JPH09303114A - Steam cycle for combined cycle using steam cooling type gas turbine - Google Patents

Steam cycle for combined cycle using steam cooling type gas turbine

Info

Publication number
JPH09303114A
JPH09303114A JP11894696A JP11894696A JPH09303114A JP H09303114 A JPH09303114 A JP H09303114A JP 11894696 A JP11894696 A JP 11894696A JP 11894696 A JP11894696 A JP 11894696A JP H09303114 A JPH09303114 A JP H09303114A
Authority
JP
Japan
Prior art keywords
steam
pressure steam
pressure
steam turbine
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11894696A
Other languages
Japanese (ja)
Inventor
Ryutaro Umagoe
龍太郎 馬越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP11894696A priority Critical patent/JPH09303114A/en
Publication of JPH09303114A publication Critical patent/JPH09303114A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • F01K13/025Cooling the interior by injection during idling or stand-by
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steam cycle to prevent the increase of the temperature of a middle pressure and low pressure steam turbine rotor due to a windage loss during starting. SOLUTION: A intermediate pressure steam turbine bypass pipe 3 and a intermediate pressure steam turbine bypass valve 4 are arranged between a intermediate pressure/low pressure steam turbine steam inlet pipe 1 to guide high temperature reheatet steam from a boiler 7 to intermediate pressure/low pressure steam turbines IP and LP; and a high pressure steam turbine steam outlet pipe 2 to guide low temperature reheat steam from a high pressure steam turbine HP to a boiler 7. During starting and in a case of a low load, by closing a reheat steam stop valve IPSV and opening the intermediate pressure steam turbine bypass valve 4, starting is performed as the intermediate pressure/low pressure steam turbines IP and LP are cooled by low temperature steam worked in the high pressure steam turbine HP. The reheat steam stop valve IPSV is gradually opened and starting is effected as the temperatures of the intermediate pressure/low pressure steam turbines IP and LP are increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は蒸気冷却型ガスター
ビンを用いたコンバインドサイクル用蒸気サイクルに係
り、特に、起動時の熱応力低減と冷却に効果のあるコン
バインドサイクル用蒸気サイクルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steam cycle for a combined cycle using a steam cooling type gas turbine, and more particularly to a steam cycle for a combined cycle which is effective in reducing thermal stress at startup and cooling.

【0002】[0002]

【従来の技術】図2は蒸気冷却型ガスタービンを用いた
コンバインドサイクル用蒸気サイクルの系統図である。
図2に示すように、高圧蒸気タービン(HP)には、主
蒸気止め弁(HPSV)及び主蒸気加減弁(HPGV)
を通して主蒸気が送られる。
2. Description of the Related Art FIG. 2 is a system diagram of a steam cycle for a combined cycle using a steam cooling type gas turbine.
As shown in FIG. 2, the high-pressure steam turbine (HP) includes a main steam stop valve (HPSV) and a main steam control valve (HPGV).
The main steam is sent through.

【0003】そして主蒸気の排気をボイラ7で再熱して
得られた再熱蒸気が中圧・低圧蒸気タービン(IP・L
P)に再熱蒸気止め弁(IPSV),再熱蒸気加減弁
(IPGV)を通して送られる。そして中圧・低圧蒸気
タービン(IP・LP)で仕事をした排気は復水器8で
復水となって再びボイラ7に送られて高温高圧蒸気とさ
れる。
The reheated steam obtained by reheating the exhaust of the main steam in the boiler 7 is a medium-pressure / low-pressure steam turbine (IPL
It is sent to P) through a reheat steam stop valve (IPSV) and a reheat steam control valve (IPGV). Then, the exhaust gas that has worked in the medium-pressure / low-pressure steam turbine (IP / LP) becomes condensed water in the condenser 8 and is sent to the boiler 7 again to be high-temperature high-pressure steam.

【0004】このような系統では、起動時、主蒸気止め
弁(HPSV),再熱蒸気止め弁(IPSV)を閉じ、
高圧蒸気タービンバイパス弁5,低圧蒸気タービンバイ
パス弁6を開の状態で蒸気の加熱度を上昇して徐々に主
蒸気止め弁(HPSV),再熱蒸気止め弁(IPSV)
を開いて蒸気タービン(HP),(IP・HP)に蒸気
を流入して駆動する。
In such a system, at startup, the main steam stop valve (HPSV) and the reheat steam stop valve (IPSV) are closed,
With the high-pressure steam turbine bypass valve 5 and the low-pressure steam turbine bypass valve 6 open, the degree of steam heating is increased to gradually increase the main steam stop valve (HPSV) and reheat steam stop valve (IPSV).
Open to drive steam by flowing steam into the steam turbines (HP) and (IP HP).

【0005】[0005]

【発明が解決しようとする課題】従来の蒸気冷却型ガス
タービンを用いたコンバインドサイクル用蒸気サイクル
の系統では前述したような起動方法が採られているが、
ガスタービンが蒸気冷却を採用する場合、高温再熱蒸気
ラインの蒸気温度の上昇が速く、また高く設定されるの
で起動時、低負荷の場合に中圧・低圧蒸気タービン(I
P・LP)ロータの温度が風損で上昇し熱応力或いは、
接触の問題等が起る。
In the conventional steam cycle system for a combined cycle using a steam-cooled gas turbine, the starting method as described above is adopted.
When the gas turbine adopts the steam cooling, the steam temperature of the high temperature reheat steam line rises quickly and is set high, so that the medium pressure / low pressure steam turbine (I
(P / LP) The temperature of the rotor rises due to wind loss, causing thermal stress or
Contact problems etc. occur.

【0006】本発明は、蒸気冷却型ガスタービンを用い
たコンバインドサイクル用蒸気サイクルにおいて、起動
時、低負荷の場合に中圧・低圧蒸気タービンロータの温
度が風損で上昇するのを防ぐことのできる蒸気サイクル
を提供することを課題としている。
According to the present invention, in a steam cycle for a combined cycle using a steam-cooled gas turbine, it is possible to prevent the temperature of the medium-pressure / low-pressure steam turbine rotor from rising due to windage loss at the time of starting and under low load. The challenge is to provide a steam cycle that can.

【0007】[0007]

【課題を解決するための手段】本発明は、蒸気冷却型ガ
スタービンを用いたコンバインドサイクル用蒸気サイク
ルにおける前記課題を解決するため、中圧・低圧蒸気タ
ービンの蒸気入口管と高圧蒸気タービンの蒸気出口管と
を連通する中圧蒸気タービンバイパス管路を設け、その
バイパス管路に中圧蒸気タービンバイパス弁を設置した
構成を採用する。
In order to solve the above-mentioned problems in a combined cycle steam cycle using a steam-cooled gas turbine, the present invention provides a steam inlet pipe of a medium-pressure / low-pressure steam turbine and a steam of a high-pressure steam turbine. A medium-pressure steam turbine bypass pipe communicating with the outlet pipe is provided, and a medium-pressure steam turbine bypass valve is installed in the bypass pipe.

【0008】このように構成した本発明の蒸気サイクル
では、起動時,低負荷の場合に再熱蒸気止め弁を閉じ中
圧蒸気タービンバイパス弁を開くことによって高圧蒸気
タービンで仕事をした低温蒸気で中圧・低圧蒸気タービ
ンを冷却しながら起動させ徐々に再熱蒸気止め弁を開い
て中圧・低圧蒸気タービン温度を上昇させながら起動さ
せる。
In the steam cycle of the present invention thus constructed, the low-temperature steam that has worked in the high-pressure steam turbine is closed by closing the reheat steam stop valve and opening the intermediate-pressure steam turbine bypass valve when the load is low at startup. Start by cooling the medium / low pressure steam turbine and gradually open the reheat steam stop valve to start while increasing the temperature of the medium / low pressure steam turbine.

【0009】このように、本発明の蒸気サイクルにおい
ては、中圧蒸気タービンバイパス管路を設け、高圧蒸気
タービンで仕事をした低温蒸気によって中圧・低圧蒸気
タービンラインの風損による加熱が緩和,抑制できるの
で中圧蒸気タービン入口温度の上昇が滑らかになりロー
タ車室の熱応力が低減される。
As described above, in the steam cycle of the present invention, the medium-pressure steam turbine bypass pipe is provided, and the low-temperature steam working in the high-pressure steam turbine alleviates the heating due to the windage loss in the medium-pressure and low-pressure steam turbine lines. Since this can be suppressed, the rise in the temperature of the medium-pressure steam turbine inlet is smoothed, and the thermal stress in the rotor casing is reduced.

【0010】[0010]

【発明の実施の形態】以下、本発明によるコンバインド
サイクル用蒸気サイクルについて図1に示した実施の形
態に基づいて具体的に説明する。なお、以下の実施の形
態において、図2に示した従来のサイクルと同じ構成の
部分には説明を簡単にするため同じ符号を付してあり、
それらについての重複する説明は省略する。
BEST MODE FOR CARRYING OUT THE INVENTION A steam cycle for a combined cycle according to the present invention will be specifically described below with reference to the embodiment shown in FIG. In the following embodiments, parts having the same configurations as those of the conventional cycle shown in FIG. 2 are designated by the same reference numerals to simplify the description,
A duplicate description of them will be omitted.

【0011】図1は図2に示した蒸気サイクルと同様、
蒸気冷却型ガスタービンを用いたコンバインドサイクル
用蒸気サイクルの系統図である。この図1の蒸気サイク
ルでは、図2に示した従来の蒸気サイクルの構成に加え
て中圧・低圧蒸気タービン蒸気入口管1と高圧蒸気ター
ビン蒸気出口管2とを連通する中圧蒸気タービンバイパ
ス管3が設けられていてその管3には中圧蒸気タービン
バイパス弁4が設置されている。
FIG. 1 is similar to the steam cycle shown in FIG.
It is a system diagram of a steam cycle for a combined cycle using a steam cooling type gas turbine. In the steam cycle of FIG. 1, in addition to the configuration of the conventional steam cycle shown in FIG. 2, an intermediate pressure steam turbine bypass pipe that connects an intermediate pressure / low pressure steam turbine steam inlet pipe 1 and a high pressure steam turbine steam outlet pipe 2 to each other. 3 is provided, and a medium pressure steam turbine bypass valve 4 is installed in the pipe 3.

【0012】この中圧蒸気タービンバイパス管3及び中
圧蒸気タービンバイパス弁4によって起動時、低負荷の
場合、再熱蒸気止め弁(IPSV)を閉じ中圧蒸気ター
ビンバイパス弁4を開いて高圧蒸気タービン(HP)で
仕事をした低温蒸気で中圧・低圧蒸気タービン(IP・
LP)のロータを冷却しながら起動させた後、徐々に再
熱蒸気止め弁(IPSV)を開いて中圧・低圧蒸気ター
ビン(IP・LP)の温度を上昇させながら起動させ
る。
When the intermediate pressure steam turbine bypass pipe 3 and the intermediate pressure steam turbine bypass valve 4 are activated at a low load, the reheat steam stop valve (IPSV) is closed and the intermediate pressure steam turbine bypass valve 4 is opened to open the high pressure steam. Low-pressure steam that worked in the turbine (HP), and medium- and low-pressure steam turbines (IP ·
After activating the (LP) rotor while cooling, the reheat steam stop valve (IPSV) is gradually opened to start while increasing the temperature of the intermediate pressure / low pressure steam turbine (IP / LP).

【0013】従って、この実施形態の蒸気サイクルで
は、高圧蒸気タービンで仕事をした低温蒸気によって中
圧・低圧蒸気タービンラインの風損による加熱を緩和し
抑制できるので、中圧蒸気タービン入口温度の上昇が滑
らかとなりロータ車室の熱応力が低減される。
Therefore, in the steam cycle of this embodiment, the low-temperature steam working in the high-pressure steam turbine can alleviate and suppress the heating due to the windage loss of the medium-pressure / low-pressure steam turbine line, so that the temperature rise of the medium-pressure steam turbine inlet is increased. Is smoothed and the thermal stress in the rotor casing is reduced.

【0014】[0014]

【発明の効果】本発明になる蒸気冷却型ガスタービンを
用いたコンバインドサイクル用蒸気サイクルの系統によ
れば、中圧蒸気タービンバイパス管路と中圧蒸気タービ
ンバイパス弁を設置することによって、高温再熱蒸気ラ
インの蒸気を使用せず中圧蒸気タービンバイパスライン
の、高圧蒸気タービンで仕事をした低温蒸気を使うこと
ができる。
According to the steam cycle system for a combined cycle using a steam-cooled gas turbine of the present invention, a high-temperature recycle can be achieved by installing a medium-pressure steam turbine bypass line and a medium-pressure steam turbine bypass valve. It is possible to use the low temperature steam that has worked in the high pressure steam turbine of the medium pressure steam turbine bypass line without using the steam of the hot steam line.

【0015】従って、本発明の蒸気サイクルでは、起動
時、低負荷の場合に中圧・低圧蒸気タービンロータの温
度が風損で上昇することがない。そのため、ロータに熱
応力或いは接触などの問題を惹き起すことがない。
Therefore, in the steam cycle of the present invention, the temperature of the medium-pressure / low-pressure steam turbine rotor does not rise due to windage loss when the load is low at startup. Therefore, problems such as thermal stress or contact with the rotor do not occur.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の一形態に係る蒸気サイクルの系
統図。
FIG. 1 is a system diagram of a steam cycle according to an embodiment of the present invention.

【図2】従来の蒸気サイクルの系統図。FIG. 2 is a system diagram of a conventional steam cycle.

【符号の説明】[Explanation of symbols]

1 中圧・低圧蒸気タービン蒸気入口管 2 高圧蒸気タービン蒸気出口管 3 中圧蒸気タービンバイパス管 4 中圧蒸気タービンバイパス弁 HP 高圧蒸気タービン IP 中圧蒸気タービン LP 低圧蒸気タービン HPSV 主蒸気止め弁 HPGV 主蒸気加減弁 IPSV 再熱蒸気止め弁 IPGV 再熱蒸気加減弁 1 Medium-pressure / low-pressure steam turbine steam inlet pipe 2 High-pressure steam turbine steam outlet pipe 3 Medium-pressure steam turbine bypass pipe 4 Medium-pressure steam turbine bypass valve HP High-pressure steam turbine IP Medium-pressure steam turbine LP Low-pressure steam turbine HPSV Main steam stop valve HPGV Main steam control valve IPSV reheat steam stop valve IPGV reheat steam control valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 蒸気冷却型ガスタービンを用いたコンバ
インドサイクル用蒸気サイクルにおいて、中圧・低圧蒸
気タービンの蒸気入口管と高圧蒸気タービンの蒸気出口
管とを連通する中圧蒸気タービンバイパス管路を設け、
同バイパス管路に中圧蒸気タービンバイパス弁を設置し
たことを特徴とする蒸気冷却型ガスタービンを用いたコ
ンバインドサイクル用蒸気サイクル。
1. In a steam cycle for a combined cycle using a steam-cooled gas turbine, a medium-pressure steam turbine bypass pipe line connecting a steam inlet pipe of the medium-pressure / low-pressure steam turbine and a steam outlet pipe of the high-pressure steam turbine is provided. Provided,
A steam cycle for a combined cycle using a steam-cooled gas turbine, characterized in that a medium-pressure steam turbine bypass valve is installed in the bypass line.
JP11894696A 1996-05-14 1996-05-14 Steam cycle for combined cycle using steam cooling type gas turbine Withdrawn JPH09303114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11894696A JPH09303114A (en) 1996-05-14 1996-05-14 Steam cycle for combined cycle using steam cooling type gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11894696A JPH09303114A (en) 1996-05-14 1996-05-14 Steam cycle for combined cycle using steam cooling type gas turbine

Publications (1)

Publication Number Publication Date
JPH09303114A true JPH09303114A (en) 1997-11-25

Family

ID=14749170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11894696A Withdrawn JPH09303114A (en) 1996-05-14 1996-05-14 Steam cycle for combined cycle using steam cooling type gas turbine

Country Status (1)

Country Link
JP (1) JPH09303114A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008151484A1 (en) * 2007-06-11 2008-12-18 Shanghai Waigaoqiao No.3 Power Generation Co.Ltd A small bypass system of a generator set and a controlling method thereof
GB2453849A (en) * 2007-10-16 2009-04-22 E On Kraftwerker Gmbh Steam power plant with additional bypass pipe used to control power output
US7596947B2 (en) 2004-02-23 2009-10-06 Mitsubishi Heavy Industries, Ltd. Gas turbine plant
JP2011157966A (en) * 2010-02-02 2011-08-18 General Electric Co <Ge> Method and device for starting combined cycle power generation plant
CN104747243A (en) * 2015-02-26 2015-07-01 福建晋江天然气发电有限公司 Sliding parameter shutdown method for gas-steam combined cycle unit
JP2016528430A (en) * 2013-07-25 2016-09-15 シーメンス アクティエンゲゼルシャフト Operation method of combined cycle power plant
CN107448247A (en) * 2016-05-30 2017-12-08 上海电气电站设备有限公司 Double reheat steam turbine air blast control method and control system
CN108592136A (en) * 2018-07-13 2018-09-28 大连亨利测控仪表工程有限公司 A kind of thermal power plant's flexibility transformation twin-tub decoupling depth peak regulation system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7596947B2 (en) 2004-02-23 2009-10-06 Mitsubishi Heavy Industries, Ltd. Gas turbine plant
WO2008151484A1 (en) * 2007-06-11 2008-12-18 Shanghai Waigaoqiao No.3 Power Generation Co.Ltd A small bypass system of a generator set and a controlling method thereof
GB2453849A (en) * 2007-10-16 2009-04-22 E On Kraftwerker Gmbh Steam power plant with additional bypass pipe used to control power output
GB2453849B (en) * 2007-10-16 2010-03-31 E On Kraftwerke Gmbh Steam power plant and method for controlling the output of a steam power plant using an additional bypass pipe
JP2011157966A (en) * 2010-02-02 2011-08-18 General Electric Co <Ge> Method and device for starting combined cycle power generation plant
JP2016528430A (en) * 2013-07-25 2016-09-15 シーメンス アクティエンゲゼルシャフト Operation method of combined cycle power plant
CN104747243A (en) * 2015-02-26 2015-07-01 福建晋江天然气发电有限公司 Sliding parameter shutdown method for gas-steam combined cycle unit
CN107448247A (en) * 2016-05-30 2017-12-08 上海电气电站设备有限公司 Double reheat steam turbine air blast control method and control system
CN107448247B (en) * 2016-05-30 2019-08-23 上海电气电站设备有限公司 Double reheat steam turbine air blast control method and control system
CN108592136A (en) * 2018-07-13 2018-09-28 大连亨利测控仪表工程有限公司 A kind of thermal power plant's flexibility transformation twin-tub decoupling depth peak regulation system
CN108592136B (en) * 2018-07-13 2023-10-31 大连亨利测控仪表工程有限公司 Double-cylinder decoupling depth peak shaving system for thermal power plant flexible transformation

Similar Documents

Publication Publication Date Title
JP3652962B2 (en) Gas turbine combined cycle
JP5860597B2 (en) System and method for preheating exhaust heat recovery boiler piping
JPH06264763A (en) Combined plant system
JP3694530B2 (en) Single-shaft combined cycle plant and operation method thereof
JPH11159306A (en) Recovery type steam cooling gas turbine
JPH10501315A (en) Method of operating a steam turbine power plant and steam turbine power plant for implementing the method
JPH09303114A (en) Steam cycle for combined cycle using steam cooling type gas turbine
JP2010242673A (en) Steam turbine system and method for operating the same
JP3559574B2 (en) Startup method of single-shaft combined cycle power plant
JP2004245184A (en) Reheat steam turbine plant and starting method for the plant
JPS62101809A (en) Single-shaft combined plant having reheating system
JP2004169625A (en) Co-generation plant and its starting method
JPH11117712A (en) Gas turbine combined plant
JP2013015043A (en) Combined cycle power plant and method for operating the same
JP3559573B2 (en) Startup method of single-shaft combined cycle power plant
JP2558740B2 (en) How to start up a two-stage reheat steam turbine plant
JPH03908A (en) Starting method for combined cycle plant
JP2642954B2 (en) How to start a reheat combined plant
JP2563375B2 (en) How to start up a two-stage reheat steam turbine plant
JP4209060B2 (en) Steam cooling rapid start system
JP2002221007A (en) Thermal power generation plant
JPH08158806A (en) Turbine starting device
JPH06294305A (en) Exhaust heat recovery boiler
JPH11117714A (en) Gas turbine combined plant
JPH08121117A (en) Starting method for multi-shaft type compound power generation plant

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030805