JPS5838305A - 2-stage reheat turbine - Google Patents

2-stage reheat turbine

Info

Publication number
JPS5838305A
JPS5838305A JP13658881A JP13658881A JPS5838305A JP S5838305 A JPS5838305 A JP S5838305A JP 13658881 A JP13658881 A JP 13658881A JP 13658881 A JP13658881 A JP 13658881A JP S5838305 A JPS5838305 A JP S5838305A
Authority
JP
Japan
Prior art keywords
pressure turbine
temperature
low
pipe
bypass valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13658881A
Other languages
Japanese (ja)
Inventor
Etsuichi Hatano
羽田野 悦一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP13658881A priority Critical patent/JPS5838305A/en
Publication of JPS5838305A publication Critical patent/JPS5838305A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating

Abstract

PURPOSE:To shorten a time which starts from a boiler ignition and ends to a turbine draft and to reduce a life consumption rate due to the thermal stress of the turbine, by a method wherein, by the aid of a bypass pipe, steam is charged to a reheater before a turbine draft. CONSTITUTION:An inlet side of a super heater 5 is connected to a first low-temperature reheat pipe 9 with a low-temperature superhigh-pressure turbine bypass valve 23, and a main steam pipe 6 to a first high-temperature reheat pipe 11 with a high-temperature superhigh-pressure turbine. The first low-temperature reheat pipe 9 is connected to a second low-temperature reheat pipe 14 with a low-temperature high-pressure turbine bypass valve 27, and the first high-temperature reheat pipe 11 to a second high-temperature reheat pipe 16 with a high- temperature high-pressure turbine bypass valve 29. Additionally, the second high- temperature reheat pipe 16 is connected to a condenser 19 with a low-pressure turbine bypass valve 31 and a temperature reducer 32. As noted above, a turbine can be cooled by supplying steam to a first reheat 10 and a second reheater 15, and this permits shortening of a time which starts from a boiler ignition and ends to a turbine draft.

Description

【発明の詳細な説明】 本発明は、例えば超高圧タービンからの排気を、−第1
再熱器によって再熱し高圧タービンに供給し、その高圧
タービンからの排気を第2再熱器によって再熱して中圧
タービンに供給するようにした二段再熱タービンに関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for converting exhaust gas from, for example, an ultra-high pressure turbine into
The present invention relates to a two-stage reheat turbine in which exhaust gas is reheated by a reheater and supplied to a high-pressure turbine, and exhaust gas from the high-pressure turbine is reheated by a second reheater and supplied to an intermediate-pressure turbine.

第1図は従来の二段再熱タービンの系統図であって、蒸
気タービンは超高圧タービン1、#タ高圧タービン2、
中 圧タービン3および低圧タービン4工り構成されており
、ボイラの過熱器5において過熱された蒸気は、主蒸気
管6を通り主蒸気止め弁7お工び蒸気加減弁8を経て超
高圧タービン通気以前され、そこで仕事をしだ後第1低
温再熱管9を通って第1再熱器10へ送られる。上記第
1再熱器1oで再熱された蒸気は第1高温再熱管11よ
り第1再熱蒸気止め弁球および第1インタセプト弁13
を経て高圧タービン2に供給され、そこで仕事を行なっ
た後第2低温再熱管14を通って第2再熱器15へ送ら
れ、さらにその第2再熱器15で再熱された蒸気が、第
2高温再熱管16を通り#!2再熱再熱蒸気弁17お工
び第2インタセプト弁18を経て中圧タービン3および
低圧タービン4に順次供給される。そして上記低圧ター
ビン4で仕事を行なった蒸気は復水器19へと送られる
FIG. 1 is a system diagram of a conventional two-stage reheat turbine, in which the steam turbines include an ultra-high pressure turbine 1, a high-pressure turbine 2,
The boiler is composed of an intermediate pressure turbine 3 and four low pressure turbines, and the steam superheated in the superheater 5 of the boiler passes through the main steam pipe 6, the main steam stop valve 7, and the steam control valve 8 before being sent to the ultra-high pressure turbine. It is vented before being vented, and after doing its work there, it is sent to the first reheater 10 through the first low-temperature reheating tube 9. The steam reheated in the first reheater 1o is transferred from the first high temperature reheat pipe 11 to the first reheat steam stop valve ball and the first intercept valve 13.
The steam is supplied to the high-pressure turbine 2 through the steam, and after performing work there, is sent to the second reheater 15 through the second low-temperature reheat pipe 14, and is further reheated in the second reheater 15. Pass through the second high temperature reheat pipe 16 #! The steam is sequentially supplied to the intermediate pressure turbine 3 and the low pressure turbine 4 through the second reheat steam valve 17 and the second intercept valve 18. The steam that has worked in the low pressure turbine 4 is sent to the condenser 19.

一方、前記ボイラの過熱器5の上流側或は下流側は、起
動バイパス弁20&或は20b、および減温器21を有
する起動用バイパス管2ja或はηbに工つて復水器1
9に接続されており、タービンの起動に際してボイラが
らの蒸気がタービン通気に適す)る条件となるまでは、
その蒸気は起動用バイパス管22&または22bt経て
復水@19に導かれる。
On the other hand, on the upstream side or downstream side of the superheater 5 of the boiler, a starting bypass pipe 2ja or ηb having a starting bypass valve 20 & or 20b and a desuperheater 21 is installed to
9 until the steam from the boiler reaches conditions suitable for turbine ventilation when starting the turbine.
The steam is led to the condensate @19 via the startup bypass pipe 22 & or 22bt.

ところで、一般にボイラ点火がらタービン通気可能状態
となるまでの時間は、タービン通気条件を同一とした場
合、ボイラ燃料投入量が多い程短かくなる。
By the way, in general, when the turbine ventilation conditions are the same, the time from boiler ignition to turbine ventilation becoming possible becomes shorter as the amount of boiler fuel input is larger.

しかしながら、従来の上記装置においては、上述のよう
にタービン通気以前には第1再熱器10および第2再熱
器15には蒸気が流れないため、その第1再熱器10お
よび第2再熱器15の過熱防止の点から燃料投入量が制
限され、したがってボイラ点火からタービン通気までの
時間も制限される。したがって、起動、・停止を頻繁に
行なう中間負荷運転に際してはその起動完了迄に長時間
を要し、また時間短縮の意味から最適通気条件以前にタ
ービン通気を行なうような場合には、それだけタービン
での熱応力による寿命消費率も増加する等の問題がある
However, in the above-mentioned conventional device, as mentioned above, steam does not flow into the first reheater 10 and the second reheater 15 before the turbine is vented. The amount of fuel input is limited in order to prevent overheating of the heater 15, and therefore the time from boiler ignition to turbine ventilation is also limited. Therefore, during intermediate load operation that involves frequent startups and shutdowns, it takes a long time to complete the startup, and if the turbine is ventilated before the optimal ventilation conditions to save time, the turbine There are problems such as an increase in the life consumption rate due to thermal stress.

1−−Hを 本発明はこのような点に鑑み、第1再熱器お工び第2再
熱器に対してタービン通気以前においても蒸気を流して
冷却することに工って、ボイラ点火からタービン通気ま
での時間短縮を可能とし、タービンの熱応力による寿命
消費率を低減し得るようにした二段再熱タービンを提供
することを目的とする。
1--H In view of these points, the present invention is designed to cool the first reheater and the second reheater by flowing steam even before the turbine is vented, and to improve the boiler ignition. It is an object of the present invention to provide a two-stage reheat turbine that can shorten the time from start to turbine ventilation and reduce the life consumption rate of the turbine due to thermal stress.

本発明の別の目的は、系統事故時にボイラF、CBfp
ら所内単独運転へ移行する場合、あるいは負荷し中断時
に、過熱器内蒸気を第1再熱器へ、第1再熱器内蒸気を
第2再熱器へ、第2再熱器内蒸気を復水器内へ排出し得
るようにすることによって、過熱器、第1再熱器、第2
再熱器の各々の器内圧力上昇を抑え、ボイラ制御への外
乱を抑え得るようKした二段再熱タービンを提供するこ
とにある。
Another object of the present invention is to provide boiler F, CBfp
When transitioning to in-plant standalone operation, or when the load is interrupted, the steam in the superheater is transferred to the first reheater, the steam in the first reheater is transferred to the second reheater, and the steam in the second reheater is transferred to the second reheater. The superheater, the first reheater, the second
It is an object of the present invention to provide a two-stage reheat turbine which is capable of suppressing pressure rise in each reheater and suppressing disturbance to boiler control.

本発明のさらに他の目的は、起動時の極低流量運転時に
おいて超高圧タービンと高圧タービンの過熱を防止し得
るようにした二段再熱タービンな提供することKある。
Still another object of the present invention is to provide a two-stage reheat turbine capable of preventing overheating of the ultra-high pressure turbine and the high-pressure turbine during extremely low flow rate operation at startup.

以下添付図面を参照して本発明の実施例について説明す
る。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

第2図は本発明の二段再熱タービンの系統図であり、ボ
イラの過熱器5から流出した過熱蒸気は、主蒸気止め弁
7および蒸気加減弁8を経て超高圧タービン1に流入し
そこで仕事を行ない、その後第1低温再熱管9″1Sl
−通って第1再熱器10に送られて再熱され、さらに第
1再熱蒸気止め弁12および第1インタセプト弁13を
経て高圧タービン2に供給される。上記高圧タービン2
に供給されそこで仕事を行なった蒸気は第2低温再熱管
14を通って第2再熱器15に送られ、再熱蒸気が第2
再熱蒸気止め弁17お工び第2インタセプト弁18を経
て中圧タービン3お工び低圧タービン4に順次供給され
、その後復水器19へと送られる。
FIG. 2 is a system diagram of the two-stage reheat turbine of the present invention, in which superheated steam flowing out from the superheater 5 of the boiler flows into the ultra-high pressure turbine 1 through the main steam stop valve 7 and the steam control valve 8, where it flows into the ultra-high pressure turbine 1. work, then the first low temperature reheat tube 9″1Sl
- is sent to the first reheater 10 to be reheated, and further supplied to the high pressure turbine 2 via the first reheat steam stop valve 12 and the first intercept valve 13. The above high pressure turbine 2
The steam that has been supplied to and performed work there is sent to the second reheater 15 through the second low-temperature reheat pipe 14, and the reheated steam is transferred to the second reheater 15.
The steam is sequentially supplied to the intermediate pressure turbine 3 and the low pressure turbine 4 via the reheat steam stop valve 17 and the second intercept valve 18, and then sent to the condenser 19.

これらの構成は従来の二段再熱タービンと全く同一であ
るが、本発明においては、過熱器5の入口側と!!1低
温再熱管9とが低温超高圧タービンバイパス弁nを有す
る第1のバイパス管路24に工つて互いに接続されてお
り、主蒸気管6と第1高温再熱管11とが高温超高圧タ
ービンバイパス弁6を有する第2のバイパス管路26に
よって互いに接続されている。また、#!1低温再熱菅
9は第2低温再熱管14&C低温高圧タービンバイパス
弁nを有する第3のバイパス管路Zに工9接続され、さ
らKgl高温再熱管11は高温高圧タービンバイパス弁
乙を有する第4のバイパス管路間によって5g2高温再
熱管161C接続されている。さらに第2高温再熱管1
6は低圧タービンバイパス弁31お工ヒ減温器諺を有す
る低圧タービンバイパス’W路おによって復水器19に
接続されている。
These configurations are exactly the same as the conventional two-stage reheat turbine, but in the present invention, the inlet side of the superheater 5 and! ! The main steam pipe 6 and the first high temperature reheat pipe 11 are connected to each other through a first bypass line 24 having a low temperature ultra-high pressure turbine bypass valve n, and the main steam pipe 6 and the first high temperature reheat pipe 11 are connected to each other through a first bypass line 24 having a low temperature ultra-high pressure turbine bypass valve n. They are connected to each other by a second bypass line 26 with a valve 6. Also,#! The first low-temperature reheat pipe 9 is connected to a third bypass pipe Z having a second low-temperature reheat pipe 14 and a low-temperature and high-pressure turbine bypass valve n, and the Kgl high-temperature reheat pipe 11 is connected to a third bypass pipe Z having a high-temperature and high-pressure turbine bypass valve n. The 5g2 high temperature reheat pipes 161C are connected by the 4 bypass pipes. Furthermore, the second high temperature reheat pipe 1
6 is connected to the condenser 19 by a low pressure turbine bypass valve 31 having a low pressure turbine bypass 'W' path.

一方、超高圧タービン1および高圧タービン2の出口部
にはそれぞれ超高圧タービン出ロ逆上弁M1高圧タービ
ン出口逆止弁あが設けられている。
On the other hand, an ultra-high-pressure turbine outlet check valve M1 is provided at the outlet of the ultra-high-pressure turbine 1 and the high-pressure turbine 2, respectively.

Lfi=して、タービンの起動に際しタービンバイパス
運転を行なう場合、過熱器50入口流量偽は低温超高圧
タービンバイパス弁路の制御によって流量C11が第1
低温再熱管9側に分岐し、残りの流量G、が過熱器5で
加熱される(第3図参照)。
When the turbine bypass operation is performed at the time of startup of the turbine, Lfi=, the superheater 50 inlet flow rate false is determined by the control of the low temperature ultra-high pressure turbine bypass valve passage so that the flow rate C11 is the first
It branches to the low-temperature reheat pipe 9 side, and the remaining flow rate G is heated by the superheater 5 (see FIG. 3).

過熱器5v出た蒸気流量G、は高温超高圧タービンバイ
パス弁5の制御によって流量huが第1高温再熱管11
儒に流入して、残りの流量Xが蒸気加減弁8によって制
御されて超高圧タービン1に供給される。前記低温超高
圧タービンバイパス弁3を通った流量Cttの蒸気は超
高圧タービン1で仕事をした後の蒸気流量Xと第1低温
再熱管9で合流し、その一部の流量C1Mが低温高圧タ
ービンバイパス弁nの制御に工って第2低温再熱管14
側に流れ、残ジの流量G、が第1再熱器10に流入し再
熱される。
The flow rate G of steam output from the superheater 5V is controlled by the high temperature ultra-high pressure turbine bypass valve 5 so that the flow rate hu is increased to the first high temperature reheat pipe 11.
The remaining flow rate X is controlled by the steam control valve 8 and supplied to the ultra-high pressure turbine 1. The steam having a flow rate Ctt that has passed through the low-temperature ultra-high pressure turbine bypass valve 3 joins the steam flow rate X after doing work in the ultra-high pressure turbine 1 in the first low-temperature reheat pipe 9, and a part of the flow C1M is transferred to the low-temperature high-pressure turbine. The second low temperature reheat pipe 14 is designed to control the bypass valve n.
The remaining flow rate G flows into the first reheater 10 and is reheated.

第1再熱器10を出た流量G、の蒸気は、高温超高圧タ
ービンバイパス弁5を経た蒸気と第1高温再熱管11で
合流し、その一部である流量htaが高温高圧タービン
バイパス弁乙の制御によって第2高温再熱管16へ流入
し、残りの流量yが第1インタセプト弁13の制御によ
って高圧タービン2に流入するO 上記高圧タービン2に流入しそこで仕事を行なった蒸気
は、低温高圧タービンバイパス弁nを経た流量へ、の蒸
気と合流して流量G、となって第2再熱器15で再熱さ
れ、その第2再熱器15を出た蒸気は高温高圧タービン
バイパス弁乙を経たllA’Ah**と第2高温再熱管
16で合流し、流量G4となる。一方、上記第2高温再
熱管16の流量G4のうち流量−ハ、低圧タービンバイ
パス弁31の制御ニよっテ復水器19へ排出され、残り
の流量2が第2インタセプト弁18の制御によって中圧
タービン3に流入し、上記復水器19では中圧タービン
3および低圧タービア4C仕事をした後の流量2と低圧
タービンバイパス弁31を経た流量hallとが合流す
る。
The steam at the flow rate G that exits the first reheater 10 joins the steam that has passed through the high-temperature and ultra-high pressure turbine bypass valve 5 in the first high-temperature reheat pipe 11, and a part of the steam flow rate G is at the high-temperature and high-pressure turbine bypass valve. Steam flows into the second high-temperature reheat pipe 16 under the control of B, and the remaining flow rate y flows into the high-pressure turbine 2 under the control of the first intercept valve 13. The flow rate passes through the high-pressure turbine bypass valve n, and the steam merges with the flow rate G to become a flow rate G, which is reheated in the second reheater 15. It merges with llA'Ah** that has passed through B at the second high temperature reheating pipe 16, resulting in a flow rate of G4. On the other hand, of the flow rate G4 of the second high-temperature reheat pipe 16, the flow rate -c is discharged to the condenser 19 under the control of the low-pressure turbine bypass valve 31, and the remaining flow rate 2 is intermediated under the control of the second intercept valve 18. The flow rate 2 flows into the pressure turbine 3, and in the condenser 19, the flow rate 2 after performing work on the intermediate pressure turbine 3 and the low pressure turbine 4C and the flow rate hall that has passed through the low pressure turbine bypass valve 31 are combined.

−したが)て%高温超高圧タービンバイパス弁には主蒸
気ライン圧力に対して、また高温高圧タービンバイパス
弁9は第1高温再熱ライン圧カに対して、さらに低圧タ
ービンバイパス弁31は第2高温再熱ツイン圧力に対し
て、タービンバイパス運転中には各々の圧力を一定値忙
制御する一次圧カ調整弁として働き、タービンバイパス
運転完了から高負荷域では負荷に対応した圧力に一定バ
イアス量を加えた圧力を設定値とする一次圧カ逃し弁と
して働らく。
- However), the high temperature and ultra high pressure turbine bypass valve 9 is connected to the main steam line pressure, the high temperature and high pressure turbine bypass valve 9 is connected to the first high temperature reheat line pressure, and the low pressure turbine bypass valve 31 is connected to the first high temperature reheat line pressure. 2 For high-temperature reheat twin pressure, it acts as a primary pressure adjustment valve that controls each pressure to a constant value during turbine bypass operation, and after turbine bypass operation is completed, it maintains a constant bias to the pressure corresponding to the load in the high load range. Acts as a primary pressure relief valve whose set value is the added pressure.

第4図は、高温超高圧タービンバイパス弁5、高温高圧
タービンバイパス弁乙および低圧タービンバイパス弁3
1における負荷と設定値の関係を示す。図中、横軸は負
荷を示し、縦軸は圧力を示し、また−はタービンバイパ
ス運転完了時の負荷、P。
Figure 4 shows a high temperature ultra-high pressure turbine bypass valve 5, a high temperature high pressure turbine bypass valve B, and a low pressure turbine bypass valve 3.
1 shows the relationship between load and setting value in No. 1. In the figure, the horizontal axis shows the load, and the vertical axis shows the pressure, or the load at the completion of the turbine bypass operation, P.

はり、に対応した圧力、実線1.は負荷に対応した圧力
線、ΔPは一定バイアス量、l′は負荷に対応した設定
値をそれぞれ示している。
The pressure corresponding to the beam, solid line 1. indicates a pressure line corresponding to the load, ΔP indicates a constant bias amount, and l' indicates a set value corresponding to the load.

また、低温超高圧タービンバイパス弁路は超高圧タービ
ン通過流量の関数として定められた流量を流す制御弁で
あり、低温高圧タービンバイパス弁γは高圧タービン通
過流1の関数として定められた流量を流す制御弁である
Furthermore, the low temperature ultra-high pressure turbine bypass valve passage is a control valve that allows a flow rate determined as a function of the ultra high pressure turbine passing flow rate to flow, and the low temperature and high pressure turbine bypass valve γ allows a flow rate to flow determined as a function of the high pressure turbine passing flow rate 1. It is a control valve.

ところで、第3図において明らかにG、 = G、 :
Go  ここで、CI! ”αx ao−(1)、C1
M =βxa0=<2)とすると、 G+ =Go −C+ t = (1−α) xco−
(3)石=G、−x=(1−α) xGo−x    
・・・(4)Gm =Cm5 ”7=βxGo +y 
        ”・(5)h□=G4−G、= (1
−β)xco−y     ・・・(6)Q、 jll
Iz+(:、、−(:、、==iz+αXG、−βXG
、    ・・・(7)11、。xQ4−2wQ、−Z
            ”・(8)さらに、αを超高
圧タービン通過量Xの関数、βを高圧タービン通過量y
の関数として α=αe x  (1−x/alj) /冨β* x (1−y/Go) とすると、 (1)よ!l   C+m−α、X  (G、−1) 
     ・  C1う(2)工 リ   C,−β@
  ×   (GO−y)       ・・・ (2
す(3)よp   G、=C0−αa x  (Go 
 −X)   ・(3’)(4)よ’)   hl!=
(1−αe )  X  (Go  −x)  −(4
)(5)工り Q、 =β@ ×(Gl+ −3’) 
+1   ・・・(5′)(6)工り  −=(1−β
。) ×(Go −y)  ・・・(6′)(7)より
 G、 =、+αo x (G、−x)−β×(Go 
−y)・・・  (7り しかして、タービン通気以前の状態においては、zxQ
、y=xo * ZHOであるから(1つ乃至(7′)
および(8)式から C11”α。XG0 C雪、=β。 XG。
By the way, in Figure 3 it is clear that G, = G, :
Go here, CI! ”αx ao-(1), C1
M = βxa0 = < 2), then G+ = Go -C+ t = (1-α) xco-
(3) Stone = G, -x = (1-α) xGo-x
...(4) Gm = Cm5 ”7=βxGo +y
”・(5)h□=G4−G,=(1
-β)xco-y...(6)Q, jll
Iz+(:,,-(:,,==iz+αXG,-βXG
, ...(7)11,. xQ4-2wQ, -Z
”・(8) Furthermore, α is a function of the ultra-high pressure turbine passing amount X, and β is the high pressure turbine passing amount y.
As a function of α=αe x (1-x/alj) /Fu β* x (1-y/Go), then (1)! l C+m-α,X (G,-1)
・ C1U(2) ri C, -β@
× (GO-y) ... (2
(3) yo p G, = C0-αa x (Go
-X) ・(3')(4)yo') hl! =
(1−αe) X (Go −x) −(4
) (5) Machining Q, = β @ × (Gl+ -3')
+1 ...(5') (6) Machining -=(1-β
. ) × (Go -y) ... (6') From (7) G, =, +αo x (G, -x) - β × (Go
-y)... (7 However, in the state before turbine ventilation, zxQ
, since y=xo * ZHO (1 to (7')
And from equation (8), C11”α.XG0 C snow, =β.XG.

G、=(1−α。)XG0 h+*  =  (1−α。)X% G、 =β。XGo bH=  (1−β。) ×q G、=(α。−β。)”XG。G, = (1-α.)XG0 h+*       -α.)X% G, = β. XGo bH=     -β.) ×q G, = (α.-β.)”XG.

b、。xQ。b. xQ.

となる。すなわち、過熱器入口流量G0は低温超高圧タ
ービンバイパス弁路へ流量α、×偽だけ分岐し、過熱器
5お工び高温超高圧タービンバイパス弁5には残りの流
量(1−α。) XGO2>鳴れる。低温超高圧タービ
ンバイパ弁流量α。XGoは低温高圧タービンバイパス
弁nおよび第2再熱器15へ流量AX鳴を汁岐し、第1
再熱器10に流れ込む残りの流量(α。−^)Goは高
温超高圧タービンバイパス弁δを経た流量(1−α。)
×偽と合流して、高温高圧タービンバイパス弁乙へ流量
(1−β。)XGoが流れる。高温高圧タービンバイパ
ス弁流量(1−β。)XG0は第2再熱器流量β。XG
、と合流して第2高温再熱流量G0となり、低圧タービ
ンバイパス弁31にも流量G0が流れ復水器19へ排出
されろ。
becomes. That is, the superheater inlet flow rate G0 is branched to the low-temperature ultra-high pressure turbine bypass valve path by the flow rate α, × false, and the remaining flow rate (1-α.) to the superheater 5 and high-temperature ultra-high pressure turbine bypass valve 5 is >Can ring. Low temperature ultra-high pressure turbine bypass valve flow rate α. XGo diverts the flow rate AX to the low temperature and high pressure turbine bypass valve n and the second reheater 15, and
The remaining flow rate flowing into the reheater 10 (α.-^) Go is the flow rate (1-α.) passing through the high-temperature ultra-high pressure turbine bypass valve δ.
Flow rate (1-β.)XGo flows to the high temperature and high pressure turbine bypass valve B by merging with the High temperature and high pressure turbine bypass valve flow rate (1-β.) XG0 is the second reheater flow rate β. XG
, and becomes the second high temperature reheat flow rate G0, and the flow rate G0 also flows through the low pressure turbine bypass valve 31 and is discharged to the condenser 19.

一方、タービンにも通気を行ない、その通気量が変化し
た場合、すなわち超高圧タービン流量がxtらx’mx
+Δ嵩に変化したとすると、(1′) より Δctt
”σ1! −CI! =−α。×ΔX(3′)  より
 ΔG、 =G’−G、 ==α。×Δx(4′)より
 ΔhIt =h’ll −ha1=+ (1−α。)
×Δx(7)よ5  Δa、 =CF−G、 = (1
−α。)×ΔXとなる@すなわち、超高圧タービン流量
増加ΔXに対して、低温超高圧タービンバイパス弁路は
流量へ×ΔXだけ減少するように作動し、また高温超高
圧タービンバイパス弁5は流量(t −屯)XΔXだけ
減する工うに作動する。したがって、過熱器5の流量は
α。×ΔXだけ増加し、第1再熱1s10の流量も (
1−α。) Xazだけ増加する。同様に高圧タービ/
2の流量がΔy増加すると、低温高圧タービンバイパス
弁4の流量はβ。×Δyだけ減少し、また高温高圧ター
ビンバイパス弁流量は(1−β。)×Δy だけ減少す
る工うに作動し、その結果第1再熱器10の流量はA×
Δyだけ増加し、第2再熱器流量も (1−β。)×Δ
yだけ増加する。また、中圧タービン流量がΔ2増加し
た場合には、低圧り−ビンバイパス弁31の流量がΔ2
だけ減少する。
On the other hand, if the turbine is also ventilated and the aeration rate changes, that is, the ultra-high pressure turbine flow rate changes from xt to x'mx.
If it changes to +Δ bulk, then from (1') Δctt
”σ1! −CI! = −α.×ΔX(3′) From ΔG, =G′−G, ==α.×Δx(4′) From ΔhIt =h’ll −ha1=+ (1−α. )
×Δx(7) yo5 Δa, =CF−G, = (1
−α. ) x ΔX@In other words, with respect to the increase in the flow rate of the ultra-high pressure turbine ΔX, the low-temperature ultra-high pressure turbine bypass valve operates to decrease the flow rate by x ΔX, and the high-temperature ultra-high pressure turbine bypass valve 5 operates to increase the flow rate (t -Tun) It operates to reduce by XΔX. Therefore, the flow rate of the superheater 5 is α. ×ΔX increases, and the flow rate of the first reheating 1s10 also increases (
1-α. ) increases by Xaz. Similarly, high pressure turbine/
When the flow rate of 2 increases by Δy, the flow rate of the low temperature and high pressure turbine bypass valve 4 becomes β. The flow rate of the high-temperature and high-pressure turbine bypass valve is reduced by (1-β.)×Δy, and as a result, the flow rate of the first reheater 10 is A×
The second reheater flow rate also increases by Δy (1-β.)×Δ
Increase by y. Furthermore, when the intermediate pressure turbine flow rate increases by Δ2, the flow rate of the low pressure bottle bypass valve 31 increases by Δ2.
only decreases.

タービンバイパス運転中和は、過熱器入口流量G0は一
定であり、タービン通過流量がG、に到達した時点でタ
ービンバイパス弁は全閉となってタービンバイパス運転
を完了する。すなわち、超高圧タービン流量をX=G0
とすると、 (1′)より C,、=O (3′)より G、 =G0 (4′)工り h+t=0 (7′)より G、 、、=G、−β。×(Go −y
)したがって、超高圧タービン流量Xが流量G、に到達
した時点では、低温超高圧タービンバイパス弁nお工び
高温超高圧タービンバイパス弁δハ全閉し、その結果過
熱器5には流量G0が流れることになり、超高圧タービ
ン1のバイパス運転は完了する。この時、第1再熱器流
量はGo−β。x (Gll−y)であるが、高圧ター
ビン流量y%流量G、 K到達しておれば、G、=G、
となり第1再熱器10にも流量G0が流れること虻なる
。同様に高圧タービン流量yが流量G、に到達すると、
低温高圧タービンバイパス弁27お工び高温高圧タービ
ンバイパス弁3は全閉しており、その結果第2再熱器1
5には流量G0が流れることになり、高圧タービン2の
バイパス、運転は完了する。また中圧タービン流1zが
流量GoKR適した時には、低圧タービンバイパス弁流
量はす、、−oで全閉となっており、中圧タービン3と
)低圧!、=g、y、4Ωザイパδ運転は完了する0と
ころで、蒸気タービンが大形になると超高圧タービン1
も高圧タービン2も動翼先端直径が大きくなり、高馬速
により回転摩擦による風損が増加す今0シがもタービン
バイパス運転中は第1再熱ラインも第2再熱ラインも真
空でない成る圧力に制御されているために超高圧タービ
ン内も高圧タービンも蒸気密度が高く風損の増加を助長
する。
In neutralizing the turbine bypass operation, the superheater inlet flow rate G0 is constant, and when the turbine passing flow rate reaches G, the turbine bypass valve is fully closed and the turbine bypass operation is completed. In other words, the ultra-high pressure turbine flow rate is X=G0
Then, from (1') C,, =O (3') G, =G0 (4') Machining h+t=0 (7') G, ,, =G, -β. ×(Go −y
) Therefore, when the ultra-high-pressure turbine flow rate X reaches the flow rate G, the low-temperature ultra-high-pressure turbine bypass valve n and the high-temperature ultra-high pressure turbine bypass valve δ are fully closed, and as a result, the superheater 5 has a flow rate G0. The bypass operation of the ultra-high pressure turbine 1 is completed. At this time, the first reheater flow rate is Go-β. x (Gll-y), but if the high-pressure turbine flow rate y% flow rate G, K has been reached, then G, = G,
Therefore, the flow rate G0 also flows through the first reheater 10. Similarly, when the high pressure turbine flow rate y reaches the flow rate G,
The high temperature and high pressure turbine bypass valve 27 is fully closed, and as a result, the second reheater 1
5, the flow rate G0 will flow, and the bypass and operation of the high-pressure turbine 2 will be completed. Also, when the intermediate pressure turbine flow 1z is suitable for the flow rate GoKR, the low pressure turbine bypass valve flow rate is fully closed at -o, and the intermediate pressure turbine 3) is low pressure! , = g, y, 4ΩZeiper δ operation is completed 0 However, as the steam turbine becomes larger, the ultra-high pressure turbine 1
In both the high-pressure turbine 2, the tip diameter of the rotor blades increases, and windage loss due to rotational friction increases due to high horse speed.However, during turbine bypass operation, neither the first reheat line nor the second reheat line is in a vacuum. Because they are controlled by pressure, both the ultra-high-pressure turbine and the high-pressure turbine have high steam density, which contributes to an increase in windage loss.

さらに起動時のように極低流量の運転では、蒸気は殆ど
仕事をせず超高肥←ビン排気温度も高圧タービン排気温
度も上昇傾向にある。したがって、タービン起動時には
動翼は回転摩擦による風損により過熱し易くなる。そこ
で、これを防止するためKは4′番超高圧タービン1お
よび高圧タービン2罠は中圧タービン3お工び低圧ター
ビン4エリ多い蒸気を流せばよい。中圧タービン3お工
び低圧タービン4は真空あるいはこれに近い低圧になっ
ているので、超高圧タービン1や高圧タービン2に比較
して過熱しにくいので、流量は比較的少なくてもよい。
Furthermore, when operating at an extremely low flow rate, such as during startup, the steam does almost no work, resulting in an ultra-high fertilization rate.Bottle exhaust temperature and high-pressure turbine exhaust temperature tend to rise. Therefore, when the turbine is started, the rotor blades tend to overheat due to wind loss due to rotational friction. Therefore, in order to prevent this, K should allow more steam to flow through the 4' ultra-high pressure turbine 1 and the high pressure turbine 2 trap, the intermediate pressure turbine 3, and the low pressure turbine 4. Since the intermediate-pressure turbine 3 and the low-pressure turbine 4 are at a vacuum or a low pressure close to vacuum, they are less likely to overheat than the ultra-high-pressure turbine 1 or the high-pressure turbine 2, so the flow rate may be relatively small.

例えば、超高圧タービン流量Xと高圧タービン流量yと
中圧タービン流量2の流量比z Q y Q zにおい
て、Z=1のとjkxおよびyは1乃至4の値にするこ
とが各タービンの過熱防止の点から望ましい。
For example, in the flow rate ratio z Q y Q z of the ultra-high pressure turbine flow rate Desirable from the point of view of prevention.

すなわち、タービンが比較的小形で超高圧タービン1或
は高圧タービン2が比較的過熱しにくい場合や、低圧タ
ービン動翼に長翼を採用して低圧タービン4が比較的過
熱し易い場合等では、Xお工びyは1に近い値を選び、
逆に超高圧タービン1或は高圧タービン2が過熱し易い
場合には、Xおよびyは4に近い値を選ぶ。なお、Xお
工びyが4エリ大きい値にした場合には、低圧タービン
4の流量2が少な過ぎて低圧タービン4の過熱が問題と
なる。このように各ノ(イノ(ス弁の開度によって各タ
ービンの流量を制御でき、タービンの過熱も防止できる
That is, in cases where the turbine is relatively small and the ultra-high pressure turbine 1 or high-pressure turbine 2 is relatively difficult to overheat, or in cases where long blades are adopted as the low-pressure turbine rotor blades and the low-pressure turbine 4 is relatively easy to overheat, etc. Select a value close to 1 for
Conversely, if the ultra-high pressure turbine 1 or the high-pressure turbine 2 is likely to overheat, X and y are selected to have values close to 4. It should be noted that if the value of X-work y is set to a value that is 4 times larger, the flow rate 2 of the low-pressure turbine 4 will be too small and overheating of the low-pressure turbine 4 will become a problem. In this way, the flow rate of each turbine can be controlled by the opening degree of each inno valve, and overheating of the turbine can also be prevented.

また、系統事故時において、ボイラの大部分の燃料を急
速にしゃ断するいわゆるPCBから所内単独運転に移行
するような場合、或は負荷しゃ断する場合には、蒸気加
減弁8、第1インタセプト弁13お工び第2インタセプ
ト5P18が急閉することによって、主蒸気ライン、第
1再熱蒸気ラインおよび第2再熱蒸気ラインの圧力が上
昇し、これにひ1絖いて高温超高圧タービンバイパス弁
5、高温高圧タービンバイパス弁路および低圧タービン
バイパス弁31が急閉する。さらに低温超高圧タービン
バイパス弁部および低温高圧タービンバイパス弁27も
各々超高圧タービン流量Xおよび高圧タービン流量yが
零になることによって急閉する。
In addition, in the event of a system accident, when transitioning from so-called PCB, which rapidly cuts off most of the fuel in the boiler, to isolated operation within the plant, or when cutting off the load, the steam control valve 8 and the first intercept valve 13 By the sudden closing of the second intercept 5P18, the pressures of the main steam line, the first reheat steam line, and the second reheat steam line increase, which causes the high temperature ultra-high pressure turbine bypass valve 5 to increase. , the high temperature and high pressure turbine bypass valve passage and the low pressure turbine bypass valve 31 are suddenly closed. Further, the low-temperature ultra-high pressure turbine bypass valve section and the low-temperature high-pressure turbine bypass valve 27 are also abruptly closed when the ultra-high pressure turbine flow rate X and the high pressure turbine flow rate y become zero, respectively.

したがって、過熱器内蒸気を第1再熱器10へ、第1再
熱器内蒸気を第2再熱器15へ、さらに第2再熱器内蒸
気を復水器19へ急速に排出することができ、主蒸気ラ
イン、第1再熱蒸気ライン、および第2再熱蒸気ライン
の圧力上昇を抑えることができてボイラへの外乱を与え
ることがなく、ボイラの燃料しゃ断速度も比較的小さく
し、ボイラへの影響を小さくすることができる。
Therefore, the steam in the superheater can be rapidly discharged to the first reheater 10, the steam in the first reheater to the second reheater 15, and the steam in the second reheater to the condenser 19. It is possible to suppress the pressure rise in the main steam line, the first reheat steam line, and the second reheat steam line without causing any disturbance to the boiler, and the fuel cut-off speed of the boiler is also relatively small. , the impact on the boiler can be reduced.

第5図は本発明の他の実施例を示すものであって、第2
図に示した装置においてさらに、超高圧タービン出口逆
止神父の上流側および高圧タービン出口逆止弁部の上流
側が、それぞれ第1ベンチレータ弁謁、第2ベンチレー
タ弁訂を介して復水器19に接続しである。
FIG. 5 shows another embodiment of the present invention.
In the device shown in the figure, the upstream side of the ultra-high pressure turbine outlet check valve section and the upstream side of the high pressure turbine outlet check valve section are further connected to the condenser 19 via the first ventilator valve and the second ventilator valve, respectively. It is connected.

しかして、タービン併入直前普では第1ベンチレータ弁
あお工び第2ベンチレータ弁γがともに全開せしめられ
ている。したがって、この場合にハ超高圧タービン1お
工び高圧タービン2の内部が真空になっており、回転部
の摩擦にょる風損が少なくなり、両タービン圧蒸気が流
れているが否かにかかわらずタービンの過熱を防止する
ことができる。タービン併入後にはタービン所要蒸気流
量が増加するため、タービン内を真空にする必要はなく
なるので両ベンチレータ弁あ、37は全閉する0 第6IIlは本発明のさらに他の実施例を示す図であっ
て、主蒸気加減弁8の下流鋼を第1ベンチレータ弁菫を
介して復水器19に接続するとともに、超高圧タービン
出口逆上弁あと並列にバイパス弁間が設けられ、さらに
高圧タービン出口逆止弁あの上流側が第2ベンチレータ
弁37を介して復水器19に接続されている。
Therefore, immediately before the turbine is installed, both the first ventilator valve and the second ventilator valve γ are fully opened. Therefore, in this case, the inside of ultra-high-pressure turbine 1 and high-pressure turbine 2 are in vacuum, windage loss due to friction of the rotating parts is reduced, and both turbines have high-pressure steam flowing regardless of whether they are flowing or not. First, overheating of the turbine can be prevented. After the turbine is installed, the steam flow rate required for the turbine increases, so there is no need to create a vacuum inside the turbine, so both ventilator valves 37 are fully closed.No. 6II is a diagram showing still another embodiment of the present invention. The downstream steel of the main steam control valve 8 is connected to the condenser 19 via the first ventilator valve, and a bypass valve is provided in parallel after the ultra-high pressure turbine outlet reversal valve. The upstream side of the check valve is connected to the condenser 19 via the second ventilator valve 37.

しかして、この場合もタービン併入直前までは第1ぺ/
チレータ弁あ、第2ベンチレータ弁37およびバイパス
弁間を全開すれば、超高圧タービン1お工び高圧タービ
ン2の内部は殆ど真空状態となって前述と同様に風損が
減少しタービンの過熱が防止され、また超高圧タービン
1内には逆止弁間を介して比較的低温の蒸気が逆流する
ので、一層タービン過熱が防止される。
However, in this case as well, until just before the turbine is added, the first
When the chiller valve A, the second ventilator valve 37, and the bypass valve are fully opened, the interior of the ultra-high pressure turbine 1 and high pressure turbine 2 becomes almost a vacuum state, reducing windage loss and overheating of the turbine as described above. Moreover, since relatively low-temperature steam flows back into the ultra-high pressure turbine 1 via the check valve, overheating of the turbine is further prevented.

また、上記実施例においては、主蒸気加減弁8の下流側
を復水器に接続したものを示したが、第7図のように第
1インタセプト弁13の下流側を第2ベンチレータ弁π
を介して復水器19に接続しても工く、或は第8図に示
すように主蒸気加減弁8の下流側および第1インタセプ
ト弁13の下流側を第1ベンチレータ弁あ、第2ベンチ
レータ弁rを介して復水器19に接続し、超高圧タービ
ン出口逆止弁讃および高圧タービン出口逆止弁あと並列
にバイパス弁ア、39をそれぞれ設けてもよい。
In the above embodiment, the downstream side of the main steam control valve 8 is connected to the condenser, but as shown in FIG. 7, the downstream side of the first intercept valve 13 is connected to the second ventilator valve π.
Alternatively, as shown in FIG. 8, the downstream side of the main steam control valve 8 and the downstream side of the first intercept valve 13 can be connected to the first ventilator valve A, A bypass valve 39 may be connected to the condenser 19 via the ventilator valve r, and provided in parallel with the ultra-high pressure turbine outlet check valve and the high pressure turbine outlet check valve.

以上説明したように、本発明においては過熱器入口部と
低温第1再熱管、主蒸気管と高温第1再熱管、低温第1
再熱管と低温第2再熱管、高温第1再熱管と高温第2再
熱管、および第2高温再熱管と復水器をそれぞれタービ
ンバイパス弁ヲ介シて接続したので、タービンバイパス
運転中には、タービン通気以前においても第1再熱器お
よび第2再熱器に蒸気を流して冷却することができ、ボ
イラ点゛火からタービン通気までの燃料投入量を増加さ
せることができ、蒸気温度上昇率を大きくすることがで
きる。したがって、タービン通気の最適温度条件となる
までの時間を早くすることができて、ボイラ点火からタ
ービン通気までの時間が短縮され、起動時間を短かくす
ることができる。また、最適なタービン通気条件を短時
間に確立することができるために、条件確立以前にター
ビン通気を行なう必要がなく、タービン通気時の熱衝撃
がなく、熱応力による寿命消費率を低く抑えることがで
きる。また、超高圧タービンおよび高圧タービンの入口
部或は出ロ部ヤ妙シイ弁を介して復水器に接続したので
、タービン併入前において両タービンの過熱を防止する
こともできる等の効果を奏する。
As explained above, in the present invention, the superheater inlet, the low-temperature first reheat pipe, the main steam pipe, the high-temperature first reheat pipe, and the low-temperature first reheat pipe
Since the reheat pipe and the low-temperature second reheat pipe, the high-temperature first reheat pipe and the high-temperature second reheat pipe, and the second high-temperature reheat pipe and the condenser are connected through the turbine bypass valve, during turbine bypass operation, , the steam can be cooled by flowing into the first reheater and the second reheater even before the turbine is vented, and the amount of fuel input from boiler ignition to turbine venting can be increased, and the steam temperature can be increased. rate can be increased. Therefore, the time required to reach the optimum temperature condition for turbine ventilation can be shortened, the time from boiler ignition to turbine ventilation can be shortened, and the startup time can be shortened. In addition, since the optimal turbine ventilation conditions can be established in a short time, there is no need to ventilate the turbine before the conditions are established, there is no thermal shock during turbine ventilation, and the life consumption rate due to thermal stress can be kept low. I can do it. In addition, since the ultra-high-pressure turbine and the high-pressure turbine are connected to the condenser via a valve at the inlet or outlet, it is possible to prevent overheating of both turbines before the turbine is installed. play.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の二段再熱タービンの系統図、第2図は本
発明の二段再熱タービンの系統図、第3図は本発明のタ
ービンにおける蒸気流説明図、第4図はタービンバイパ
ス弁の負荷に対する圧力設定値説明図、第5図乃至第8
図はそれぞれ本発明の他の実施例を示す系統図である。 1・・・超高圧タービン、2・・・高圧タービン、3・
・・中圧タービン、4・・・低圧タービン、5・・・過
熱器、6・・・主蒸気管、10・・・第1再熱器、15
・・・第2再熱器、19・・・復水器、乙・・・低温超
高圧タービンバイパス弁、δ・・・高温超高圧タービン
バイパス弁、n・・・低温高圧タービンバイパス弁、四
・・・高温高圧タービンバイパス弁、31・・・低圧タ
ービンバイパス弁、ア・・・第1べyチレータ弁、37
・・・第2ベンチレータ弁。
Fig. 1 is a system diagram of a conventional two-stage reheat turbine, Fig. 2 is a system diagram of a two-stage reheat turbine of the present invention, Fig. 3 is an explanatory diagram of steam flow in the turbine of the present invention, and Fig. 4 is a turbine diagram. Explanatory diagrams of pressure setting values for bypass valve loads, Figures 5 to 8
The figures are system diagrams showing other embodiments of the present invention. 1...Ultra high pressure turbine, 2...High pressure turbine, 3...
...Intermediate pressure turbine, 4...Low pressure turbine, 5...Superheater, 6...Main steam pipe, 10...First reheater, 15
...Second reheater, 19...Condenser, B...Low temperature ultra-high pressure turbine bypass valve, δ...High temperature ultra-high pressure turbine bypass valve, n...Low temperature high pressure turbine bypass valve, 4 ... High temperature and high pressure turbine bypass valve, 31 ... Low pressure turbine bypass valve, A ... First bay intulator valve, 37
...Second ventilator valve.

Claims (1)

【特許請求の範囲】 1、低温超高圧タービンバイパス弁を有し、ボイラの過
熱器入口と第1低温再熱管とを接続する第1のバイパス
管路と、高温超高圧タービンバイパス弁を有し、主蒸気
管と第1高飄再熱管とを接続する第2のバイパス管路と
、低温高圧タービンバイパス弁を有し、第1低温再熱管
と第2低温再熱管とを接続する第3のバイパス管路と、
高温高圧タービンバイパス弁を有し、第1高温再熱管と
j12高温再熱管とを接続する第4のバイパス管路と、
低圧タービンバイパス弁および減温器を有し、第2高温
再熱管と復水器とを接続する低圧タービンバイパス管路
とを設けたことを特徴とする二段再熱タービン。 2、低温超高圧タービンバイパス弁を有し、ボイラの過
熱器入口と第1低温再熱管とを接続する第1のバイパス
管路と、高温超高圧タービンバイパス弁を有し、主蒸気
管と第1高温再熱管とを接続する第2のバイパス管路と
、低温高圧タービンバイパス弁を有し、第1低温再熱管
と第2低温再熱管とを接続する第3のバイパス管路と、
高温高圧タービンバイパス弁を有し、1g1高温再熱管
と第2高温再熱管とを接続する第4のバイパス管路と、
低圧タービンバイパス弁および減温器を有し、第2高温
再熱管と復水器とを接続する低圧タービンバイパス管路
とを設けるとともに、超高圧タービンおよび高圧タービ
ンの各出口部に設けられた逆止弁の上流側をそれぞれベ
ンチレータ弁を介して復水器に接続したことを特徴とす
る、二段再熱タービン。 3、低温超高圧タービンバイパス弁を有し、ボイラの過
熱器入口と第1低温再熱管とを接続する第1のバイパス
管路と、高温超高圧タービンバイパス弁を有し、主蒸気
管と第1高温再熱管とを接続する第2のバイパス管路と
、低温高圧タービンバイパス弁を有し、第1低温再熱管
と第2低温再熱管とを接続する第3のバイパス管路と、
高温高圧タービンバイパス弁を有し、第1高温再熱管と
第2高温再熱管とを接続する第4のバイパス管路と、低
圧タービンバイパス弁および減温器を有し、第2高温再
熱管と復水器とを接続する低圧タービンバイパス管路と
を設けるとともに1超高圧タービンおよび高圧タービン
の少なくとも一方のタービンの入ロ部ヲペンチレータ弁
を介して復水器に接続し、当骸タービン出口側逆止弁と
並列にバイパス弁を設けたことを特徴とする二段再熱タ
ービン。
[Claims] 1. A first bypass pipe having a low-temperature ultra-high pressure turbine bypass valve and connecting the superheater inlet of the boiler and a first low-temperature reheat pipe, and a high-temperature ultra-high pressure turbine bypass valve. , a second bypass line that connects the main steam pipe and the first high-temperature reheat pipe, and a third bypass line that has a low-temperature and high-pressure turbine bypass valve and connects the first low-temperature reheat pipe and the second low-temperature reheat pipe. a bypass conduit;
a fourth bypass pipe line having a high temperature and high pressure turbine bypass valve and connecting the first high temperature reheat pipe and the J12 high temperature reheat pipe;
A two-stage reheat turbine comprising a low-pressure turbine bypass valve and a desuperheater, and a low-pressure turbine bypass line connecting a second high-temperature reheat pipe and a condenser. 2. It has a low-temperature ultra-high pressure turbine bypass valve, and has a first bypass line that connects the superheater inlet of the boiler and the first low-temperature reheat pipe, and a high-temperature ultra-high pressure turbine bypass valve that connects the main steam pipe and the first bypass line. a second bypass pipe that connects the first high-temperature reheat pipe; a third bypass pipe that has a low-temperature and high-pressure turbine bypass valve and connects the first low-temperature reheat pipe and the second low-temperature reheat pipe;
a fourth bypass pipe line having a high temperature and high pressure turbine bypass valve and connecting the 1g1 high temperature reheat pipe and the second high temperature reheat pipe;
A low-pressure turbine bypass line is provided which has a low-pressure turbine bypass valve and a desuperheater and connects the second high-temperature reheat pipe and the condenser. A two-stage reheat turbine characterized in that the upstream sides of the stop valves are each connected to a condenser via a ventilator valve. 3. It has a low-temperature ultra-high pressure turbine bypass valve, and has a first bypass line that connects the superheater inlet of the boiler and the first low-temperature reheat pipe, and a high-temperature ultra-high pressure turbine bypass valve that connects the main steam pipe and the first a second bypass pipe that connects the first high-temperature reheat pipe; a third bypass pipe that has a low-temperature and high-pressure turbine bypass valve and connects the first low-temperature reheat pipe and the second low-temperature reheat pipe;
a fourth bypass line having a high temperature and high pressure turbine bypass valve and connecting the first high temperature reheat pipe and the second high temperature reheat pipe; and a fourth bypass line having a low pressure turbine bypass valve and a desuperheater and connecting the second high temperature reheat pipe and the second high temperature reheat pipe; A low-pressure turbine bypass pipe is provided to connect the condenser to the condenser, and the inlet part of at least one of the ultra-high pressure turbine and the high-pressure turbine is connected to the condenser via a pentilator valve. A two-stage reheat turbine characterized by having a bypass valve installed in parallel with a stop valve.
JP13658881A 1981-08-31 1981-08-31 2-stage reheat turbine Pending JPS5838305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13658881A JPS5838305A (en) 1981-08-31 1981-08-31 2-stage reheat turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13658881A JPS5838305A (en) 1981-08-31 1981-08-31 2-stage reheat turbine

Publications (1)

Publication Number Publication Date
JPS5838305A true JPS5838305A (en) 1983-03-05

Family

ID=15178788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13658881A Pending JPS5838305A (en) 1981-08-31 1981-08-31 2-stage reheat turbine

Country Status (1)

Country Link
JP (1) JPS5838305A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6487809A (en) * 1987-09-30 1989-03-31 Toshiba Corp Starting method and device for two-stage reheat steam turbine plant
US4873827A (en) * 1987-09-30 1989-10-17 Electric Power Research Institute Steam turbine plant
JPH01285606A (en) * 1988-05-10 1989-11-16 Toshiba Corp Method and device of starting 2-stage reheat type steam turbine plant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6487809A (en) * 1987-09-30 1989-03-31 Toshiba Corp Starting method and device for two-stage reheat steam turbine plant
US4873827A (en) * 1987-09-30 1989-10-17 Electric Power Research Institute Steam turbine plant
JPH01285606A (en) * 1988-05-10 1989-11-16 Toshiba Corp Method and device of starting 2-stage reheat type steam turbine plant

Similar Documents

Publication Publication Date Title
EP0236959B1 (en) Method for starting thermal power plant
US6339926B1 (en) Steam-cooled gas turbine combined power plant
JPS6193208A (en) Turbine bypass system
JPS5838305A (en) 2-stage reheat turbine
JPS5820363B2 (en) steam turbine equipment
JP2674263B2 (en) Control method for reheat steam turbine
JPS6165003A (en) Controlling method for turbine in intermediate pressure starting
JP2005344528A (en) Combined cycle power generating plant and method for starting the same
JPS60228710A (en) Control device for steam turbine
JP2677598B2 (en) Start-up method for two-stage reheat steam turbine plant.
JP4014948B2 (en) Multi-axis combined cycle plant and control method thereof
JPS5914601B2 (en) Steam turbine with low pressure turbine bypass system
JP2000297611A (en) Exhaust heat recovery system and operation method of the same
JPS6116210A (en) Method and device of operating steam turbine
JP2523493B2 (en) Turbin bypass system
JPH09105503A (en) Method and apparatus for controlling steam temperature of combined cycle plant
JP3040029B2 (en) Auxiliary steam supply method for combined cycle power plant
JPH01285605A (en) Method and device of starting 2-stage reheat type steam turbine plant
JPS59150909A (en) Steam turbine plant
JPS588906A (en) Controller for temperature of steam reheated of boiler
JPH04237806A (en) Intermediate pressure turbine by-pass device
JPH01318706A (en) Bypass device for turbine of two stage reheating turbine
JPS60198310A (en) Controller for turbine
JPS6365104A (en) Control method for reheat steam turbine
JPS60204907A (en) Operating method for reheat steam turbine plant