JP2558740B2 - How to start up a two-stage reheat steam turbine plant - Google Patents

How to start up a two-stage reheat steam turbine plant

Info

Publication number
JP2558740B2
JP2558740B2 JP62244038A JP24403887A JP2558740B2 JP 2558740 B2 JP2558740 B2 JP 2558740B2 JP 62244038 A JP62244038 A JP 62244038A JP 24403887 A JP24403887 A JP 24403887A JP 2558740 B2 JP2558740 B2 JP 2558740B2
Authority
JP
Japan
Prior art keywords
pressure turbine
steam
turbine
pressure
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62244038A
Other languages
Japanese (ja)
Other versions
JPS6487809A (en
Inventor
悦一 羽田野
英治 角田
一郎 梶谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
IHI Corp
Original Assignee
Toshiba Corp
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, IHI Corp filed Critical Toshiba Corp
Priority to JP62244038A priority Critical patent/JP2558740B2/en
Priority to US07/251,177 priority patent/US4873827A/en
Publication of JPS6487809A publication Critical patent/JPS6487809A/en
Application granted granted Critical
Publication of JP2558740B2 publication Critical patent/JP2558740B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は二段の再熱器を有するボイラと組合わせた二
段再熱式蒸気タービンプラントの起動方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Field of Industrial Application) The present invention relates to a method for starting a two-stage reheat steam turbine plant in combination with a boiler having a two-stage reheater.

(従来の技術) 蒸気タービンプラントの性能向上を目指す動きは近年
関係者の超高圧高圧タービンの開発に向けて努力が結実
し、一部ユニットではこれを実現する日も間近い状況に
ある。この新たに開発された超高圧高温タービンのター
ビン入口での蒸気条件は従来の圧力/温度246kg/cm2g/5
38℃に対して316kg/cm2g/566℃となっている。一方、目
を世界に転じると、この蒸気条件をより高めた316kg/cm
2g/593℃さらには352kg/cm2g/593℃級の超高圧高温ター
ビンの開発も進められている。これらの超高圧高温ター
ビンは基本的には二段の再熱器を有するボイラと組合わ
されて二段再熱式の蒸気タービンプラントとして構成さ
れる。以下、その典型的なものを図面を参照して説明す
る。
(Prior Art) In recent years, efforts to improve the performance of steam turbine plants have resulted in the efforts of the parties concerned to develop ultra-high pressure and high-pressure turbines, and some units are soon to realize this. The steam condition at the turbine inlet of this newly developed ultra-high pressure high temperature turbine is the same as the conventional pressure / temperature 246 kg / cm 2 g / 5
It is 316 kg / cm 2 g / 566 ° C against 38 ° C. On the other hand, when we turn our eyes around the world, we have improved this steam condition to 316 kg / cm.
Development of ultra high-pressure high-temperature turbines of 2 g / 593 ° C and 352 kg / cm 2 g / 593 ° C class is also in progress. These ultra high pressure and high temperature turbines are basically constructed as a two-stage reheat type steam turbine plant in combination with a boiler having a two-stage reheater. Hereinafter, a typical one will be described with reference to the drawings.

すなわち、第2図において、ボイラ1で発生した主蒸
気は主蒸気管2を通って超高圧タービン3に導かれ、そ
の内部で膨張して仕事を行ない、排気として第1段低温
再熱蒸気管4を介して第1段再熱器5に送られる。この
超高圧タービン排気は第1段再熱器5において再び加熱
され、温度の高い再熱蒸気となって第1段高温再熱蒸気
管6を通して高圧タービン7に導入され、そこで膨張し
て仕事を行ない、排気として第2段低温再熱蒸気管8を
介して第2段再熱器9に送られる。この高圧タービ排気
は第2段再熱器9において加熱され、温度の高い再熱蒸
気となって第2段高温再熱蒸気10を通して中圧タービン
11に導かれ、その内部で膨張して仕事を行ない、排気と
して低温蒸気管12を介して低圧タービン13に送られる。
この中圧タービン排気は低圧タービン13内でも膨張して
仕事を行ない、その後復水器14に排出されて循環水ポン
プ(図示せず)によって送られる冷却水と熱交換して復
水となる。この復水は復水ポンプ15により抽出され、低
圧給水加熱器16、脱気器17を経て加熱され、さらに給水
ポンプ18により加圧されて高圧給水加熱器19を経てボイ
ラ1に戻り、一つのサイクルが完了する。なお、図中符
号20は主蒸気止め弁、21a,21bは再熱蒸気止め弁をそれ
ぞれ示し、また、符号22および23a,23bは主蒸気加減弁
および再熱蒸気加減弁であって、超高圧タービン3また
は高圧タービン7、中圧タービン11および低圧タービン
13に流れる主蒸気または再熱蒸気の流量を調節してそれ
ぞれの出力を制御するものである。
That is, in FIG. 2, the main steam generated in the boiler 1 is guided to the ultra-high pressure turbine 3 through the main steam pipe 2, expands and performs work inside the main steam pipe 3, and is exhausted as a first-stage low-temperature reheat steam pipe. It is sent to the first stage reheater 5 via 4. This ultra-high pressure turbine exhaust gas is reheated in the first-stage reheater 5, becomes high-temperature reheated steam, and is introduced into the high-pressure turbine 7 through the first-stage high-temperature reheat steam pipe 6, where it expands to perform work. The exhaust gas is sent to the second stage reheater 9 through the second stage low temperature reheat steam pipe 8 as exhaust gas. This high-pressure turbine exhaust gas is heated in the second-stage reheater 9 and becomes high-temperature reheated steam through the second-stage high-temperature reheated steam 10 to the intermediate-pressure turbine.
It is guided to 11, is expanded and performs work inside, and is sent to the low pressure turbine 13 via the low temperature steam pipe 12 as exhaust gas.
This medium-pressure turbine exhaust expands and performs work in the low-pressure turbine 13 as well, and is then discharged to the condenser 14 and exchanges heat with cooling water sent by a circulating water pump (not shown) to become condensed water. This condensate is extracted by a condensate pump 15, heated through a low-pressure feed water heater 16 and a deaerator 17, further pressurized by a feed water pump 18, returned to the boiler 1 through a high-pressure feed water heater 19, The cycle is complete. In the figure, reference numeral 20 indicates a main steam stop valve, 21a and 21b indicate reheat steam stop valves, and reference numerals 22 and 23a and 23b indicate a main steam control valve and a reheat steam control valve, which are super high pressure. Turbine 3 or high pressure turbine 7, medium pressure turbine 11 and low pressure turbine
The output of each is controlled by adjusting the flow rate of the main steam or reheated steam flowing in 13.

ところで、このような二段再熱式蒸気タービンプラン
トにおいては、タービン起動停止時のボイラ負荷とター
ビン負荷との不適合を緩和し、また、各再熱器5,9へ冷
却用蒸気を供給する等の目的からタービンバイパス系が
設けられる。すなわち、超高圧タービン3に対するもの
として主蒸気管2と第1段低温再熱蒸気管4とを結超高
圧タービンバイパス弁24を有する超高圧タービンバイパ
ス管25が、また、高圧タービン7には第1段高温再熱蒸
気管6と第2段低温再熱蒸気管8とを連絡する高圧ター
ビンバイパス弁26を備えた高圧タービンバイパス管27が
各々設けられ、起動時に第1段再熱器5に対しては減温
器28により温度調節された蒸気が、また第2段再熱器9
に対しては減温器29により温度調節された蒸気がそれぞ
れ供給されるようになっている。さらに、起動時の上記
冷却用蒸気の排出、さらにプラント負荷しゃ断等が発生
したときに主蒸気等を中圧タービン11および低圧タービ
ン13を経由せず、直接復水器14に逃がすために第2段高
温再熱蒸気管10と復水器14とを結ぶ中,低圧タービンバ
イパス弁30を有する中,低圧タービンバイパス管31が設
けられる。なお、図中符号32は減温器であって、複水器
14に排出される蒸気を適温に冷却するために設けられ
る。さらに、符号33,34は逆止弁を、また符号35は発電
機をそれぞれ示している。
By the way, in such a two-stage reheat type steam turbine plant, the mismatch between the boiler load and the turbine load at the time of starting and stopping the turbine is alleviated, and the cooling steam is supplied to each reheater 5 and 9. A turbine bypass system is provided for this purpose. That is, an ultra-high pressure turbine bypass pipe 25 having an ultra-high pressure turbine bypass valve 24 that connects the main steam pipe 2 and the first-stage low temperature reheat steam pipe 4 to the ultra-high pressure turbine 3 is provided. A high-pressure turbine bypass pipe 27 having a high-pressure turbine bypass valve 26 that connects the first-stage high-temperature reheat steam pipe 6 and the second-stage low-temperature reheat steam pipe 8 is provided respectively, and the high-pressure turbine bypass pipe 27 is provided in the first-stage reheater 5 at the time of startup. On the other hand, the steam whose temperature has been adjusted by the desuperheater 28 is fed to the second stage reheater 9 again.
The steam whose temperature is adjusted by the desuperheater 29 is supplied to each of the above. Further, in order to discharge the cooling steam at the time of start-up and further to let the main steam or the like escape directly to the condenser 14 without passing through the intermediate-pressure turbine 11 and the low-pressure turbine 13 when the plant load is cut off, etc. A middle low-pressure turbine bypass pipe 31 is provided while connecting the stage high-temperature reheat steam pipe 10 and the condenser 14 with a low-pressure turbine bypass valve 30. In the figure, reference numeral 32 is a desuperheater,
It is provided to cool the steam discharged to 14 to an appropriate temperature. Further, reference numerals 33 and 34 denote check valves, and reference numeral 35 denotes a generator.

(発明が解決しようとする問題点) 上記構成により二段再熱式蒸気タービンプラントは超
高圧高温タービンの最も典型的なものであるが、タービ
ン入口蒸気条件がより高い圧力に変遷するときには超高
圧タービン3の排気圧力の上昇について考慮しておく必
要がある。この超高圧タービン3における排気圧力の上
昇は、たとえば超高圧タービン3の以外の高圧タービン
7の再熱蒸気加減弁23aの開操作により回転数を上げて
行くときなどに、超高圧タービン3の主蒸気加減弁22の
シート面から漏洩して主蒸気が超高圧タービン3の内部
に流れてそこに滞留することから発生する。先に述べた
例の主蒸気圧力が352kg/cm2g級ではこの排気圧力は従来
の水準と比べ約2倍にもなる。こうした排気圧力のもと
では高速で回される超高圧タービ3の羽根車と残留蒸気
との間の摩擦が激しくなり、メタル温度が著しく上昇す
るいわゆる風損による発熱が引き起こされ、特に、羽根
車の周速の速い部分では材料強度に大きな不安が生じて
くる。
(Problems to be Solved by the Invention) Although the two-stage reheat type steam turbine plant is the most typical one of the ultra-high pressure high temperature turbine due to the above configuration, when the turbine inlet steam condition changes to a higher pressure, the ultra high pressure It is necessary to consider the increase in the exhaust pressure of the turbine 3. The rise in exhaust pressure in the ultra-high pressure turbine 3 is caused by the main pressure of the ultra-high pressure turbine 3 being increased when the rotational speed is increased by opening the reheat steam control valve 23a of the high-pressure turbine 7 other than the ultra-high pressure turbine 3, for example. This occurs because the main steam leaks from the seat surface of the steam control valve 22 and the main steam flows inside the ultra-high pressure turbine 3 and stays there. When the main steam pressure in the above-mentioned example is 352 kg / cm 2 g class, this exhaust pressure is about twice as high as the conventional level. Under such exhaust pressure, the friction between the impeller of the ultra-high pressure turbine 3 rotated at high speed and the residual steam becomes intense, causing heat generation due to so-called wind loss that causes the metal temperature to rise significantly. In the part where the peripheral speed is fast, there is great concern about the material strength.

この風損による発熱に対処する一つの方策は超高圧タ
ービン3に冷却用蒸気を導く方法である。すなわち、起
動初期から主蒸気加減弁22を開けて主蒸気を超高圧ター
ビン3に導入し、羽根車等が冷却用蒸気により冷却され
るような起動方法を採用することが考えられる。
One measure to deal with the heat generation due to the windage loss is to introduce cooling steam to the ultra-high pressure turbine 3. That is, it is conceivable to open the main steam control valve 22 from the initial stage of introduction to introduce the main steam into the ultra-high pressure turbine 3 and employ a starting method in which the impeller or the like is cooled by the cooling steam.

しかしながら、このような起動の進め方においては、
たとえば導入蒸気とメタル温度とのマッチングのために
超高圧タービン3、高圧タービン7、中圧タービン11お
よび低圧タービン13の全部が監視の対象から外せなくな
り、メタル温度等を同時に監視しながら蒸気量を調節す
るなどの操作が極めて複雑化し、制御性が低下するのを
免れ難いという問題がある。
However, in this way of starting up,
For example, because of the matching of the introduced steam with the metal temperature, all of the ultra-high pressure turbine 3, the high-pressure turbine 7, the intermediate-pressure turbine 11 and the low-pressure turbine 13 cannot be excluded from monitoring, and the amount of steam is monitored while simultaneously monitoring the metal temperature and the like. There is a problem in that it is difficult to avoid deterioration of controllability due to extremely complicated operations such as adjustment.

そこで、本発明の目的はタービン起動に臨んで、同時
に監視の対象となるタービン数を少なくして制御性を高
め、しかも超高圧タービンの排気圧力が上昇するのを抑
制することのできる二段再熱式蒸気タービプラントの起
動方法を提供することにある。
Therefore, an object of the present invention is to improve the controllability by reducing the number of turbines to be monitored at the same time as starting the turbine, and also to suppress the exhaust pressure of the ultra-high pressure turbine from rising. It is to provide a method for starting a thermal steam turbine plant.

〔発明の構成〕[Structure of Invention]

(問題点を解決するための手段) 上記課題を解決するために本発明に係る起動方法は超
高圧タービンと高圧タービンと中圧タービンと低圧ター
ビンとからなるタービン系、第1段再熱器と第2段再熱
器とからなる再熱系、超高圧タービンバイパス系と高圧
タービンバイパス系と中,低圧タービンバイパス系とか
らなるタービンバイパス系、各々出力制御に用いられる
超高圧タービン用の第1の制御弁、高圧タービン用の第
2の制御弁、中,低圧タービン用の第3の制御弁を有す
る二段再熱式蒸気タービンプラントの起動方法におい
て、タービ停止状態から回転数が定速に対するまで中圧
および低圧タービンに第2段再熱器から送られる再熱蒸
気の一部を導くように第1および第2の制御弁を閉止し
たまま、第3の制御弁のみを制御し、かつ残りの再熱蒸
気は、中,低圧タービンバイパス系にて処理し、その場
合超高圧および高圧タービンの内部圧力は共に略真空に
保持し、次に、超高圧タービンに主蒸気の一部を、そし
て高圧タービンに第1段再熱器からの再熱蒸気の一部を
それぞれ供給するように第1の制御弁および第2の制御
弁を制御し、かつ残りの主蒸気および再熱蒸気はタービ
ンバイパス系にて処理し、その場合超高圧タービンの排
気圧力が第1段再熱器の圧力と、高圧タービンの排気圧
力は第2段再熱器の圧力とそれぞれ平衡するように保持
することを特徴とする。
(Means for Solving Problems) In order to solve the above problems, a starting method according to the present invention is a turbine system including an ultrahigh pressure turbine, a high pressure turbine, an intermediate pressure turbine and a low pressure turbine, and a first stage reheater. A reheat system including a second-stage reheater, a turbine bypass system including an ultra-high pressure turbine bypass system, a high-pressure turbine bypass system, and a medium- and low-pressure turbine bypass system, and a first for an ultra-high-pressure turbine used for output control. In the method for starting a two-stage reheat type steam turbine plant having a control valve of No. 1, a second control valve for high-pressure turbines, and a third control valve for medium- and low-pressure turbines, the rotation speed is constant with respect to a constant speed from a turbulent stop state. Controlling only the third control valve while closing the first and second control valves to direct a portion of the reheated steam sent from the second stage reheater to the medium and low pressure turbines, and The rest The reheated steam is processed by the middle and low pressure turbine bypass systems, in which case the internal pressures of the ultra high pressure and high pressure turbines are both maintained at approximately vacuum, and then part of the main steam is fed to the ultra high pressure turbine. The first control valve and the second control valve are controlled so as to supply a part of the reheated steam from the first stage reheater to the high pressure turbine, and the remaining main steam and reheated steam are the turbine. By processing in a bypass system, it is necessary to maintain the exhaust pressure of the ultra-high pressure turbine and the exhaust pressure of the high pressure turbine in equilibrium with the pressure of the first stage reheater and the pressure of the second stage reheater, respectively. Characterize.

(作用) タービン起動操作はタービンバイパス系を用いて起動
に必要な蒸気の状態を得る起動準備過程と、この準備が
できた後に実際に蒸気を各タービンに導き、羽根車の回
転性を徐々に上げて行く起動過程とに大別される。
(Operation) Turbine start-up operation uses the turbine bypass system to obtain the state of steam required for start-up, and after this preparation, steam is actually guided to each turbine to gradually rotate the impeller. It is roughly divided into the starting process of raising.

本発明の特徴とするところはこの起動過程におけるタ
ービン系の各制御弁およびタービンバイパス系の各制御
弁の操作手順にあり、次のように進められる。
The feature of the present invention resides in the operating procedure of each control valve of the turbine system and each control valve of the turbine bypass system in this starting process, and the process proceeds as follows.

すなわち、操作は、初めに中,低圧タービン用の第3
の制御弁が開かれて再熱蒸気の一部が中圧タービンに導
かれ、一定の速度に達するまで回される。なお、このと
き、タービンバイパス系はタービン系で消費される蒸気
量分だけ制御弁を閉めることになる。その場合、超高圧
および高圧タービンの内部圧力は真空に保持するのがこ
の発明の主眼とするところであり、これにより超高圧お
よび高圧タービンの何れも風損が引き起こされず、それ
らの排気の加熱現象が抑制される。また、これは同時に
監視されるタービン数が減少するために制御性を改善す
るのに役立つ。
That is, the operation is initially performed by a third, middle and low pressure turbine
The control valve is opened so that a part of the reheated steam is guided to the medium pressure turbine and is rotated until a constant speed is reached. At this time, the turbine bypass system closes the control valve by the amount of steam consumed in the turbine system. In that case, the main purpose of the present invention is to maintain the internal pressures of the ultra-high pressure and high-pressure turbines in a vacuum, which causes neither the ultra-high pressure nor the high-pressure turbine to cause windage loss, and to prevent the heating phenomenon of their exhausts. Suppressed. It also helps improve controllability due to the reduced number of turbines monitored at the same time.

次に、操作は超高圧タービン用の第1の制御弁および
高圧タービン用の第2の制御弁が開かれる。このために
主蒸気あるいは再熱蒸気が各タービンに各々流れて通気
と併せて負荷を増加しながらの起動が行なわれる。その
場合、超高圧タービンの排気圧力は普通に第1段再熱器
の圧力と、高圧タービンの排気圧力は第2段再熱器の圧
力とそれぞれ平衡させるようにする。
Next, operation opens the first control valve for the ultra high pressure turbine and the second control valve for the high pressure turbine. For this reason, the main steam or reheated steam flows into each turbine to start up while increasing the load together with ventilation. In that case, the exhaust pressure of the ultra-high pressure turbine is normally balanced with the pressure of the first stage reheater, and the exhaust pressure of the high pressure turbine is balanced with the pressure of the second stage reheater.

(実施例) 第1図は本発明の第1実施例に係る装置を示してい
る。ここで、第1図中の第2図に示される構成と同一の
構成には同一の符号が付されており、これらについての
説明は省略する。
(Embodiment) FIG. 1 shows an apparatus according to a first embodiment of the present invention. Here, the same components as those shown in FIG. 2 in FIG. 1 are designated by the same reference numerals, and a description thereof will be omitted.

第1図において、超高圧タービン3の排気側と連絡し
ている第1段低温再熱蒸気管4から分岐された超高圧タ
ービン排気管41の他端は超高圧タービン排気弁42を介し
て復水器14に、また高圧タービン7の排気側と連絡して
いる第2段低温再熱蒸気管8から分岐された高圧タービ
ン排気管43の他端は高圧タービン排気弁44を介して復水
器14にそれぞれ接続されている。
In FIG. 1, the other end of the ultra-high pressure turbine exhaust pipe 41 branched from the first-stage low temperature reheat steam pipe 4 communicating with the exhaust side of the ultra-high pressure turbine 3 is recovered via an ultra-high pressure turbine exhaust valve 42. The other end of the high-pressure turbine exhaust pipe 43 branched from the second-stage low temperature reheat steam pipe 8 communicating with the water tank 14 and the exhaust side of the high-pressure turbine 7 has a condenser via a high-pressure turbine exhaust valve 44. 14 connected to each.

上記装置によるところの起動操作は以下の手順にて進
められる。
The start-up operation by the above-mentioned device proceeds in the following procedure.

(I)起動準備過程 タービン起動に臨んで復水器14の真空度が高められ、
ある水準、例えば600mmHg以上になったときに超高圧タ
ービンバイパス弁25、高圧タービンバイパス弁26および
中,低圧タービンバイパス弁30が開かれる。また、これ
と同時に超高圧タービン排気弁42および高圧タービン排
気弁44も全開される。すると、ボイラ1で発生した蒸気
は主蒸気管2から超高圧タービンバイパス管25に流れ、
減温器28によって冷却されて後、第1段低温再熱蒸気管
4を通って第1段再熱器5に導かれる。なお、このと
き、逆止弁33は減温器28から第1段再熱蒸気管4に流れ
た主蒸気が超高圧タービン3および復水器14へ流れるの
を阻止するように働く。この後、主蒸気は第1段再熱器
5を通る間に温度を回復し、第1段高温再熱蒸気管6を
経て高圧タービンバイパス管27に流れ、減温器29によっ
て冷却され、その後第2段低温再熱蒸気管8を通って第
2段再熱器9に導かれる。なお、ここでも逆止弁34によ
り第2段低温再熱蒸気管8に流れた再熱蒸気が高温ター
ビン7および復水器14に流れるのを阻止する。第2段再
熱器9に流れた主蒸気はそこを通る間に加熱され、温度
を回復して第2段高温再熱蒸気管10を経て中,低圧ター
ビンバイパス管31に流れ、減温器30によって冷却されて
後、その全量が復水器14に排出される。
(I) Startup preparation process The degree of vacuum of the condenser 14 is increased in preparation for the turbine startup,
The super high pressure turbine bypass valve 25, the high pressure turbine bypass valve 26 and the medium and low pressure turbine bypass valve 30 are opened when a certain level, for example, 600 mmHg or more is reached. At the same time, the ultrahigh pressure turbine exhaust valve 42 and the high pressure turbine exhaust valve 44 are also fully opened. Then, the steam generated in the boiler 1 flows from the main steam pipe 2 to the ultra-high pressure turbine bypass pipe 25,
After being cooled by the desuperheater 28, it is led to the first stage reheater 5 through the first stage low temperature reheat steam pipe 4. At this time, the check valve 33 works so as to prevent the main steam flowing from the desuperheater 28 to the first-stage reheat steam pipe 4 from flowing to the ultra-high pressure turbine 3 and the condenser 14. After this, the main steam recovers its temperature while passing through the first-stage reheater 5, flows through the first-stage high-temperature reheat steam pipe 6 to the high-pressure turbine bypass pipe 27, and is cooled by the desuperheater 29. It is guided to the second stage reheater 9 through the second stage low temperature reheat steam pipe 8. Also here, the check valve 34 prevents the reheated steam flowing into the second stage low temperature reheat steam pipe 8 from flowing into the high temperature turbine 7 and the condenser 14. The main steam that has flowed to the second-stage reheater 9 is heated while passing through it, recovers the temperature, and flows through the second-stage high-temperature reheat steam pipe 10 to the middle and low pressure turbine bypass pipes 31 to reduce the temperature. After being cooled by 30, the entire amount is discharged to the condenser 14.

この間、主蒸気止め弁20および再熱蒸気止め弁21a,21
bは全開され、主蒸気または再熱蒸気によって予熱が行
なわれる。また、超高圧タービン排気弁42および高圧タ
ービン排気弁44が全開されているために超高圧タービン
3および高圧タービン7の内部圧力は復水器14の器内圧
力と平衡した圧力、すなわちほぼ真空に近い状態に保持
される。なお、いうまでもなくこの起動準備中には主蒸
気加減弁22および再熱蒸気加減弁23a,23bの開操作は行
なわれない。
During this time, the main steam stop valve 20 and the reheat steam stop valves 21a, 21
b is fully opened and preheated by main steam or reheated steam. Further, since the ultra-high pressure turbine exhaust valve 42 and the high-pressure turbine exhaust valve 44 are fully opened, the internal pressure of the ultra-high pressure turbine 3 and the high-pressure turbine 7 becomes a pressure in equilibrium with the internal pressure of the condenser 14, that is, almost vacuum. It is kept close. Needless to say, the opening operation of the main steam control valve 22 and the reheat steam control valves 23a and 23b is not performed during this start-up preparation.

(II)起動過程 起動操作は、初めに再熱蒸気加減弁23bが微開され
る。すると、第2段高温再熱蒸気管10を流れている再熱
蒸気の一部が再熱蒸気加減弁23bを通って中圧タービン1
1に流れ、その羽根車を回す。その後、再熱蒸気加減弁2
3bの開度が開かれるに従い中圧タービン11の回転速度は
上昇し、定速に達する。同時に低圧タービン13も中圧タ
ービン11の排気で回されて定速に達する。なお、このと
き、中,低圧タービンバイパス弁30の開度は中圧タービ
ン11に導入される再熱蒸気の流量に見合う分が閉じられ
る。
(II) Startup Process In the startup operation, the reheat steam control valve 23b is first slightly opened. Then, a part of the reheated steam flowing through the second-stage high-temperature reheated steam pipe 10 passes through the reheated steam control valve 23b and the intermediate pressure turbine 1
Flow to 1 and turn the impeller. After that, reheat steam control valve 2
As the opening degree of 3b is opened, the rotation speed of the intermediate pressure turbine 11 increases and reaches a constant speed. At the same time, the low-pressure turbine 13 is also rotated by the exhaust of the medium-pressure turbine 11 and reaches a constant speed. At this time, the openings of the middle and low pressure turbine bypass valves 30 are closed by an amount commensurate with the flow rate of the reheated steam introduced into the intermediate pressure turbine 11.

一方、この中圧タービン11等の昇速過程で中圧タービ
ン11および低圧タービン13のメタル温度、伸び差等が正
確に捉えられ、他の監視項目と併せて運転に支障がない
ように調整される。ここでの監視は最も難しい対象の超
高圧タービン3が除かれ、またタービン数も少ないこと
から比較的容易に扱える。
On the other hand, the metal temperature of the medium-pressure turbine 11 and the low-pressure turbine 13 and the difference in expansion are accurately grasped during the speed-up process of the medium-pressure turbine 11, etc., and adjusted so as not to hinder the operation together with other monitoring items. It The super-high pressure turbine 3 which is the most difficult object to monitor is excluded, and the number of turbines is small, so that it can be handled relatively easily.

また、この中圧タービン11等の昇速過程においては超
高圧タービン3および高圧タービン7の羽根車が中圧タ
ービン11の回転数と同じ速度で回される。しかし、この
とき、超高圧タービン3および高圧タービン7の内部は
ほぼ真空に近い状態にあり、冷却用蒸気として働く主蒸
気または再熱蒸気の流れがなくても、風損が生じないた
めに羽根車等が発熱することはない。
Further, in the process of increasing the speed of the intermediate pressure turbine 11 and the like, the impellers of the ultrahigh pressure turbine 3 and the high pressure turbine 7 are rotated at the same speed as the rotation speed of the intermediate pressure turbine 11. However, at this time, the insides of the ultra-high pressure turbine 3 and the high-pressure turbine 7 are in a state close to a vacuum, and even if there is no flow of the main steam or the reheated steam that works as the cooling steam, the windage loss does not occur, so that the blades are not blown. The car does not generate heat.

次に、起動操作は主蒸気加減弁22および再熱蒸気加減
弁23aが微開され、同時に超高圧タービン排気弁42およ
び高圧タービン排気弁44が全閉される。すると、ボイラ
1からの主蒸気の一部は主蒸気管2から超高圧タービン
3に流れ、その羽根車を回す。その後、負荷に見合うよ
うに主蒸気加減弁22の開度が開かれるに従い超高圧ター
ビン3に流入する主蒸気量が増して排気圧力が高くな
り、閉鎖されていた逆止弁33が全開される。このため、
超高圧タービン3内で膨張を遂げた主蒸気は第1段低温
再熱蒸気管5に排出され、超高圧タービンバイパス管24
を流れた主蒸気と共に第1段再熱器5に流れ、そこで温
度を回復して後、第1段高温再熱蒸気管6を通して一部
は再熱蒸気加減弁23aを通って高圧タービン7に導入さ
れてその羽根車を回し、残りは高圧タービンバイパス管
27へと向かう。
Next, in the starting operation, the main steam control valve 22 and the reheat steam control valve 23a are slightly opened, and at the same time, the ultrahigh pressure turbine exhaust valve 42 and the high pressure turbine exhaust valve 44 are fully closed. Then, a part of the main steam from the boiler 1 flows from the main steam pipe 2 to the ultra-high pressure turbine 3 and rotates its impeller. After that, as the opening degree of the main steam control valve 22 is opened to match the load, the amount of main steam flowing into the ultra-high pressure turbine 3 increases and the exhaust pressure increases, and the closed check valve 33 is fully opened. . For this reason,
The main steam that has expanded in the ultra-high pressure turbine 3 is discharged to the first stage low temperature reheat steam pipe 5, and the ultra high pressure turbine bypass pipe 24
Flow into the first-stage reheater 5 together with the main steam flowing therethrough, and after recovering the temperature there, a part of it passes through the first-stage high-temperature reheat steam pipe 6 to the high-pressure turbine 7 through the reheat steam control valve 23a. Introduced to rotate the impeller, the rest is the high pressure turbine bypass pipe
Head to 27.

しかして、再熱蒸気加減弁23aが開かれるに従い高圧
タービン7に流入する再熱蒸気量が増し、その排気圧力
が高くなる。このため、閉鎖されていた逆止弁34が全開
され、再熱蒸気が第2段低温再熱蒸気8に排出され、高
圧タービンバイパス管27を流れた再熱蒸気と共に第2段
再熱器9に流入する。そして、そこを通る間に温度を回
復して第2段高温再熱蒸気管10を通して一部が再熱蒸気
加減弁23bを通って中圧タービン11に導入されてその羽
根車を回し、残りは中,低圧タービンバイパス管31を通
して復水器14に排出される。
Then, as the reheat steam control valve 23a is opened, the amount of reheat steam flowing into the high pressure turbine 7 increases, and the exhaust pressure thereof increases. Therefore, the closed check valve 34 is fully opened, the reheated steam is discharged to the second stage low temperature reheated steam 8, and the second stage reheater 9 is discharged together with the reheated steam flowing through the high pressure turbine bypass pipe 27. Flow into. Then, while passing through it, the temperature is recovered and a part is introduced into the intermediate pressure turbine 11 through the second-stage high temperature reheat steam pipe 10 through the reheat steam control valve 23b to rotate the impeller, and the rest is It is discharged to the condenser 14 through the middle and low pressure turbine bypass pipe 31.

一方、この超高圧タービン3および高圧タービン7の
通気に始まれ起動の際にそれぞれのメタル温度、伸び差
等が正確に捉えられ、他の監視項目と併せて運転に支障
がないように調整される。
On the other hand, starting from the ventilation of the ultra-high pressure turbine 3 and the high-pressure turbine 7, the metal temperature, the difference in expansion, etc. of each are accurately grasped at the time of start-up, and adjustment is made so as not to hinder the operation together with other monitoring items. .

このとき、監視の対象となるタービン数は2台のみで
あり仮に温度条件との関係でこれらが厳しい監視を要請
される場合もそこに注意を集中させることが可能であり
無難に対処できるものである。
At this time, the number of turbines to be monitored is only two, and even if these are required to be strictly monitored due to the temperature condition, it is possible to focus attention on them and to deal with them safely. is there.

この後、起動操作は主蒸気加減弁22および再熱蒸気弁
23a,23bが所定の開度に各々開かれ、同時に超高圧ター
ビンバイパス弁24および高圧タービンバイパス弁26、
中,低圧タービンバイパス弁30がそれぞれ閉じられる。
これにより、ボイラ1から主蒸気管2を通って流れる主
蒸気の全量が超高圧タービン3に向かい、これ以後の蒸
気の流量調節はすべて主蒸気加減弁22に委ねられる。
After this, the starting operation is the main steam control valve 22 and the reheat steam valve.
23a, 23b are each opened to a predetermined opening degree, and at the same time, the super high pressure turbine bypass valve 24 and the high pressure turbine bypass valve 26,
The middle and low pressure turbine bypass valves 30 are closed.
As a result, the total amount of main steam flowing from the boiler 1 through the main steam pipe 2 is directed to the ultra-high pressure turbine 3, and the steam flow control thereafter is entirely entrusted to the main steam control valve 22.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明に係る二段再熱式蒸気ター
ビンプラントの起動方法によれば、同時に監視の対象と
なるタービン数が少なく、たとえば導入蒸気とメタル温
度とのマッチングを図り、あるいは静止部と回転部との
間の伸び差を適正な範囲に保つ蒸気量の調節等が容易で
あるから、二段再熱式蒸気タービンプラントの制御性を
高めることができる。しかも、超高圧タービンの内部圧
力は真空の好条件下に置かれ、風損による発熱が抑えら
れるようになっているから、排気の過熱程度が少ないと
いう有用な効果を得ることが可能である。
As described above, according to the start-up method of the two-stage reheat steam turbine plant according to the present invention, the number of turbines to be monitored is small at the same time, for example, matching the introduced steam and the metal temperature, or the stationary part. Since it is easy to adjust the amount of steam that keeps the expansion difference between the rotating part and the rotating part within an appropriate range, the controllability of the two-stage reheat steam turbine plant can be improved. Moreover, since the internal pressure of the ultra-high pressure turbine is placed under favorable conditions of vacuum and heat generation due to windage loss is suppressed, it is possible to obtain a useful effect that the degree of overheating of exhaust gas is small.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法に適用される装置を含む二段再熱式
蒸気タービンプラントの系統図、第2図は従来の二段再
熱式蒸気タービンプラントを示す系統図である。 1……ボイラ、3……超高圧タービン 5……第1段再熱器、7……高圧タービン 9……第2段再熱器、11……中圧タービン 13……低圧タービン、22……主蒸気加減弁 23a,23b……再熱蒸気加減弁 24……超高圧タービンバイパス弁 26……高圧タービンバイパス弁 30……中,低圧タービンバイパス弁 33,34……逆止弁、41……超高圧タービン排気管 42……超高圧タービン排気弁 43……高圧タービン排気管 44……高圧タービン排気弁
FIG. 1 is a system diagram of a two-stage reheat type steam turbine plant including an apparatus applied to the method of the present invention, and FIG. 2 is a system diagram showing a conventional two-stage reheat type steam turbine plant. 1 ... Boiler, 3 ... Super high pressure turbine 5 ... First stage reheater, 7 ... High pressure turbine 9 ... Second stage reheater, 11 ... Medium pressure turbine 13 ... Low pressure turbine, 22 ... Main steam control valve 23a, 23b Reheat steam control valve 24 Super high pressure turbine bypass valve 26 High pressure turbine bypass valve 30 Medium / low pressure turbine bypass valve 33, 34 Check valve 41 … Ultra high pressure turbine exhaust pipe 42 …… Ultra high pressure turbine exhaust valve 43 …… High pressure turbine exhaust pipe 44 …… High pressure turbine exhaust valve

フロントページの続き (72)発明者 梶谷 一郎 東京都江東区豊洲3丁目2番16号 石川 島播磨重工業株式会社豊洲総合事務所内 (56)参考文献 特開 昭60−159311(JP,A) 特開 昭53−102401(JP,A)Continuation of the front page (72) Inventor Ichiro Kajitani 3-2-16 Toyosu, Koto-ku, Tokyo Ishikawa Shima Harima Heavy Industries Co., Ltd. Toyosu General Office (56) Reference JP-A-60-159311 (JP, A) JP Sho 53-102401 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】超高圧タービと高圧タービンと中圧タービ
ンと低圧タービンとからなるタービン系、第1段再熱器
と第2段再熱器とからなる再熱系、超高圧タービンバイ
パス系と高圧タービンバイパス系と中,低圧タービンバ
イパス系とからなるタービンバイパス系、各々出力制御
に用いられる超高圧タービン用の第1の制御弁、高圧タ
ービ用の第2の制御弁、中,低圧タービン用の第3の制
御弁を有する二段再熱式蒸気タービンプラントの起動方
法において、タービン停止状態から回転数が定速に達す
るまで前記中圧および低圧タービンに前記第2段再熱器
から送られる再熱蒸気の一部を導くように前記第1およ
び第2の制御弁を閉止したまま、前記第3の制御弁のみ
を制御し、かつ残りの再熱蒸気は前記中,低圧タービン
バイパス系にて処理し、その場合前記超高圧および高圧
タービンの内部圧力は共に略真空に保持し、次に、前記
超高圧タービンに主蒸気の一部を、そして前記高圧ター
ビに前記第1段再熱器から再熱蒸気の一部をそれぞれ供
給するように前記第1の制御弁および第2の制御弁を制
御し、かつ残りの主蒸気および再熱蒸気は前記タービン
バイパス系にて処理し、その場合前記超高圧タービンの
排気圧力が前記第1段再熱器の圧力と、前記高圧タービ
ンの排気圧力は第2段再熱器の圧力とそれぞれ平衡する
ように保持することを特徴とする二段再熱式蒸気タービ
ンプラントの起動方法。
1. A turbine system including an ultra-high pressure turbine, a high-pressure turbine, an intermediate-pressure turbine, and a low-pressure turbine, a reheat system including a first-stage reheater and a second-stage reheater, and an ultra-high-pressure turbine bypass system. Turbine bypass system consisting of high-pressure turbine bypass system and middle and low-pressure turbine bypass system, first control valve for ultra-high-pressure turbine used for output control, second control valve for high-pressure turbine, middle- and low-pressure turbine In the method for starting a two-stage reheat steam turbine plant having a third control valve, the second-stage reheater is fed to the intermediate-pressure and low-pressure turbines from a turbine stopped state until the rotation speed reaches a constant speed. Only the third control valve is controlled while the first and second control valves are closed so as to guide a part of the reheated steam, and the remaining reheated steam is supplied to the middle and low pressure turbine bypass systems. Where In that case, the internal pressures of the ultra-high pressure and high-pressure turbines are both maintained at approximately vacuum, and then a portion of the main steam is re-heated to the ultra-high-pressure turbine and re-heated from the first-stage reheater to the high-pressure turbine. The first control valve and the second control valve are controlled so as to supply a part of the hot steam, respectively, and the remaining main steam and reheated steam are processed in the turbine bypass system, and in that case, A two-stage reheat system in which the exhaust pressure of the high-pressure turbine and the exhaust pressure of the high-pressure turbine are held in equilibrium with the pressure of the first-stage reheater and the pressure of the second-stage reheater, respectively. How to start a steam turbine plant.
JP62244038A 1987-09-30 1987-09-30 How to start up a two-stage reheat steam turbine plant Expired - Lifetime JP2558740B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62244038A JP2558740B2 (en) 1987-09-30 1987-09-30 How to start up a two-stage reheat steam turbine plant
US07/251,177 US4873827A (en) 1987-09-30 1988-09-30 Steam turbine plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62244038A JP2558740B2 (en) 1987-09-30 1987-09-30 How to start up a two-stage reheat steam turbine plant

Publications (2)

Publication Number Publication Date
JPS6487809A JPS6487809A (en) 1989-03-31
JP2558740B2 true JP2558740B2 (en) 1996-11-27

Family

ID=17112787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62244038A Expired - Lifetime JP2558740B2 (en) 1987-09-30 1987-09-30 How to start up a two-stage reheat steam turbine plant

Country Status (1)

Country Link
JP (1) JP2558740B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018003829A (en) * 2016-06-27 2018-01-11 ドゥサン ヘヴィー インダストリーズ アンド コンストラクション カンパニー リミテッド Windage loss prevention device for steam turbine
CN110005487A (en) * 2019-04-19 2019-07-12 上海汽轮机厂有限公司 A kind of starting method of steam turbine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997049903A1 (en) * 1996-06-26 1997-12-31 Hitachi, Ltd. Single shaft combined cycle plant and method for operating the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5926765B2 (en) * 1977-02-18 1984-06-30 株式会社日立製作所 Control method and device for a turbine plant having a turbine bypass line
JPS5838305A (en) * 1981-08-31 1983-03-05 Toshiba Corp 2-stage reheat turbine
JPS60159311A (en) * 1984-01-31 1985-08-20 Toshiba Corp Starting method for steam turbine
JPS60204907A (en) * 1984-03-29 1985-10-16 Toshiba Corp Operating method for reheat steam turbine plant
JPS6165003A (en) * 1984-09-04 1986-04-03 Hitachi Ltd Controlling method for turbine in intermediate pressure starting
JPS6193208U (en) * 1984-11-23 1986-06-16

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018003829A (en) * 2016-06-27 2018-01-11 ドゥサン ヘヴィー インダストリーズ アンド コンストラクション カンパニー リミテッド Windage loss prevention device for steam turbine
CN110005487A (en) * 2019-04-19 2019-07-12 上海汽轮机厂有限公司 A kind of starting method of steam turbine

Also Published As

Publication number Publication date
JPS6487809A (en) 1989-03-31

Similar Documents

Publication Publication Date Title
JP3890104B2 (en) Combined cycle power plant and steam supply method for cooling the same
JP3681464B2 (en) Combined cycle system
US7765807B2 (en) Method for warming-up a steam turbine
EP2423460B1 (en) Systems and methods for pre-warming a heat recovery steam generator and associated steam lines
JP2011102540A (en) Steam turbine power generation facility and method of operating the same
US5850739A (en) Steam turbine power plant and method of operating same
JP4503995B2 (en) Reheat steam turbine plant and operation method thereof
JP2558740B2 (en) How to start up a two-stage reheat steam turbine plant
JP3559574B2 (en) Startup method of single-shaft combined cycle power plant
JP2563375B2 (en) How to start up a two-stage reheat steam turbine plant
JPH1193693A (en) Method of operating combined cycle power plant, and combined cycle power plant
JP2004245184A (en) Reheat steam turbine plant and starting method for the plant
JPH09303114A (en) Steam cycle for combined cycle using steam cooling type gas turbine
JPH0786321B2 (en) Start-up method and apparatus for two-stage reheat steam turbine plant
JP4395275B2 (en) Operation method of combined plant
JP3559573B2 (en) Startup method of single-shaft combined cycle power plant
JP2558740C (en)
JP2677598B2 (en) Start-up method for two-stage reheat steam turbine plant.
JP3133183B2 (en) Combined cycle power plant
JP2999122B2 (en) Control equipment for complex plant
JPH07145706A (en) Steam turbine
JP4118301B2 (en) Operation method of combined cycle power plant
JP3790146B2 (en) Combined cycle power plant and operation method thereof
JP3880746B2 (en) Waste heat recovery device and operation method thereof
AU2008202733A1 (en) Method and apparatus for cooling a steam turbine