JPS60228710A - Control device for steam turbine - Google Patents

Control device for steam turbine

Info

Publication number
JPS60228710A
JPS60228710A JP8534184A JP8534184A JPS60228710A JP S60228710 A JPS60228710 A JP S60228710A JP 8534184 A JP8534184 A JP 8534184A JP 8534184 A JP8534184 A JP 8534184A JP S60228710 A JPS60228710 A JP S60228710A
Authority
JP
Japan
Prior art keywords
pressure
load
bypass valve
function
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8534184A
Other languages
Japanese (ja)
Other versions
JPH0467001B2 (en
Inventor
Hirofumi Mesaki
目崎 廣文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8534184A priority Critical patent/JPS60228710A/en
Publication of JPS60228710A publication Critical patent/JPS60228710A/en
Publication of JPH0467001B2 publication Critical patent/JPH0467001B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • F01K7/24Control or safety means specially adapted therefor

Abstract

PURPOSE:To effect smooth starting, by selecting a pressure setting value to a first pressure function equal to a load corresponding pressure when a high and/or low pressure bypass valve is opened, while selecting the pressure setting value to a second pressure function obtained by adding pressure bias to the first pressure function when both the bypass valves are fully closed. CONSTITUTION:A pressure setting value for controlling a low pressure bypass valve 21 is selected to either a first pressure function equal to the minimum value of high temperature reheating pressure under load less than a predetermined value and equal to a load corresponding pressure under load not less than the predetermined value or a second pressure function obtained by adding a fixed pressure bias or a load proportional pressure bias to the first pressure function. Then, the pressure setting value as selected is outputted from a pressure setting section. Thus, the low pressure bypass valve 21 is controlled according to the first pressure function when at least one of high and low pressure bypass valves 19 and 21 is opened, while being controlled according to the second pressure function when both the bypass valves 19 and 21 are fully closed. Accordingly, an intercept valve 13 may be securely fully opened at starting to thereby prevent increase in temperature in an exhaust chamber of a high pressure turbine 6.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は蒸気タービンの制御装置に係υ、特にバイパス
装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a control device for a steam turbine, and particularly to improvements in a bypass device.

〔発明の技術的背景〕[Technical background of the invention]

一般的な再熱蒸気タービンプラントは第を図に示すよう
に、ボイラ過熱器/で発生した高温高圧の蒸気は主蒸気
管2を通り、主蒸気止め弁3および蒸気加減弁グを経て
高圧タービン乙に送り込まれる。この高圧タービンtで
仕事をした蒸気は逆止弁ざおよび低温再熱管りを通して
再熱器10に導かれ、ここで再加熱された後、高温再熱
管//、再熱蒸気止め弁/Jおよびインターセプト弁/
3を経て中圧タービン/4’に入る。また、この中圧タ
ービンl弘で仕事を終えた蒸気はクロスオーバ管/!i
を経て低圧タービン/6./7に供給され、ここで仕事
をした後、復水器/gに送給されて復水となる。
In a typical reheat steam turbine plant, as shown in the figure, high-temperature, high-pressure steam generated in the boiler superheater passes through the main steam pipe 2, passes through the main steam stop valve 3 and the steam control valve, and then passes through the high-pressure turbine. Sent to Party B. The steam that has done work in this high-pressure turbine t is led to the reheater 10 through the check valve and the low-temperature reheat pipe, and after being reheated here, the high-temperature reheat pipe //, the reheat steam stop valve /J and Intercept valve/
3 and enters the intermediate pressure turbine/4'. In addition, the steam that has finished its work in this intermediate pressure turbine is transferred to a crossover pipe/! i
through the low pressure turbine/6. /7, and after doing work there, it is sent to the condenser /g and becomes condensate.

また、起動時または極低負荷時にはタービン本体の極端
ヴ過熱あるいは再熱器10の空焚き等を防止する見地か
らバイパスシステムを備えている。
In addition, a bypass system is provided to prevent extreme overheating of the turbine body or dry firing of the reheater 10 during start-up or extremely low load.

すなわち、主蒸気管λを通る蒸気の一部は高圧バ熱器1
0を通過した蒸気は高温再熱膚テ低圧バイパス管!、低
圧バイパス弁コ/および減温器nを経て復水器/gで回
収される。
In other words, a part of the steam passing through the main steam pipe λ is transferred to the high pressure steam heater 1.
The steam that passes through 0 is reheated at high temperature and passes through a low-pressure bypass pipe! , a low-pressure bypass valve and a desuperheater, and are recovered in a condenser/g.

一般に、主蒸気管λの圧力を主蒸気圧力筒たけ高圧バイ
パス弁前圧力と呼び、高温再熱管//の圧力を高温再熱
圧力または低圧バイパス弁前圧力と呼んでいるが、高圧
バイパス弁/ヂは余剰蒸気を下流側に流すことによシ高
圧バイパス弁前圧力を制御し、低圧バイパス弁21も筐
だ余剰蒸気を下流側に流すことにより低圧バイパス弁前
圧力を制御している。
Generally, the pressure in the main steam pipe λ is called the main steam pressure in front of the high-pressure bypass valve, and the pressure in the high-temperature reheat pipe is called the high-temperature reheat pressure or the pressure in front of the low-pressure bypass valve. The pressure in front of the high-pressure bypass valve is controlled by flowing surplus steam downstream, and the low-pressure bypass valve 21 also controls the pressure in front of the low-pressure bypass valve by flowing surplus steam downstream.

この場合、負荷条件に対する主蒸気圧力および高温再熱
圧力は第7図(&)および(b)の一点鎖線で示す関係
にあシ、高圧バイパス弁19は第7図(a)の実線のよ
うに負荷がある程度太きくなるまで主蒸気圧力を最低制
御圧力と呼ばれる一定圧力に保持し、その後負荷の増大
に応じて一点鎖線で示した圧力よシも僅かに高い圧力、
すなわち、一定の圧力バイアスが与えられるように主蒸
気圧力を制御し、これと同様に、低圧バイパス弁コ/も
また第7図(b)の実線で示すように、負荷がある程度
大きくなるまで高温再熱圧力を最低制御圧力Aに保持し
、負荷の増大に応じて一点鎖線で示した圧力よりも僅か
に高い圧力、すなわち、負荷相当圧力に対して一定の圧
力バイアスが与えられるように高温再熱圧力を制御する
In this case, the main steam pressure and high temperature reheat pressure with respect to the load conditions are in the relationship shown by the dashed lines in FIG. 7(&) and (b), and the high pressure bypass valve 19 is as shown in the solid line in FIG. The main steam pressure is maintained at a constant pressure called the minimum control pressure until the load increases to a certain extent, and then as the load increases, the pressure shown by the dashed line increases slightly.
That is, the main steam pressure is controlled so that a constant pressure bias is applied, and in the same way, the low pressure bypass valve is also kept at a high temperature until the load increases to a certain extent, as shown by the solid line in Figure 7(b). The reheat pressure is maintained at the minimum control pressure A, and as the load increases, the high temperature reheat is applied so that a pressure slightly higher than the pressure indicated by the dashed line, that is, a constant pressure bias is applied to the pressure equivalent to the load. Control heat pressure.

一方、タービン起動前には高圧バイパス弁/qを通る蒸
気の全量が低圧バイパス弁2/を通して復水器へ流され
るため、起動時の高温再熱圧力は低圧バイパス弁二/の
最低制御圧力Aになっている。
On the other hand, before starting the turbine, the entire amount of steam passing through the high-pressure bypass valve /q is flowed to the condenser through the low-pressure bypass valve 2/, so the high temperature reheat pressure at the time of startup is equal to the minimum control pressure A of the low-pressure bypass valve 2/. It has become.

しかして、タービン起動時には既に低温再熱管りおよび
再熱器10が所定の圧力を持つことから低温再熱管りと
高圧タービン6とは逆止弁rで仕切られた状態にあシ、
高圧タービン乙の内圧が低温再熱管りの圧力と同じにな
るまで逆止弁ざは開かれないで運転される、いわゆる、
締切シ運転となる。このため、タービン内部の温度が上
昇する他、逆止弁どの前段の排気室の温度も上昇する。
When the turbine is started, the low-temperature reheat pipe and the reheater 10 already have a predetermined pressure, so the low-temperature reheat pipe and the high-pressure turbine 6 are separated by the check valve r.
The check valve is not opened until the internal pressure of the high-pressure turbine becomes equal to the pressure of the low-temperature reheat pipe.
Deadline operation will occur. Therefore, not only the temperature inside the turbine increases, but also the temperature in the exhaust chamber at the previous stage of each check valve.

かかる締切り運転による温度上昇を低く抑えるために、
高圧タービンtおよび中圧タービン滓に同時に蒸気を供
給して起動させると共に、蒸気加減弁グによって制御さ
れる高圧タービン乙の蒸気量を、インターセプト弁13
によって制御される中圧タービン/Q−の蒸気量よシ多
くして蒸気による冷却効果を高めている。
In order to keep the temperature rise due to such shut-off operation to a low level,
The intercept valve 13 simultaneously supplies steam to the high-pressure turbine t and the intermediate-pressure turbine slag to start them up, and controls the amount of steam in the high-pressure turbine t controlled by the steam control valve 13.
The cooling effect of the steam is enhanced by increasing the amount of steam from the intermediate pressure turbine/Q- controlled by the

第2図はタービン起動時の負荷と、中圧タービン/lへ
流入する蒸気量に対する高圧タービンtへ流入する蒸気
量の比との関係を示したもので、負荷がある程度大きく
なる迄高圧タービンを側を多くし、逆止弁gが開き出す
と冷却効果が増すので高圧タービン2側の蒸気量は少が
くでも済むと゛とから、逆止弁tの開により高圧タービ
ン6側の蒸気量を徐々に少なくして定格負荷状態と同様
にl対/の関係に戻している。
Figure 2 shows the relationship between the load at startup of the turbine and the ratio of the amount of steam flowing into the high-pressure turbine t to the amount of steam flowing into the intermediate-pressure turbine/l. When the check valve g is opened, the cooling effect increases, so the amount of steam on the high pressure turbine 2 side can be reduced. Therefore, by opening the check valve t, the amount of steam on the high pressure turbine 6 side is gradually reduced. The relationship is reduced to 1 vs. / as in the rated load state.

第2図はかかる流量比を持たせるために、蒸気加減弁グ
およびインターセプト弁/3の流量と負荷との関係を示
したもので、”Aで起動し、負荷状態がbのときインタ
ーセプト弁/3の流量は蒸気加減弁グの流量の略イ倍と
なシ、負荷状態がCのとき両者の流量が同じくなるよう
に、インターセプト弁/3をゆつ〈シと開くことによっ
て上述した流量比を持たせている。また、負荷状態がC
になってからインターセプト弁/3は全開操作に人シ、
第7図(b)に示した圧力曲線の折点Bの状態で全開す
る。
Figure 2 shows the relationship between the flow rate and load of the steam control valve G and intercept valve/3 in order to have such a flow rate ratio. The flow rate of 3 is approximately I times the flow rate of the steam control valve.When the load condition is C, the flow rate ratio described above is adjusted by gradually opening the intercept valve/3 so that the flow rates of both are the same. Also, if the load state is C
After that, intercept valve/3 had to be operated fully open.
It is fully opened at the bending point B of the pressure curve shown in FIG. 7(b).

このように、折点Bでインターセプト弁/3を全開させ
るが、この折点Bで全開していなくとも8点以上の負荷
では負荷と共に高温再熱圧力が上昇して必要な流量を確
保し得るため、実際にはインターセプト弁/3の全開操
作が遅れることになる。
In this way, intercept valve/3 is fully opened at corner point B, but even if it is not fully opened at corner point B, the high temperature reheat pressure increases with the load at loads of 8 or more, and the necessary flow rate can be secured. Therefore, in reality, the full opening operation of intercept valve/3 is delayed.

この全開操作の遅れは蒸気通蕗部の絞シ損失を太きくし
、その分だけタービン側の効率低下を招いている。
This delay in the full opening operation increases the throttling loss in the steam passage section, leading to a corresponding decrease in efficiency on the turbine side.

ところで、この種のタービンプラントにあっては、第i
o図に示すように、高圧タービン20本体壁部および低
温再熱管りまたは高温再熱管l/より高圧給水加熱器、
N a 、 2J bへ蒸気を抽気する構成になってい
るが、タービン起動時には暖気運転中であるため高圧給
水加熱器、2j a 、 n bは本来の動作を行なわ
ない。したがって、この抽気分が再熱器/θを経て余分
に高温再熱管//に流入し、この流量増加分だけ高温再
熱圧力を上昇させる。この結果、第1/図に示すように
、正規の状態で11になるインターセプト弁/3の開度
が12(<11)に留められる。
By the way, in this type of turbine plant,
o As shown in the figure, the high-pressure turbine 20 main body wall and low-temperature reheat pipe or high-temperature reheat pipe l/higher pressure feed water heater,
Although the configuration is such that steam is extracted to Na and 2Jb, the high-pressure feed water heaters and 2ja and nb do not perform their original operations because they are in warm-up operation when the turbine is started. Therefore, this extracted portion flows into the high-temperature reheat pipe // through the reheater /θ, and the high-temperature reheat pressure is increased by this increased flow rate. As a result, as shown in FIG. 1, the opening degree of intercept valve /3, which is 11 in the normal state, is kept at 12 (<11).

このことは、インターセプト弁/3の開度と、蒸気加減
弁lの開度とを同じ関係に維持しようとしてもこの関係
がくずれてインターセプト弁13側が余計に開く。第1
コ図はこの関係を示したもので、インターセプト弁13
の流量増加分忙対してこのインターセプト弁/Jの開度
が1寡から12忙、蒸気加減≠の開度もまたC1からC
2に減少し、実際にはLlからL2に移って同じ負荷に
なりている。
This means that even if an attempt is made to maintain the same relationship between the opening degree of the intercept valve /3 and the opening degree of the steam control valve 1, this relationship is broken and the intercept valve 13 side opens more. 1st
The diagram below shows this relationship, and the intercept valve 13
The opening degree of this intercept valve/J is from 1 to 12, and the opening degree for steam control is also from C1 to C.
2, and the load is actually the same moving from Ll to L2.

また、図示はしないが高温再熱圧力が低下すると、イン
ターセプト弁の開度が同じでも流量は少なく、このとき
蒸気加減弁≠は同じ流量であシ、したがって同じ負荷を
とるためには蒸気加減弁≠とインターセプト弁13の開
度は若干増加する。
Although not shown in the figure, when the high temperature reheating pressure decreases, the flow rate decreases even if the opening degree of the intercept valve remains the same, and in this case, the steam control valve ≠ the same flow rate. Therefore, in order to take the same load, the steam control valve must ≠, the opening degree of the intercept valve 13 increases slightly.

一方、蒸気加減弁グの開度は最大負荷まで全開すること
はなhが、インターセプト弁13は蒸気加減弁弘の下流
にあり、高圧バイパス弁/9と低圧バイパス弁2/とが
全閉する負荷で、すなわち、第7図(b)に示す折点B
の負荷で全開操作を行なう。これらの関係を第73図に
示す。
On the other hand, the opening degree of the steam control valve is not fully opened to the maximum load, but the intercept valve 13 is located downstream of the steam control valve, and the high pressure bypass valve 9 and the low pressure bypass valve 2 are fully closed. under load, i.e., at corner point B shown in FIG. 7(b).
Fully open operation is performed with a load of . These relationships are shown in FIG. 73.

〔背景技術の問題点〕[Problems with background technology]

かくして、従来のタービンの制御装置にあっては、高圧
バイパス弁19および低圧バイパス弁21は、共に定格
負荷時の前圧条件で同じ容量のものが用いられること、
また、起動時には低圧バイパス弁21から見た上流の低
温再熱管りまたは高温再熱管l/の抽気ラインが通常の
動作を行なわないことkより、高温再熱管l/を流れる
蒸気量が通常運転時忙比べて多いため高温再熱圧力が上
昇する。
Thus, in the conventional turbine control device, the high pressure bypass valve 19 and the low pressure bypass valve 21 are both of the same capacity under the prepressure condition at rated load;
Additionally, since the low-temperature reheat pipe or the bleed line of the high-temperature reheat pipe l/ upstream as seen from the low-pressure bypass valve 21 does not operate normally at startup, the amount of steam flowing through the high-temperature reheat pipe l/ is lower than that during normal operation. The high temperature reheating pressure increases because there are more people than busy.

この結果、インターセプト弁/3は開度が変わらなくと
も蒸気流量が増して蒸気加減弁グとの流量比がずれるこ
とから、低込開度に整定する。
As a result, the intercept valve /3 is set to a low opening degree because the steam flow rate increases and the flow rate ratio with the steam control valve deviates even if the opening degree does not change.

すなわち、正常運転時には第7図(b)の折れ点Bでイ
ンターセプト弁21を全開することができるが、起動時
には高温再熱圧力が高いため低い開度でも多くの蒸気が
流れて全開させることができず、高圧タービン乙の蒸気
量の減少によって排気室温度の上昇を招くという欠点が
あった。
That is, during normal operation, the intercept valve 21 can be fully opened at the bending point B in Fig. 7(b), but at startup, the high temperature and reheat pressure are high, so even at a low opening degree, a lot of steam flows and it is difficult to fully open the intercept valve 21. However, there was a drawback that the reduction in the amount of steam in the high-pressure turbine B caused the temperature in the exhaust chamber to rise.

〔発明の目的〕[Purpose of the invention]

本発明は上記の欠点を除去するためになされたもので、
起動時にインターセプト弁を確実に全開させ得、これに
よって高圧タービンの排気室温度の上昇を防ぎ得る蒸気
タービンの制御装置の提供を目的とする。
The present invention has been made to eliminate the above-mentioned drawbacks.
An object of the present invention is to provide a control device for a steam turbine that can reliably fully open an intercept valve at startup, thereby preventing a rise in temperature in the exhaust chamber of a high-pressure turbine.

〔発明の概要〕[Summary of the invention]

この目的を達成するために、本発明はタービンバイパス
システムを有り、タービンバイバス運転時の高温再熱圧
力が低圧バイパス弁およびインターセプト弁によって決
められる蒸気タービンにおいて、所定の負荷未満で高温
再熱圧力の最低圧力に等しく、所定の負荷以上で負荷相
当圧力に等しい第1の圧力関数、および、この第1の圧
力関数に対して一定の圧力バイアス若しくは負荷に比例
して変化する圧力バイアを付加した第コの圧力関数にそ
れぞれ従う圧力設定信号を切換えて出力し得る圧力設定
部と、高圧バイパス弁および低圧バイパス弁の少なくと
も一方が開いているとき前記第1の圧力関数に従う圧力
設定信号が出力される側に、高圧バイパス弁および低圧
バイパス弁の両方が全閉したとき前記第2の圧力関数に
従う圧力設定信号が出力される側にそれぞれ前記圧力設
定部を切換える設定圧力切換部とを具備し、前記圧力設
定部より出力される圧力設定信号によって前記低圧バイ
パス弁を制御することを特徴とするものである。
To achieve this objective, the present invention provides a turbine bypass system in which the high temperature reheat pressure during turbine bypass operation is determined by a low pressure bypass valve and an intercept valve. a first pressure function equal to the minimum pressure and equal to the load equivalent pressure above a predetermined load; and a first pressure function to which a constant pressure bias or a pressure via that varies proportionally to the load is added. a pressure setting section capable of switching and outputting pressure setting signals according to the first pressure function, and outputting a pressure setting signal according to the first pressure function when at least one of the high pressure bypass valve and the low pressure bypass valve is open; a set pressure switching section for switching the pressure setting section to the side where a pressure setting signal according to the second pressure function is output when both the high pressure bypass valve and the low pressure bypass valve are fully closed; The low pressure bypass valve is controlled by a pressure setting signal output from a pressure setting section.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を、低圧バイパス弁の圧力制御
系の構成および特性と併せて図面を参照して説明する。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings, together with the configuration and characteristics of a pressure control system of a low-pressure bypass valve.

先ず、高温再熱圧力は低圧バイパス弁によって制御され
るもので、第14!図に示す圧力制御系を備えている。
First, the high temperature reheat pressure is controlled by a low pressure bypass valve, and the 14th! It is equipped with the pressure control system shown in the figure.

すなわち、負荷信号syを加えたとき第15図(a)に
示すように負荷がb点よυ小さい間は高温再熱圧力の最
低圧力に等しく、負荷がb点を超える間は一点鎖線で示
した負荷相当圧力に対して一定の圧力バイアスを付加し
た高温再熱圧力設定信号sgを出力する関数発生器Jと
、この高温再熱圧力設定信号sgおよび高温再熱圧力検
出信号S27を比較して両者の偏差をめる加算器易と、
この加算器Jで得られた偏差分に応じて第1j図(b)
に示す低圧バイパス弁2/の開度指令信号sxqを出力
する圧力ゲインとも呼ばれる信号変換器Uとで構成され
ている。
That is, when the load signal sy is applied, as shown in Fig. 15 (a), while the load is smaller than point b, it is equal to the minimum pressure of the high temperature reheating pressure, and while the load exceeds point b, it is indicated by a dashed line. A function generator J outputs a high temperature reheat pressure setting signal sg with a constant pressure bias added to the load equivalent pressure, and this high temperature reheat pressure setting signal sg and high temperature reheat pressure detection signal S27 are compared. An adder that calculates the deviation between the two,
Figure 1j (b) according to the deviation obtained by this adder J.
The signal converter U, also called a pressure gain, outputs an opening command signal sxq for the low pressure bypass valve 2/ shown in FIG.

なお、ここで言う負荷相当圧力とは、タービン負荷運転
時忙高温再熱管の流量によって発生する圧力を言い、一
点鎖線のように負荷に比例して変化する。
Note that the load-equivalent pressure referred to herein refers to the pressure generated by the flow rate of the busy high-temperature reheating pipe during turbine load operation, and changes in proportion to the load as shown by the dashed line.

第is図<&)の実線のように圧力設定すると正常運転
ではインターセプト弁21を全開させることができるが
、起動時には高温再熱圧力が高いのでインターセプト弁
2/は全開されずに絞られて了う。
If the pressure is set as shown by the solid line in Figure IS<&), the intercept valve 21 can be fully opened during normal operation, but at startup, the high temperature reheat pressure is high, so the intercept valve 2/ is throttled and not fully opened. cormorant.

ここで、関数発生器3の出力特性を例えば第16図(a
)に示すように、負荷がbl点に到達するまで高温再熱
圧力の最低力に等しく、b1点以上で負荷相当圧力に対
応した高温再熱圧力設定信号を出力するものを用いるこ
とによって第76図(bJに示す開度指令信号を出力さ
せるならば、インターセプト弁/3を全開させる負荷が
負荷差(bl−b)の分たけ高くなり、この結果、イン
ターセプト弁のリフト特性をゆるくし得、全開操作中の
負荷変動に対して弁リフトの振れを小さくでき安定した
制御を行ない得ると言える。
Here, the output characteristics of the function generator 3 are shown in FIG. 16 (a
), by using a device that outputs a high temperature reheat pressure setting signal that is equal to the minimum force of the high temperature reheat pressure until the load reaches the bl point and corresponds to the load equivalent pressure at the b1 point or higher, the 76th If the opening command signal shown in Fig. (bJ) is output, the load to fully open the intercept valve /3 will be higher by the load difference (bl-b), and as a result, the lift characteristics of the intercept valve can be made looser. It can be said that the swing of the valve lift can be reduced in response to load fluctuations during full-open operation, and stable control can be performed.

しかしながら、この場合には起動時の高圧給水加熱器2
3a、コ3bKよる暖機運転中は何等問題はないが、正
常運転時に負荷が降下するときには負荷相当圧力線よシ
も下が’) 、Bi点で折れて最低圧力線を通シA点に
達する。
However, in this case, the high pressure feed water heater 2 at startup
There is no problem during warm-up operation using 3a and 3bK, but when the load drops during normal operation, the load equivalent pressure line also breaks at point Bi and passes through the lowest pressure line to point A. reach

かかる状況では、小きた圧力変動による圧力上昇でも、
高温再熱圧力検出信号827が高温再熱圧力設定信号S
Jよシ大きくなシ、これによって、加算器易の出力が正
に転じて低圧バイパス弁2/を開くことから蒸気が復水
器lざに捨てられてプラントの効率を低下させることに
なる。
In such a situation, even if the pressure increases due to small pressure fluctuations,
High temperature reheat pressure detection signal 827 is high temperature reheat pressure setting signal S
This causes the output of the adder to turn positive and open the low pressure bypass valve 2/, causing steam to be dumped into the condenser and reducing the efficiency of the plant.

そこで、本発明では第1図に示すよ5K、一定の圧力バ
イアス信号を出力する圧力バイアス設定器30と、イン
ターロック回路3.2によって励磁されるリレー37と
、関数発生器Δaの出力に、リレー、?/の接点を介し
て得られる圧力バイアス設定器3゜の圧力バイアス信号
を加える加算器33とを新たに付加して込る。
Therefore, in the present invention, as shown in FIG. 1, the pressure bias setter 30 outputs a constant pressure bias signal of 5K, the relay 37 is excited by the interlock circuit 3.2, and the output of the function generator Δa. relay,? An adder 33 is newly added to add the pressure bias signal of the pressure bias setting device 3° obtained through the contact point .

この場合、関数発生器gaは第76図(a)K示すよう
に、所定の負荷b1よシ小さいとき高温再熱圧力の最低
圧力に等しく、所定の負荷blよジ大きいとき負荷相当
圧力に対して圧力バイアスのない特性のものを用いてい
る。また、インターロック回路32は第2図に示すよう
に、高圧バイパス弁19が全閉したとき動作する図示し
ないリレーの常開接点3コaおよび低圧バイ−ζス弁:
1.lが全閉したとき動作する図示しないりV−の常開
接点32bの直列回路でな19、高圧バイパス弁19お
よび低圧バイパス弁すか判時に全閉したときすv−J/
を励磁する構成になっている。
In this case, as shown in FIG. 76(a)K, the function generator ga is equal to the minimum pressure of the high temperature reheating pressure when it is smaller than the predetermined load b1, and is equal to the load equivalent pressure when it is larger than the predetermined load bl. A type with no pressure bias is used. In addition, as shown in FIG. 2, the interlock circuit 32 includes three normally open contacts a of a relay (not shown) that operates when the high-pressure bypass valve 19 is fully closed, and a low-pressure bypass valve:
1. It is a series circuit of the normally open contact 32b of V- (not shown) which operates when l is fully closed.
It is configured to excite.

上記の如く構成された本実施例の作用を第3図および第
弘図をも参照して以下に説明する。
The operation of this embodiment configured as described above will be explained below with reference to FIG. 3 and FIG.

先ず、タービンバイパス運転時には高圧バイパス弁/9
および低圧バイパス弁Uが開かれる。よつて、すV−、
?/は動作せず関数発生器Baの圧力設定信号S3と高
温再熱圧力検出信号827との偏差に基いて低圧バイ−
シス弁すの開度が制御される。
First, during turbine bypass operation, the high pressure bypass valve/9
and low pressure bypass valve U is opened. By the way, V-,
? / does not operate and the low pressure bypass is activated based on the deviation between the pressure setting signal S3 of the function generator Ba and the high temperature reheat pressure detection signal 827.
The opening degree of the system valve is controlled.

なお、高圧バイパス弁19および低圧バイパス弁νの弁
開度(または流量)は第3図に示すように、低圧バイパ
ス弁2ノが高圧バイパス弁/りよシもスプレー水分だけ
高い開度を保ったまま、負荷の上昇に従−て次第に閉じ
られ、高圧バイパス弁/9は負荷L3で、低圧バイパス
弁21は負荷Lmでそれぞれ全閉される。
As shown in Fig. 3, the opening degrees (or flow rates) of the high-pressure bypass valve 19 and the low-pressure bypass valve ν were as high as the spray water. As the load increases, the high-pressure bypass valve/9 is fully closed at load L3, and the low-pressure bypass valve 21 is fully closed at load Lm.

このことは、余剰の蒸気が無くなったために高圧バイパ
ス弁19を全閉して蒸気が低温再熱管りに流れないよう
にし、低圧バイパス弁Uを全閉して蒸気が復水器itへ
逃げないようにしたことに他ならない。
This means that since there is no surplus steam left, the high pressure bypass valve 19 is fully closed to prevent steam from flowing to the low temperature reheat pipe, and the low pressure bypass valve U is fully closed to prevent steam from escaping to the condenser IT. That's exactly what I did.

かくして、負荷がL4になるとインターロック回路32
の作用によってすV−J/が励磁され、圧力バイアス設
定器30の圧力バイアス信号が関数発生器3aの圧力設
定信号S3とともに加算器ツに加えられる。この結果、
第3図(1)に示す圧力関数から、これに一定の圧力バ
イアスが加えられたfsJ図(b)に示す圧力関数に切
換えられたことになる。
Thus, when the load becomes L4, the interlock circuit 32
V-J/ is excited by the action of , and the pressure bias signal from the pressure bias setter 30 is added to the adder together with the pressure setting signal S3 from the function generator 3a. As a result,
This means that the pressure function shown in FIG. 3 (1) has been switched to the pressure function shown in the fsJ diagram (b) to which a constant pressure bias has been added.

すなわち、負荷がLx未満では第μ図(a)の圧力関数
に従って高温再熱圧力が設定され、負荷がLm以上のと
きおよび負荷の降下時には、高圧バイパス弁19および
低圧バイパス弁コlの少なくとも一方が開き出す負荷ま
で第μ図(b)の圧力関数に従って高温再熱圧力が設定
される。
That is, when the load is less than Lx, the high temperature reheat pressure is set according to the pressure function shown in FIG. The high temperature reheat pressure is set according to the pressure function shown in Fig. μ (b) until the load starts to open.

なお、第μ図(b)の圧力直線A′−B′X 間は最低
圧力Aよシも圧力バイアス分dだけ高くなつているが、
高圧バイパス弁/りおよび低圧バイパス弁Uの何れか一
方が開き出すとインターロック回路32の作用により圧
力バイアス設定器30が除外されるのですぐに最低圧力
Aに戻る。したがって、タービンバイパス運転時には必
ず最低圧力Aに設定される。
Note that the pressure line A'-B'X in Figure μ(b) is higher than the lowest pressure A by the pressure bias amount d,
When either the high pressure bypass valve/I or the low pressure bypass valve U opens, the pressure bias setting device 30 is excluded by the action of the interlock circuit 32, and the pressure immediately returns to the lowest pressure A. Therefore, the minimum pressure A is always set during turbine bypass operation.

一方、負荷しゃ断等によシ逆止弁tの全閉後、これが再
び開き始めたときには低温再熱管りの圧力が低圧バイパ
ス弁すによって最低圧力Aに制御されるため、高圧ター
ビン乙の排気室圧力は最低圧力Aまでしか上昇せず、排
気室温度が排気室圧力高によって過熱するという事態を
も防ぎ得る。
On the other hand, when the check valve t starts to open again after it is fully closed due to load cutoff, etc., the pressure in the low-temperature reheat pipe is controlled to the minimum pressure A by the low-pressure bypass valve, so the exhaust chamber of the high-pressure turbine B The pressure increases only to the minimum pressure A, and it is possible to prevent the exhaust chamber temperature from overheating due to high exhaust chamber pressure.

なお、上記実施例では、圧力バイアス設定器30によっ
て一定の圧力バイアスを与えるものについて説明したが
、例えば、第3図(耐に示す如く、圧力バイアスが0−
100 俤負荷間で負荷に比例し、且つ、100%負荷
時に適切な大きさとなる圧力バイアス設定器を用いるこ
とによって第3図(b)に示す圧力関数を得、高圧バイ
パス弁/9および低圧バイパス弁νの両方が全閉したか
否かによシ第μ図(、)に示した圧力関数と、第5図(
b)に示した圧力関数とを切換えるようにすれば、低負
荷で過度の圧力バイアスが加わることもなく適切な圧力
制御が可能になる。
In the above embodiment, the pressure bias setter 30 provides a constant pressure bias, but for example, as shown in FIG.
By using a pressure bias setting device that is proportional to the load between 100 and 100% load and has an appropriate size at 100% load, the pressure function shown in Figure 3 (b) is obtained, and the high pressure bypass valve /9 and the low pressure bypass Depending on whether both valves ν are fully closed or not, the pressure function shown in Fig. μ (,) and Fig. 5 (
By switching between the pressure functions shown in b), appropriate pressure control can be achieved at low loads without applying excessive pressure bias.

なおまた、上記実施例では所定の負荷に上昇するまで高
温再熱圧力の最低圧力に等しく、所定の負荷以上で負荷
相当圧力に対して圧力バイアスをかけない圧力関数と、
この圧力関数に所定の圧力バイアスを与えてもう一つの
圧力関数を作り、これら側圧力関数を切換えているが、
これと同様な圧力設定信号をそれぞれ出力するλつの関
数発生器を切換え得る圧力設定部と、高圧バイパス弁お
よび低圧バイパス弁の両方が全閉したか否かによシ圧力
設定部の関数切換えを行なう設定圧力切換部とを備える
ならば上述したと同様な作用を行なわせることができる
Furthermore, in the above embodiment, the pressure function is equal to the lowest pressure of the high temperature reheating pressure until it rises to a predetermined load, and does not apply a pressure bias to the load equivalent pressure above the predetermined load;
A predetermined pressure bias is applied to this pressure function to create another pressure function, and these side pressure functions are switched.
There is a pressure setting section that can switch between λ function generators that each output a similar pressure setting signal, and a function switching section that can switch the function of the pressure setting section depending on whether both the high pressure bypass valve and the low pressure bypass valve are fully closed. If a set pressure switching section is provided to perform the setting pressure switching section, the same operation as described above can be performed.

〔発明の効果〕〔Effect of the invention〕

以上の説明によつて明らかな如く、本発明によれば、所
定の負荷未満で高温再熱圧力の最低圧力に等しく、所定
の負荷以上で負荷相当圧力に等しい第7の圧力関数、お
よび、この第7の圧力関数に対して一定の圧力バイアス
着しくは負荷に比例して変化する圧力バイアスを付加し
た第2の圧力関数にそれぞれ従う圧力設定信号を切換え
て出力し得る圧力設定部と、高圧バイパス弁および低圧
バイパス弁の少なくとも一方が開いているとき前記第7
の圧力関数に従う圧力設定信号が出力される側に、高圧
バイパス弁および低圧バイパス弁の両方が全閉したとき
前記第コの圧力関数に従う圧力設定信号が出力される側
にそれぞれ前記圧力設定部を切換える設定圧力切換部と
を備えているので、起動時に高温再熱圧力が高くなった
としてもインターセプト弁を確実に全開させ得、且つ、
タービンの排気室温度の過度の上昇を防ぐことができる
As is clear from the above description, according to the present invention, there is provided a seventh pressure function that is equal to the lowest pressure of the high temperature reheat pressure below a predetermined load and equal to the load equivalent pressure above a predetermined load; a pressure setting unit capable of switching and outputting pressure setting signals according to a second pressure function in which a constant pressure bias or a pressure bias that varies in proportion to load is added to the seventh pressure function; When at least one of the bypass valve and the low pressure bypass valve is open, the seventh
The pressure setting section is placed on the side where the pressure setting signal according to the pressure function of 1 is output, and the pressure setting section is placed on the side where the pressure setting signal according to the pressure function of 1 is output when both the high pressure bypass valve and the low pressure bypass valve are fully closed. Since it is equipped with a set pressure switching section, the intercept valve can be reliably fully opened even if the high temperature reheat pressure increases at startup, and
Excessive rise in temperature in the exhaust chamber of the turbine can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第7図は本発明の一実施例の構成を示すブロック図、第
2図は同実施例の主要な要素の詳細な構成を示す回路図
、第3図および第μ図は同実施例の作用を説明するため
の特性図、第3図は他の実施例の作用を説明するための
特性図、第6図および第io図は本発明の適用対象であ
る再熱蒸気タービンプラントの系統図、第7図乃至第り
図、および、第11図乃至第1(1図はこの再熱蒸気タ
ービンプラントの動作を説明するための特性図、第1&
図は従来の制御装置の要部の構成を示すブロック図、第
is図および第1A図はこの制御装置の作用を一説明す
るだめの特性図である。 6・・・高圧タービン、lt・・・中圧タービン、/A
、 /7・・・低圧タービン、13・・・インターセプ
ト弁、19・・・高圧バイパス弁、2)・・・低圧バイ
パス弁、Ja・・・関数発生器、30・・・圧力バイア
ス設定器、32・・・インターロック回路、3/・・・
リレー。 出願人代理人 猪 股 清 図面の浄書(内容に変更ない) 第1図 晃2図 児3図 児6図 1 第7図 (α)(b) 児8図 鳥9図 鬼10図 第12図 鳥13図 %14図 手続補正書 昭和59年5月り5日 特許庁長官 若杉和夫 殿 1 事件の表示 昭和59年 特許願 第85341号 2 発明の名称 蒸気タービンの制御装置 3 補正をする者 事件との関係 特許出願人 (307) 株式会社 東 芝 4 代 理 人
FIG. 7 is a block diagram showing the configuration of an embodiment of the present invention, FIG. 2 is a circuit diagram showing the detailed configuration of the main elements of the embodiment, and FIGS. 3 and μ show the operation of the embodiment. FIG. 3 is a characteristic diagram for explaining the operation of another embodiment, FIG. 6 and FIG. IO are system diagrams of a reheat steam turbine plant to which the present invention is applied, Fig. 7 to Fig. 1 and Fig. 11 to Fig. 1 (Fig. 1 is a characteristic diagram for explaining the operation of this reheat steam turbine plant;
FIG. 1 is a block diagram showing the configuration of the main parts of a conventional control device, and FIG. IS and FIG. 1A are characteristic diagrams for explaining the operation of this control device. 6...High pressure turbine, lt...Intermediate pressure turbine, /A
, /7...Low pressure turbine, 13...Intercept valve, 19...High pressure bypass valve, 2)...Low pressure bypass valve, Ja...Function generator, 30...Pressure bias setting device, 32...Interlock circuit, 3/...
relay. Applicant's agent Kiyoshi Inomata Engraving of the drawings (no changes to the contents) Figure 1 Akira 2 Figure Child 3 Figure Child 6 Figure 1 Figure 7 (α) (b) Child Figure 8 Bird 9 Figure Oni Figure 10 Figure 12 Bird Figure 13% Figure 14 Procedural Amendment Document May 5, 1980 Director General of the Patent Office Mr. Kazuo Wakasugi 1 Indication of Case 1989 Patent Application No. 85341 2 Name of Invention Steam Turbine Control Device 3 Case of Person Making Amendment Relationship with Patent applicant (307) Toshiba Corporation 4 Agent

Claims (1)

【特許請求の範囲】[Claims] タービンバイパスシステムを有り、タービンバイパス運
転時の高温再熱圧力が低圧バイパス弁およびインターセ
プト弁によって決められる蒸気タービンにおいて、所定
の負荷未満で高温再熱圧力の最低圧力に等しく、所定の
負荷以上で負荷相当圧力陀等しい第1の圧力関数、およ
び、この第1の圧力関数に対して一定の圧力バイアス若
しくは負荷に比例して変化する圧力バイアを付加した第
λの圧力関数にそれぞれ従う圧力設定信号を切換えて出
力し得る圧力設定部と、高圧バイパス弁および低圧バイ
パス弁の少なくとも一方が聞込ているとき前記第1の圧
力関数に従う圧力設定信号が出力される側K、高圧バイ
パス弁および低圧バイパス弁の両方が全閉したとき前記
第2の圧力関数に従う圧力設定信号が出力される側にそ
れぞれ前記圧力設定部を切換える設定圧力切換部とを具
備し、前記圧力設定部よシ出力される圧力設定信号によ
って前記低圧バイパス弁を制御することを特徴とする蒸
気タービンの制御装置。
In a steam turbine that has a turbine bypass system and in which the high temperature reheat pressure during turbine bypass operation is determined by a low pressure bypass valve and an intercept valve, it is equal to the lowest pressure of the high temperature reheat pressure when the load is less than a predetermined load, and the load is equal to the minimum pressure of the high temperature reheat pressure when the load is above a predetermined load. A pressure setting signal according to a first pressure function equal to the equivalent pressure, and a λth pressure function obtained by adding a constant pressure bias or a pressure via that changes in proportion to the load to the first pressure function, respectively. a pressure setting section that can be switched and output; a side K to which a pressure setting signal according to the first pressure function is output when at least one of the high pressure bypass valve and the low pressure bypass valve is listening; a high pressure bypass valve and a low pressure bypass valve; and a setting pressure switching section for switching the pressure setting section on the side from which a pressure setting signal according to the second pressure function is output when both are fully closed, and the pressure setting output from the pressure setting section. A control device for a steam turbine, characterized in that the low pressure bypass valve is controlled by a signal.
JP8534184A 1984-04-27 1984-04-27 Control device for steam turbine Granted JPS60228710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8534184A JPS60228710A (en) 1984-04-27 1984-04-27 Control device for steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8534184A JPS60228710A (en) 1984-04-27 1984-04-27 Control device for steam turbine

Publications (2)

Publication Number Publication Date
JPS60228710A true JPS60228710A (en) 1985-11-14
JPH0467001B2 JPH0467001B2 (en) 1992-10-27

Family

ID=13855949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8534184A Granted JPS60228710A (en) 1984-04-27 1984-04-27 Control device for steam turbine

Country Status (1)

Country Link
JP (1) JPS60228710A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0491303A (en) * 1990-08-01 1992-03-24 Toshiba Corp Turbine controller
WO2008151484A1 (en) * 2007-06-11 2008-12-18 Shanghai Waigaoqiao No.3 Power Generation Co.Ltd A small bypass system of a generator set and a controlling method thereof
WO2008151485A1 (en) * 2007-06-11 2008-12-18 Shanghai Waigaoqiao No.3 Power Generation Co. Ltd A controlling method of a generator set provided with a bypass system
JP2012503737A (en) * 2008-09-24 2012-02-09 シーメンス アクティエンゲゼルシャフト Steam power generation facility for generating electrical energy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0491303A (en) * 1990-08-01 1992-03-24 Toshiba Corp Turbine controller
WO2008151484A1 (en) * 2007-06-11 2008-12-18 Shanghai Waigaoqiao No.3 Power Generation Co.Ltd A small bypass system of a generator set and a controlling method thereof
WO2008151485A1 (en) * 2007-06-11 2008-12-18 Shanghai Waigaoqiao No.3 Power Generation Co. Ltd A controlling method of a generator set provided with a bypass system
JP2012503737A (en) * 2008-09-24 2012-02-09 シーメンス アクティエンゲゼルシャフト Steam power generation facility for generating electrical energy
JP2012211595A (en) * 2008-09-24 2012-11-01 Siemens Ag Steam power generation facility for generating electric energy

Also Published As

Publication number Publication date
JPH0467001B2 (en) 1992-10-27

Similar Documents

Publication Publication Date Title
EP0178617B1 (en) Steam turbine plant having a turbine bypass system
JPS6240526B2 (en)
US4402183A (en) Sliding pressure flash tank
JPS60228710A (en) Control device for steam turbine
JPS5820363B2 (en) steam turbine equipment
JPS6165003A (en) Controlling method for turbine in intermediate pressure starting
JPS6239655B2 (en)
JP2620124B2 (en) Bleed turbine control method and apparatus
JPH0232442B2 (en) JOKITAABINNOKIDOHOHO
JPS61164004A (en) Control method of steam turbine
JP2523493B2 (en) Turbin bypass system
CA1057065A (en) Control systems for steam turbine plants including turbine bypass systems
JPS63297705A (en) Starter for steam turbine
JPH0565804A (en) Control method for two-stage gas mixing type turbo-generator
JPS58217706A (en) Driving device of turbine for driving boiler water feeding pump
JP3567296B2 (en) Turbine control unit
JPS5838305A (en) 2-stage reheat turbine
JPH04342806A (en) Steam turbine control device for combined power plant
JPH0719007A (en) Turbine control device
JPS62225705A (en) Control device for reheated steam pressure relief
JPH0252904A (en) Control method of steam temperature and controller
JPS6073397A (en) Method of operating nuclear power turbine plant
JPH0399101A (en) Controller of exhaust heat recovering heat exchanger
JPS6227322B2 (en)
JPS5922041B2 (en) Boiler feed water pump drive turbine control device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees