JPS60159311A - Starting method for steam turbine - Google Patents

Starting method for steam turbine

Info

Publication number
JPS60159311A
JPS60159311A JP1435184A JP1435184A JPS60159311A JP S60159311 A JPS60159311 A JP S60159311A JP 1435184 A JP1435184 A JP 1435184A JP 1435184 A JP1435184 A JP 1435184A JP S60159311 A JPS60159311 A JP S60159311A
Authority
JP
Japan
Prior art keywords
steam
pressure turbine
turbine
pressure
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1435184A
Other languages
Japanese (ja)
Inventor
Hiroyuki Asano
浅野 裕幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1435184A priority Critical patent/JPS60159311A/en
Publication of JPS60159311A publication Critical patent/JPS60159311A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/10Heating, e.g. warming-up before starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • F01K13/025Cooling the interior by injection during idling or stand-by

Abstract

PURPOSE:To suppress the thermal stress and thereby prolong the life of a steam turbine by allowing the steam with lower temp. than that of the main steam to flow to the downstream of a steam adjuster valve, in case the high pressure turbine is in cool state after the middle pressure turbine is started, and thereby warming up the high pressure turbine. CONSTITUTION:In this steam turbine, an electric generator 1 is coupled with a low pressure turbine 2, a middle pressure turbine 3 and a high pressure turbine 4. In driving the middle pressure turbine, a steam adjusting valve 9 is held closed when turbine is started, and the speed is raised by supplying the steam only to the middle and low pressure turbines 3, 2. The exhaust side of high pressure turbine 4 is coupled with a condenser 17 through a ventilator valve 18 so as to put inside the high pressure turbine 4 in a vacuum. Here the middle pressure turbine 3 is coupled with the downstream of said steam adjuster valve 9 through a connecting pipe 20 fitted with a warming valve 19. This warming valve 19 is so controlled as to open when the steam adjuster valve 9 is closed in case the high pressure turbine 4 is in cool condition after the start loading has gone out.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は蒸気タービン発電プラント等に適用する蒸気タ
ービンの起動方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for starting a steam turbine applied to a steam turbine power generation plant or the like.

〔発明の技術的背景〕[Technical background of the invention]

近年、発電プラント用蒸気タービンにおいては、石炭焚
きボイラの増加および火力発電プラントの中間負荷運用
等に伴い、予め主蒸気をタービン迂回流路に流通させる
いわゆるタービンバイパス機能を付与したものが多くな
っている。しかも、このようなタービンバイパスの採用
は小容量機から大容量機へ、また低圧プラントから高圧
プラントへと及び、その適用範囲が次第に拡大される傾
向におる。
In recent years, with the increase in the number of coal-fired boilers and the intermediate load operation of thermal power plants, many steam turbines for power generation plants are equipped with a so-called turbine bypass function that allows main steam to flow through the turbine bypass flow path. There is. In addition, the adoption of such turbine bypasses extends from small-capacity machines to large-capacity machines, and from low-pressure plants to high-pressure plants, and the scope of its application tends to gradually expand.

とこロカ、タービンバイパスシステムが大容量、高圧プ
ラントに適用されるようになると、高圧タービンおよび
中、低圧タービンに同時に蒸気を流入する従来のタービ
ン起動方法では、タービンバイパス運転からタービン起
動への切換に際して高圧タービンの排気温度が上昇して
、ロータの熱応力が大きくなり、耐用寿命が損なわれる
という問題が生じる。
However, as turbine bypass systems have come to be applied to large-capacity, high-pressure plants, the conventional turbine startup method of simultaneously injecting steam into the high-pressure turbine and medium- and low-pressure turbines has become difficult to operate when switching from turbine bypass operation to turbine startup. The problem arises that the exhaust temperature of the high pressure turbine increases, increasing the thermal stress on the rotor and impairing its service life.

例えば第1図は従来の起動方法を適用するタービン系統
の一例を示している。即ち、タービン負荷としての発電
機1に低圧タービン2、中圧タービン3および高圧ター
ビン4が連結されている。
For example, FIG. 1 shows an example of a turbine system to which a conventional startup method is applied. That is, a low pressure turbine 2, an intermediate pressure turbine 3, and a high pressure turbine 4 are connected to a generator 1 as a turbine load.

ゼイン5には過熱器6および再熱器7が設けられ、過熱
器6には、主蒸気止め弁8および蒸気加減弁9を有する
高圧タービン4への主蒸気系4aが接続されており、こ
の主蒸気糸4aがら高圧バイパス弁10および減温器1
1を有する^圧パイ/eス系10aが高圧タービン4を
迂回するように接続される。高圧タービン4の蒸気排出
部は逆止弁12を介して高圧パイ/eス系と共にゼイン
5の再熱器7に接続されている。再熱器7からは中、低
圧タービン2.3にインターセプト弁13及び再熱止め
弁14を介して低圧の再熱蒸気系3aが接続されると共
に、低圧バイパス弁15および減温器16を有する低圧
バイパス系15at”介して復水器17が接続されてい
る。タービンバイパス運転時には、加熱器6がらの高圧
蒸気は高圧バイパス弁10及び減温器11を介して再熱
器7へ流入し、低圧蒸気となって低圧バイパス弁15及
び減温器16を介して復水器17に回収される。この場
合、高圧バイパス弁1o及び低圧パイ/eス弁15はそ
れぞれの一次蒸気圧力を設計パイ/eス流量に相当する
一定の圧力に制御するようになっている。このようなタ
ービンバイパス運転からのタービン起動時は、蒸気加減
弁9、再熱止め弁14及びインターセプト弁13を徐々
に開き高圧タービン4、中圧タービン3及び低圧タービ
ン2に蒸気を流して昇速するものであるが、高圧バイパ
ス弁10.及び低圧バイパス弁15はそれぞれ一次圧力
を一定に制御するためその開度は蒸気加減弁11または
再熱止め弁14が開くに従って減少する。
The zein 5 is provided with a superheater 6 and a reheater 7, and a main steam system 4a to a high pressure turbine 4 having a main steam stop valve 8 and a steam control valve 9 is connected to the superheater 6. Main steam line 4a as well as high pressure bypass valve 10 and desuperheater 1
1 is connected to bypass the high pressure turbine 4. The steam outlet of the high pressure turbine 4 is connected via a check valve 12 to the reheater 7 of the zein 5 together with the high pressure pipe/e gas system. A low pressure reheat steam system 3a is connected from the reheater 7 to an intermediate and low pressure turbine 2.3 via an intercept valve 13 and a reheat stop valve 14, and has a low pressure bypass valve 15 and a desuperheater 16. A condenser 17 is connected via a low-pressure bypass system 15at''. During turbine bypass operation, high-pressure steam from the heater 6 flows into the reheater 7 via the high-pressure bypass valve 10 and the desuperheater 11. It becomes low-pressure steam and is recovered to the condenser 17 via the low-pressure bypass valve 15 and the desuperheater 16. In this case, the high-pressure bypass valve 1o and the low-pressure pipe/e gas valve 15 adjust the primary steam pressure to the design pipe. /e The pressure is controlled to a constant value corresponding to the flow rate of the steam.When starting the turbine from such a turbine bypass operation, the steam control valve 9, reheat stop valve 14, and intercept valve 13 are gradually opened. Steam flows through the high-pressure turbine 4, intermediate-pressure turbine 3, and low-pressure turbine 2 to increase their speed.The high-pressure bypass valve 10. and the low-pressure bypass valve 15 each control the primary pressure to a constant level, so their opening degrees vary depending on the steam flow. It decreases as the control valve 11 or the reheat stop valve 14 opens.

そして、タービン回転数が定格値に達したら併入し、更
に蒸気加減弁11及びインターセプト弁13を開くと、
高圧バイパス弁8.低圧バイパス弁15が全閉してター
ビンパイ・七ス運転が終了し、やがて定格負荷となる。
Then, when the turbine rotation speed reaches the rated value, the steam control valve 11 and the intercept valve 13 are opened.
High pressure bypass valve8. The low-pressure bypass valve 15 is fully closed, the turbine pi-seven operation ends, and the rated load is soon reached.

以上の高、中圧タービンを起動する従来の起動方法では
、タービンが定格回転で無負荷状態の併入直前時におい
て次のような問題がある。
The above-described conventional starting method for starting a high- or intermediate-pressure turbine has the following problem when the turbine is at rated rotation and immediately before merging, when it is in an unloaded state.

即ち、中圧タービン3に流入した蒸気は中圧タービン3
.低圧タービン2にて十分仕事をした後、復水器17に
回収され、タービンバイパス運転を行なわない通常の運
転と特に変わりがない。しかし、高圧タービン4側では
、低圧バイパス弁15によって低温再熱ラインの逆止弁
■2出口圧が設計パイノξス蒸気量相当の烏い圧力に保
持されているため、高圧タービン4排気圧がタービンバ
イパス運転ヲ行なわない通常運転の場合に比べてかなり
高くなる。つまシ、高圧タービン4は高排気圧力、低流
量の粂件で高速回転させられることになる。このような
条件下では蒸気は十分膨張できず、また風損も多くなる
ため、高圧タービン4の温度、特に排気側の温度が過度
に上昇し、高圧タービン4各部の伸び、伸び差の増大お
よび熱応力の増大をもたらす。特に高圧排気部ロータの
表面熱応力により、ロータの寿命に悪影響が及ぶ。
That is, the steam that has flowed into the intermediate pressure turbine 3
.. After sufficient work has been done in the low-pressure turbine 2, it is recovered in the condenser 17, and there is no particular difference from normal operation without turbine bypass operation. However, on the high-pressure turbine 4 side, the low-pressure bypass valve 15 maintains the outlet pressure of the low-temperature reheat line check valve 2 at a pressure equivalent to the designed steam amount, so the high-pressure turbine 4 exhaust pressure This is considerably higher than in normal operation without turbine bypass operation. The high-pressure turbine 4 is rotated at high speed with high exhaust pressure and low flow rate. Under such conditions, the steam cannot expand sufficiently and the windage loss increases, so the temperature of the high-pressure turbine 4, especially the temperature on the exhaust side, rises excessively, causing elongation of each part of the high-pressure turbine 4, an increase in the difference in elongation, and resulting in increased thermal stress. In particular, the surface thermal stress of the rotor in the high-pressure exhaust section adversely affects the life of the rotor.

タービンの大聖化、蒸気の高温高圧化およびバイパス容
量の増大が進むと、上記事態は東にきびしくなる。そこ
で従来の高、中圧タービン起動で生ずる高圧タービン4
の排気温度上昇を少なくするために考えられたのが中圧
タービン駆動方法である。
As turbines become more popular, steam becomes hotter and more pressurized, and bypass capacity increases, the above situation becomes even more severe. Therefore, the high-pressure turbine 4 generated by the conventional high- and intermediate-pressure turbine startup
An intermediate-pressure turbine drive method was devised to reduce the rise in exhaust gas temperature.

第2図はこの中圧タービン起動方法f、実施する最も基
本的な系統を示している。この系統では、前述の高中圧
タービン起動と異なり、■タービン起動時、蒸気加減弁
9を閉じた状態とし、高圧タービン4には蒸気を流さず
、中圧タービン3、低圧タービン2のみで昇速するよう
にし、また、■高圧タービン4の排気側と復水器17と
をベンチレータ弁18を介して連絡している。
FIG. 2 shows the most basic system for implementing this intermediate pressure turbine starting method f. In this system, unlike the above-mentioned high-intermediate-pressure turbine startup, ■When the turbine is started, the steam control valve 9 is closed, no steam flows to the high-pressure turbine 4, and only the intermediate-pressure turbine 3 and low-pressure turbine 2 are used to increase the speed. (1) The exhaust side of the high-pressure turbine 4 and the condenser 17 are connected via a ventilator valve 18.

タービン起動に際しては、まず復水器17が定格バキュ
ームに達したら、ベンチレータ弁18ft全開して高圧
タービン4内を真空にする。次に、蒸気加減弁9を全閉
にしたまま再熱止め弁14およびインターセプト弁13
を徐々に開き、中圧タービン3、低圧タービン2に蒸気
を流入し、タービンを昇速する。この際、高圧パイ/七
゛ス弁8の開度は一定とし、低圧パイ・ぐス弁15の開
度は、−次圧力の一定制御を行うため、再熱止め弁14
の開度増加に従って減少する。
When starting the turbine, first, when the condenser 17 reaches its rated vacuum, the ventilator valve 18ft is fully opened to create a vacuum inside the high-pressure turbine 4. Next, while keeping the steam control valve 9 fully closed, the reheat stop valve 14 and the intercept valve 13 are
is gradually opened, steam flows into the intermediate pressure turbine 3 and the low pressure turbine 2, and the speed of the turbines is increased. At this time, the opening degree of the high-pressure pipe/gas valve 8 is kept constant, and the opening degree of the low-pressure pipe/gas valve 15 is set to the reheat stop valve 14 in order to perform constant control of the next pressure.
decreases as the opening degree increases.

やがてタービンが定格回転数になると併入し、初負荷を
とる。この過程まではベンチレータ弁18が全開して為
圧タービン4がほぼ真空状態にあるため、風損等による
高圧タービン4排気温度の上昇がtlとんど起らない。
Eventually, when the turbine reaches its rated speed, it joins in and takes on the initial load. Until this process, the ventilator valve 18 is fully opened and the high pressure turbine 4 is in a substantially vacuum state, so that the temperature of the exhaust gas of the high pressure turbine 4 hardly increases due to windage damage or the like.

次に、ベンチレータ弁18を閉め高圧タービン4の排気
温度が過度に上昇しないように、迅速に蒸気加減弁9を
開き、高圧バイパス弁10を閉じて高圧パイノぞス系の
切換えを完了する。バイパス運転が終了したら蒸気加減
弁9を更に開いて負荷上昇し定格負荷を取る。
Next, the ventilator valve 18 is closed, the steam control valve 9 is quickly opened to prevent the exhaust temperature of the high-pressure turbine 4 from rising excessively, and the high-pressure bypass valve 10 is closed to complete the switching of the high-pressure pinosu system. When the bypass operation is completed, the steam control valve 9 is further opened to increase the load and take the rated load.

以上の如く、中圧タービン起動によると、高圧タービン
4の排気温度上昇が少なくなり、ロータの寿命消費を少
なくすることができ、大容量、高圧タービンへの対応も
容易となる。
As described above, by starting the intermediate-pressure turbine, the rise in exhaust gas temperature of the high-pressure turbine 4 is reduced, the life consumption of the rotor can be reduced, and the system can be easily adapted to large-capacity, high-pressure turbines.

〔背景技術の問題点〕[Problems with background technology]

しかしながら、このような中圧起動方法では、起動時に
高圧タービン4に蒸気を流さないため、併入、初負荷後
、高圧タービン4に蒸気を入れる際にタービンが冷機状
態となっている場合があシ、高温の主蒸気の導入による
温度上昇が過大となって熱応力が極度に大きくなる問題
が生じる。
However, in such an intermediate-pressure startup method, steam is not allowed to flow into the high-pressure turbine 4 during startup, so the turbine may be in a cold state when steam is introduced into the high-pressure turbine 4 after the initial load. Second, the temperature rise due to the introduction of high-temperature main steam becomes excessive, resulting in a problem of extremely large thermal stress.

〔発明の目的〕[Purpose of the invention]

本発明はこのような事情に鑑みてなされたもので、中圧
タービン起動方式において、高圧タービンが冷機状態の
場合に適切に高圧タービンのウオーミングを行なうこと
ができ、熱応力を抑制して耐用寿命の長期化が図れるタ
ービン起動方法を提供するものである。
The present invention has been made in view of these circumstances, and in an intermediate pressure turbine startup method, it is possible to properly warm up the high pressure turbine when the high pressure turbine is in a cold state, suppress thermal stress, and extend the service life. This provides a method for starting a turbine that allows for a longer period of time.

〔発明の概要〕[Summary of the invention]

本発明に係る蒸気タービンの駆動方法では、中圧タービ
ン起動後、畠圧タービンが冷機状態の場合、主蒸気よシ
も低温の蒸気を蒸気加減弁の下流側に流入させて高圧タ
ービンをウオーミングすることを特徴とする。好適には
、主蒸気よりも低い温度のウオーミング用蒸気として、
蒸気加減弁の下流部分に中、低圧タービンからの抽気を
導入するものである。
In the method for driving a steam turbine according to the present invention, after starting the intermediate pressure turbine, when the feeder pressure turbine is in a cold state, steam at a lower temperature than the main steam is allowed to flow into the downstream side of the steam control valve to warm the high pressure turbine. It is characterized by Preferably, as warming steam at a lower temperature than the main steam,
Bleed air from the medium and low pressure turbine is introduced downstream of the steam control valve.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第3図を参照して説明する。 An embodiment of the present invention will be described below with reference to FIG.

第3図は本発明に係るタービン駆動方法を実施するだめ
のタービン系統を示している。なお、従来の中、低圧タ
ービン駆動方法を適用するタービン系統と同一部分に対
しては、第2図と同一符号を付してその説明を省略する
FIG. 3 shows a turbine system for carrying out the turbine driving method according to the present invention. Note that the same parts as those in the turbine system to which the conventional low-pressure turbine drive method is applied are given the same reference numerals as in FIG. 2, and the explanation thereof will be omitted.

第3図に示すタービン系統では第2図に示す構成に加え
、中圧タービン3と蒸気加減弁11の下流側とをウオー
ミング弁19を介して連絡管別によって連絡している。
In the turbine system shown in FIG. 3, in addition to the configuration shown in FIG. 2, the intermediate pressure turbine 3 and the downstream side of the steam control valve 11 are connected via a warming valve 19 by a separate connecting pipe.

パイ・ぞス運転からタービン運転に切換える場合は、中
圧タービン起動によるものとし、その併入、初負荷過程
は、ウオーミング弁19を閉状態として、第2図によっ
て示した場合と同様に行なう。
When switching from pi-zoos operation to turbine operation, the intermediate pressure turbine is started, and the addition and initial load process are performed in the same manner as shown in FIG. 2 with the warming valve 19 in the closed state.

即ち、復水器17が定格バキュームに達したら、ベンチ
レータ弁18を全開して高圧タービン4内を真空にする
。次に、蒸気加減弁9を全開にしたまま再熱止め弁14
およびインターセプト弁13を徐々に開き、中圧タービ
ン3、低圧タービン2に蒸気を流入し、タービンを昇速
する。この際、高圧バイパス弁10の開度は一定とし、
低圧バイパス弁15の開度は、−次圧力の一定制御を行
うだめ、再熱止め弁14の開度増加に従って減少する。
That is, when the condenser 17 reaches its rated vacuum, the ventilator valve 18 is fully opened to create a vacuum inside the high-pressure turbine 4. Next, while keeping the steam control valve 9 fully open, the reheat stop valve 14 is
Then, the intercept valve 13 is gradually opened to allow steam to flow into the intermediate pressure turbine 3 and the low pressure turbine 2, thereby speeding up the turbines. At this time, the opening degree of the high pressure bypass valve 10 is kept constant,
The opening degree of the low pressure bypass valve 15 decreases as the opening degree of the reheat stop valve 14 increases in order to maintain constant control of the negative pressure.

やがてタービンが定格回転数になると併入し、初負荷を
とる。この過程まではベンチレータ弁18が全開して高
圧タービン4がほぼ真空状態にあるため、風損等による
高圧タービン4排気温度の上昇がほとんど起こらない。
Eventually, when the turbine reaches its rated speed, it joins in and takes on the initial load. Until this process, the ventilator valve 18 is fully open and the high-pressure turbine 4 is in a substantially vacuum state, so that the temperature of the exhaust gas of the high-pressure turbine 4 hardly increases due to windage damage or the like.

併入、初負荷終了後、高圧タービン4が冷機状態の場合
には蒸気加減弁9を閉のまま、ウオーミング弁17を開
にする。これにより、高圧タービン4に主蒸気よりも低
温度の中圧タービンから抽出された蒸気が供給され、高
圧タービン4は暖気状態となるウオーミングの後、ウオ
ーミング蒸気はベンチレータ弁18を通って復水器17
に回収される。
When the high-pressure turbine 4 is in a cold state after the completion of the initial load, the steam control valve 9 is kept closed and the warming valve 17 is opened. As a result, the high-pressure turbine 4 is supplied with steam extracted from the intermediate-pressure turbine at a temperature lower than that of the main steam, and after the high-pressure turbine 4 is warmed up, the warming steam passes through the ventilator valve 18 to the condenser. 17
will be collected.

高圧タービン4のウオーミングが終了後、ウオーミング
弁19およびベンチレータ弁18を閉じ、次に迅速に蒸
気加減弁9を開き、高圧バイパス弁10を閉じ、高圧パ
イノξス系10aの切換えを完了する。
After the warming of the high pressure turbine 4 is completed, the warming valve 19 and the ventilator valve 18 are closed, then the steam control valve 9 is quickly opened, and the high pressure bypass valve 10 is closed, completing the switching of the high pressure pinose system 10a.

バイパス運転が終了したら、蒸気加減弁9を更に開いて
負荷上昇し定格負荷を取る。
When the bypass operation is completed, the steam control valve 9 is further opened to increase the load and take the rated load.

このような実施例に係る蒸気タービンの起動方法による
と、まず中、低圧タービン2,3に対する蒸気供給でタ
ービン起動を行なわせ、高圧タービン4には蒸気供給を
行なわないので、バイパス運転から切替える場合でも高
圧タービン4への過大な熱負荷が回避されるとともに、
併入、初負荷後、高圧タービンに高温、高圧蒸気の供給
に際しては、タービンが冷気状態にあれは、主蒸気よシ
も低温度の中圧タービン3からの抽出蒸気でウオーミン
グするので急激な温度上昇も避けることができ、過大な
応力の発生が防止でき、タービン寿命の長期化が有効に
図られる。
According to the method for starting a steam turbine according to such an embodiment, first, the turbine is started by supplying steam to the medium and low pressure turbines 2 and 3, and no steam is supplied to the high pressure turbine 4, so when switching from bypass operation However, an excessive heat load on the high pressure turbine 4 is avoided, and
When high-temperature, high-pressure steam is supplied to the high-pressure turbine after the initial load, if the turbine is in a cold state, the main steam will be warmed by the extracted steam from the low-temperature intermediate-pressure turbine 3, so the temperature will rise rapidly. It is also possible to avoid the rise in the pressure, prevent the generation of excessive stress, and effectively prolong the life of the turbine.

なお、実施例の如く、中圧タービン抽気を利用して高圧
タービンのウオーミングを行なうようにすれば、ウオー
ミング用の蒸気供給系を特別に用意する必要もなく、装
置構成の簡便化および熱の有効利用が図れるものである
In addition, if the high-pressure turbine is warmed using the intermediate-pressure turbine bleed air as in the embodiment, there is no need to prepare a special steam supply system for warming, which simplifies the equipment configuration and improves the effectiveness of heat. It is something that can be put to good use.

但し、本発明は必ずしもそのような方法に限らず、他に
利用し易い蒸気源を有しているような場合など、中圧タ
ービン抽気以外のウオーミング用蒸気を適用してもよい
ことは勿論である。
However, the present invention is not necessarily limited to such a method, and it goes without saying that warming steam other than intermediate-pressure turbine extraction may be applied in cases where other easily available steam sources are available. be.

〔発明の効果〕〔Effect of the invention〕

以上の実施例で詳述したように、本発明に係る蒸気ター
ビンの起動方法によれば、中、低圧タービン起動後、高
圧タービンが冷機状態の場合、その高圧タービンに主蒸
気供給前に主蒸気よυも低温度の蒸気を供給することに
より、高圧タービンをウオーミングするので、直接主蒸
気を供給する方法と異なシ高圧タービンの温度上昇が過
大となることがなく、従って熱応力を抑制して耐用寿命
の長期化を図ることができるという効果を奏する。
As described in detail in the above embodiments, according to the method for starting a steam turbine according to the present invention, if the high-pressure turbine is in a cold state after starting the medium- or low-pressure turbine, the main steam is In addition, the high-pressure turbine is warmed by supplying low-temperature steam, so unlike the method of directly supplying main steam, the temperature rise in the high-pressure turbine does not become excessive, thus suppressing thermal stress. This has the effect of prolonging the useful life.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の方法を実施するタービンの系統図、第2
図は従来の中圧タービン起動式タービンの系統図、第3
図は本発明を実施するタービン系統の一実施例を示す系
統図である。 1・・・発電機、2・・・低圧タービン、3・・・中圧
タービン、4・・・高圧タービン、3a・・・再熱(低
圧〕蒸気系、4a・・・主蒸気系、10a、15a・・
・バイパス系、17・・・復水器。 出願人代理人 波 多 野 久
Figure 1 is a system diagram of a turbine implementing the conventional method;
The figure is a system diagram of a conventional intermediate-pressure turbine-started turbine.
The figure is a system diagram showing one embodiment of a turbine system implementing the present invention. 1... Generator, 2... Low pressure turbine, 3... Intermediate pressure turbine, 4... High pressure turbine, 3a... Reheat (low pressure) steam system, 4a... Main steam system, 10a , 15a...
・Bypass system, 17... Condenser. Applicant's agent Hisashi Hatano

Claims (1)

【特許請求の範囲】 i、高圧タービンへの主蒸気系から上記高圧タービンを
パイ・ゼスする高圧ノくイノぞス系が、中、低圧タービ
ンへの再熱蒸気系から復水器への低圧バイパス系がそれ
ぞれ設けられ、ノセイAス運転からの起動時に高圧ター
ビンの排気部を復水器に連結して吸気するとともに中、
低圧タービンのみに蒸気を流して蒸気タービンを起動す
る方法において、中、低圧タービン起動後、高圧タービ
ンが冷機状態の場合、その高圧タービンに主蒸気供給前
に主蒸気よりも低温度の蒸気を供給することによυ、高
圧タービンをウオーミングすることを%徴とする蒸気タ
ービンの起動方法。 2、高圧タービンのウオーミング用蒸気として、中、低
圧タービンからの抽気を用いることを特徴とする特許請
求の範囲第1項記載の蒸気タービンの起動方法。
[Scope of Claims] i. A high-pressure innovation system that connects the high-pressure turbine from the main steam system to the high-pressure turbine, and a low-pressure system that connects the high-pressure turbine from the reheat steam system to the medium and low-pressure turbines to the condenser. A bypass system is provided for each, and when starting up from a normal operation, the exhaust part of the high-pressure turbine is connected to the condenser to take in air, and
In a method of starting a steam turbine by flowing steam only through the low-pressure turbine, if the high-pressure turbine is in a cold state after starting the medium or low-pressure turbine, steam at a temperature lower than the main steam is supplied to the high-pressure turbine before main steam is supplied. A method of starting a steam turbine that is characterized by warming the high-pressure turbine. 2. The method for starting a steam turbine according to claim 1, characterized in that air extracted from a medium- and low-pressure turbine is used as warming steam for the high-pressure turbine.
JP1435184A 1984-01-31 1984-01-31 Starting method for steam turbine Pending JPS60159311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1435184A JPS60159311A (en) 1984-01-31 1984-01-31 Starting method for steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1435184A JPS60159311A (en) 1984-01-31 1984-01-31 Starting method for steam turbine

Publications (1)

Publication Number Publication Date
JPS60159311A true JPS60159311A (en) 1985-08-20

Family

ID=11858644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1435184A Pending JPS60159311A (en) 1984-01-31 1984-01-31 Starting method for steam turbine

Country Status (1)

Country Link
JP (1) JPS60159311A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6487809A (en) * 1987-09-30 1989-03-31 Toshiba Corp Starting method and device for two-stage reheat steam turbine plant
JPS6487808A (en) * 1987-09-30 1989-03-31 Toshiba Corp Starting method and device for two-stage reheat steam turbine plant
EP2423459A3 (en) * 2009-01-13 2013-01-02 General Electric Company Method and apparatus for varying flow source to aid in windage heating issue at FSNL
CN105041388A (en) * 2015-07-04 2015-11-11 江曼 Power generation equipment and grid synchronization method thereof
WO2017115132A1 (en) * 2015-12-31 2017-07-06 General Electric Technology Gmbh Steam turbine warm keeping arrangement

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6487809A (en) * 1987-09-30 1989-03-31 Toshiba Corp Starting method and device for two-stage reheat steam turbine plant
JPS6487808A (en) * 1987-09-30 1989-03-31 Toshiba Corp Starting method and device for two-stage reheat steam turbine plant
EP2423459A3 (en) * 2009-01-13 2013-01-02 General Electric Company Method and apparatus for varying flow source to aid in windage heating issue at FSNL
CN105041388A (en) * 2015-07-04 2015-11-11 江曼 Power generation equipment and grid synchronization method thereof
WO2017115132A1 (en) * 2015-12-31 2017-07-06 General Electric Technology Gmbh Steam turbine warm keeping arrangement

Similar Documents

Publication Publication Date Title
EP2423460B1 (en) Systems and methods for pre-warming a heat recovery steam generator and associated steam lines
US4309873A (en) Method and flow system for the control of turbine temperatures during bypass operation
JPH11159306A (en) Recovery type steam cooling gas turbine
JPH05163960A (en) Combined cycle power generation plant
JP6231228B2 (en) Combined cycle gas turbine plant
JP2523518B2 (en) How to start a steam turbine plant by starting a high pressure turbine
JP3919966B2 (en) Operation method of combined cycle power plant
JPS60159311A (en) Starting method for steam turbine
JP2004245184A (en) Reheat steam turbine plant and starting method for the plant
US6666028B2 (en) Operation method for combined plant
JP2915885B1 (en) Gas turbine combined cycle system
JP2005344528A (en) Combined cycle power generating plant and method for starting the same
JPH1037711A (en) Combined cycle power plant
JPH1193618A (en) Steam pressure control method for gas turbine steam cooling system
JPS5934405A (en) Warming device of steam turbine
JP3553314B2 (en) Cooling steam supply method for combined cycle power plant
JP2558855B2 (en) Method of operating steam-gas combined cycle power plant and its power plant
JP2001090507A (en) Electric power plant
JPS6039850B2 (en) How to start the turbine
JPS60119304A (en) Steam turbine
JPH0223213A (en) Reheating type combined plant
JPS6267206A (en) Warming up device for intermediate pressure turbine
JPH0399101A (en) Controller of exhaust heat recovering heat exchanger
JPH04298602A (en) Steam turbine starting equipment
JPH01313605A (en) Combined power generating set