。
In particular, the temperature difference between the reheated steam temperature t at the same time and the metal temperature t3 at the same time is 1, -1 compared to the conventional temperature difference.
This is greatly reduced compared to No. 2, and the thermal stress applied to some parts is reduced accordingly, and the rate of change in temperature rise is also reduced because the temperature rise during the subsequent temperature rise up to the rated operation is also small. Note that the warming steam also flows out of the auxiliary steam introduction chamber 26 and flows to the blade row, and does a small amount of work on the blade row. For this reason, the turbine rotational speed during turning is reduced by the dotted line N' in FIG.
Since the speed increases to some extent as shown in FIG. This flow rate restriction can be implemented by appropriately providing a flow rate regulating mechanism such as a throttle in the line 7.

また前記のウオーミング蒸気導入ライン7の一部を利用
して次に述べるタービンの経年劣化対策を実施すること
も可能である。すなわち、タービンの負荷運転中に一ロ
タ22が高温の再熱蒸気に長期間さらされている状態ヤ
応力が作用すると、クリープ現象のためにp−夕が湾曲
する。これを防ぐ手段として負荷運転時には、再熱蒸気
より低い温度の蒸気を最も条件の厳しい再熱蒸気流入部
で一ロタに向けて供給し、−ロタを冷却する方式が従来
より知られている。この方式は第1図の実施例において
、高圧段タービン1の冷再熱蒸気系から引出した抽気ラ
イン8をウオーミング蒸気導入ライン7の途中、特に逆
止弁72より下流側の地点に接続し、かつライン7の中
に開閉弁81.逆止弁82’af介挿して回路を構成す
るとともに、開閉弁71゜81の選択制御により、ター
ビン起動時にはウオーミング蒸気導入ライン7を通じて
補助蒸気源6よリウオーミング蒸気を、また負荷運転時
には前記抽気ライン8およびウオーミング蒸気導入ライ
ン7の下流部分を通じて高圧段タービン1から抽気され
た再熱器5へ導入される以前の冷再熱蒸気の−sl第2
因に示した補助蒸気導入室26へ供給し、p−夕22を
冷却するようにしたことにより達成できる。なお逆止弁
82は起動時にウオーミング蒸気がライン8を通じて高
圧段タービンの方へ漏出するのを確実に防ぎ、逆止弁7
2は負荷運転時にタービン側の高圧蒸気が低圧の補助蒸
気源側に漏出するのを防ぐ役目を果している。
It is also possible to take measures against aging of the turbine, which will be described below, by using a part of the warming steam introduction line 7. That is, when the rotor 22 is exposed to high-temperature reheated steam for a long period of time during load operation of the turbine and stress is applied, the rotor 22 curves due to the creep phenomenon. As a means to prevent this, a method is conventionally known in which during load operation, steam at a temperature lower than that of the reheated steam is supplied to one rotor at the reheated steam inflow section, which has the strictest conditions, to cool the second rotor. In this method, in the embodiment shown in FIG. 1, an extraction line 8 drawn from the cold reheat steam system of the high-pressure turbine 1 is connected to a point in the middle of the warming steam introduction line 7, particularly at a point downstream from the check valve 72. And in the line 7 there is an on-off valve 81. A circuit is constructed by inserting a check valve 82'af, and by selectively controlling the on-off valves 71 and 81, rewarming steam is supplied from the auxiliary steam source 6 through the warming steam introduction line 7 during turbine startup, and the above-mentioned extraction steam is supplied during load operation. -sl 2 of the previous cold reheated steam extracted from the high pressure stage turbine 1 and introduced into the reheater 5 through the downstream part of the line 8 and the warming steam introduction line 7.
This can be achieved by supplying the auxiliary steam to the auxiliary steam introduction chamber 26 shown above and cooling the steam generator 22. Note that the check valve 82 reliably prevents warming steam from leaking toward the high-pressure turbine through the line 8 during startup, and the check valve 7
2 serves to prevent high pressure steam on the turbine side from leaking to the low pressure auxiliary steam source side during load operation.

以上述べたようにこの発明は、タービンの起動に際して
低速ターニング中に別の補助蒸気系統からウオーミング
蒸気導入ラインを通じて中圧段タービンの蒸気流入部へ
伝圧、中温の蒸気を注入してウオーミングを行うように
したものである。しく9) たがって主蒸気、再熱蒸気温度に制約されない適正温度
、圧力の蒸気を用いてウオーミング蒸気うことができ、
冷機起動に際して最も苛酷な状態にさらされる中圧段タ
ービンの安全起動が行える。
As described above, the present invention performs warming by injecting pressure-transfer medium-temperature steam from another auxiliary steam system into the steam inlet of the intermediate-pressure turbine through the warming steam introduction line during low-speed turning when starting the turbine. This is how it was done. 9) Therefore, it is possible to use steam at an appropriate temperature and pressure, which is not limited by the main steam and reheat steam temperatures, as warming steam.
This enables safe startup of intermediate-pressure turbines, which are exposed to the most severe conditions during cold startup.

しかもこの場合には、ウオーミング蒸気の注入箇所な再
熱蒸気の導入路から外れた場所に自由に選定でき、特に
第2図のようにウオーミング蒸気を整流リングと一ロタ
との間に画成された室へ注入するようにし〆ことにより
、室内の蒸気圧力を保ってロータへ効率よ(ウオーミン
グ熱を与えることができるし、しかも翼列へ向けて直接
蒸気が注入されないので、ウオーミング蒸気によるター
ビン翼に与える仕事量は少なく、不当にターニング中の
回転数を昇速させる恐れもない等、タービン起動に要求
される条件に即した実用的効果の高い起動方式を提供す
ることができる。
Moreover, in this case, the warming steam injection point can be freely selected away from the reheating steam introduction path, and in particular, the warming steam injection point can be freely selected between the rectifying ring and the rotor as shown in Fig. 2. By injecting the steam into the heated chamber, the steam pressure in the chamber can be maintained and the efficiency of the rotor can be increased (warming heat can be given to the rotor. Moreover, since the steam is not directly injected into the blade row, the turbine blades can be heated by the warming steam. It is possible to provide a highly practical starting method that meets the conditions required for starting a turbine, such that the amount of work applied to the turbine is small and there is no risk of unduly increasing the rotational speed during turning.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示すタービンの蒸気系統図
、第2図は第1図におけるウオーミング蒸気導入部分の
詳細構造を示した断面図、第3図(10) はタービン起動チト−1・である。 1・・高圧段タービン、2・・・中圧段タービン、3・
・・低圧段タービン、5・・・再熱器、6・・・補助蒸
気源、7・・・ウオーミング蒸気導入ライン、8・・・
冷再熱蒸気系の抽気ライン、25・・・整流リング、2
6・・・補助蒸気導入室。 (11) 才 l 図 20 23  2.5
Fig. 1 is a steam system diagram of a turbine showing an embodiment of the present invention, Fig. 2 is a sectional view showing the detailed structure of the warming steam introduction part in Fig. 1, and Fig. 3 (10) is a turbine starting point-1.・It is. 1... High pressure stage turbine, 2... Intermediate pressure stage turbine, 3...
...Low pressure stage turbine, 5...Reheater, 6...Auxiliary steam source, 7...Warming steam introduction line, 8...
Cold reheat steam system bleed line, 25... rectifier ring, 2
6...Auxiliary steam introduction room. (11) Age l Figure 20 23 2.5

Claims (1)

【特許請求の範囲】 1)中圧段タービンの再熱蒸気流入部に補助蒸気系統か
ら蒸気の供給な受けるウオーミング蒸気導入ラインを配
管し、タービンの冷機起動に際して、低速ターニング中
に前記ウオーミング蒸気導入ラインを通じて再熱蒸気よ
りも温度、圧力が低い中温、低圧の蒸気を中圧段タービ
ンへ注入してウオーミング7行うことな特徴とする再熱
復水式蒸気タービンの起動方式。 2、特許請求の範囲第1項記載の起動方式−おいて、つ
f−ミング蒸気導入ラインが、中圧段タービンの再熱蒸
気流入部でロータな取囲んで配備されている整流リング
の裏面側とロータとの間に画成された補助蒸気導入室内
に向けて開口接続されていることt特徴とする再熱復水
式蒸気タービンの起動方式。 3)特許請求の範囲第2項記載の起動方式において、ウ
オーミング蒸気導入ラインの途中に高圧段タービンから
引出した冷再熱蒸気系の抽気ラインを接続し、前記ウオ
ーミング蒸気導入ラインを通じてタービン起動時にはウ
オーミング蒸気な、また負荷運転時には冷再熱蒸気系か
ら抽出したーータ冷却用蒸気を選択的に中圧段タービン
の一一タへ供給し得ろようにしたことを特徴と1−る再
熱復水式蒸気タービンの起動方式。
[Claims] 1) A warming steam introduction line that receives steam supplied from an auxiliary steam system is piped to the reheated steam inflow part of the intermediate-pressure turbine, and the warming steam is introduced during low-speed turning when starting the turbine cold. A starting method for a reheat condensing steam turbine characterized by performing warming (7) by injecting medium-temperature, low-pressure steam, which has a lower temperature and pressure than reheat steam, into the intermediate-pressure turbine through a line. 2. The starting method according to claim 1, wherein the combining steam introduction line is arranged on the back side of a rectifier ring that is disposed surrounding the rotor at the reheating steam inlet of the intermediate-pressure turbine. 1. A method for starting a reheat condensing steam turbine, characterized in that an opening is connected to an auxiliary steam introduction chamber defined between a side and a rotor. 3) In the startup method described in claim 2, an extraction line of the cold reheat steam system drawn from the high-pressure turbine is connected in the middle of the warming steam introduction line, and the warming steam is supplied through the warming steam introduction line when the turbine is started. 1. A reheat condensing system characterized by being able to selectively supply cooling steam extracted from the cold reheat steam system to the intermediate pressure stage turbine during load operation. Steam turbine starting method.
JP12097882A 1982-07-12 1982-07-12 Starting system of reheat condensing steam turbine Pending JPS5912105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12097882A JPS5912105A (en) 1982-07-12 1982-07-12 Starting system of reheat condensing steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12097882A JPS5912105A (en) 1982-07-12 1982-07-12 Starting system of reheat condensing steam turbine

Publications (1)

Publication Number Publication Date
JPS5912105A true JPS5912105A (en) 1984-01-21

Family

ID=14799745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12097882A Pending JPS5912105A (en) 1982-07-12 1982-07-12 Starting system of reheat condensing steam turbine

Country Status (1)

Country Link
JP (1) JPS5912105A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012517550A (en) * 2009-02-10 2012-08-02 シーメンス アクティエンゲゼルシャフト Turbine shaft heating method
EP2511485A1 (en) * 2011-04-15 2012-10-17 Siemens Aktiengesellschaft Turbomachine, Steam Turbine plant, and Method for heating a steam turbine shaft
CN102943696A (en) * 2012-11-19 2013-02-27 辽宁省电力有限公司电力科学研究院 Beizhong 350MW supercritical high-intermediate-pressure combined cylinder steam turbine set cylinder warming process
CN108286463A (en) * 2018-01-04 2018-07-17 李皓 A kind of asynchronous generating energy saver and its control method substituting Desuperheating and decompressing device for steam

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012517550A (en) * 2009-02-10 2012-08-02 シーメンス アクティエンゲゼルシャフト Turbine shaft heating method
EP2511485A1 (en) * 2011-04-15 2012-10-17 Siemens Aktiengesellschaft Turbomachine, Steam Turbine plant, and Method for heating a steam turbine shaft
CN102943696A (en) * 2012-11-19 2013-02-27 辽宁省电力有限公司电力科学研究院 Beizhong 350MW supercritical high-intermediate-pressure combined cylinder steam turbine set cylinder warming process
CN108286463A (en) * 2018-01-04 2018-07-17 李皓 A kind of asynchronous generating energy saver and its control method substituting Desuperheating and decompressing device for steam

Similar Documents

Publication Publication Date Title
US5412936A (en) Method of effecting start-up of a cold steam turbine system in a combined cycle plant
US11274573B2 (en) Plant control apparatus, plant control method and power plant
US20140165565A1 (en) Steam turbine plant and driving method thereof
US8387388B2 (en) Turbine blade
KR101322359B1 (en) Method for starting a gas and steam turbine system
JPS61237802A (en) Warming-up method for steam turbine
CN108291452A (en) The part temperatures adjusting method of gas turbine and gas turbine
KR102520288B1 (en) Steam turbine plant and its cooling method
JPH11159306A (en) Recovery type steam cooling gas turbine
JPH11193704A (en) Combined-cycle power plant operation method
JP2005163628A (en) Reheat steam turbine plant and method for operating the same
JP2523518B2 (en) How to start a steam turbine plant by starting a high pressure turbine
US11879365B2 (en) Steam turbine plant and operation method, combined cycle plant and operation method
JPS5912105A (en) Starting system of reheat condensing steam turbine
US20160146060A1 (en) Method for operating a combined cycle power plant
US10920623B2 (en) Plant control apparatus, plant control method and power plant
JP2002070506A (en) Combined cycle power generation plant and warming and cooling steam supply method of combined cycle power generation plant
RU2392452C2 (en) Steam turbine warming method
JPH04148002A (en) Prewarming method for steam turbine
JP2004245184A (en) Reheat steam turbine plant and starting method for the plant
JPS5993907A (en) Quick starting device for combined-cycle power generation plant
JPH09303114A (en) Steam cycle for combined cycle using steam cooling type gas turbine
JP2005344528A (en) Combined cycle power generating plant and method for starting the same
JPS60159311A (en) Starting method for steam turbine
JPS60119304A (en) Steam turbine