JPS6073397A - Method of operating nuclear power turbine plant - Google Patents

Method of operating nuclear power turbine plant

Info

Publication number
JPS6073397A
JPS6073397A JP58180361A JP18036183A JPS6073397A JP S6073397 A JPS6073397 A JP S6073397A JP 58180361 A JP58180361 A JP 58180361A JP 18036183 A JP18036183 A JP 18036183A JP S6073397 A JPS6073397 A JP S6073397A
Authority
JP
Japan
Prior art keywords
steam
feed water
turbine
plant
water heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58180361A
Other languages
Japanese (ja)
Inventor
啓 池田
大田原 康彦
今井 鉄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58180361A priority Critical patent/JPS6073397A/en
Publication of JPS6073397A publication Critical patent/JPS6073397A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Control Of Turbines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、原子力タービンプラントの運転方法に係り、
特に、低負荷帯において運転を行なうに好適な原子力タ
ービンプラントの運転方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method of operating a nuclear turbine plant,
In particular, the present invention relates to a method of operating a nuclear turbine plant suitable for operation in a low load zone.

〔発明の背景〕[Background of the invention]

第1図に公知の原子力タービンプラントの系統を示す。 FIG. 1 shows the system of a known nuclear power turbine plant.

このプラントは、蒸気源である原子炉1、蒸気のもつ熱
エネルギを運転エネルギに変換するタービン2、タービ
ン排気蒸気を彷水する復水器5、復水を暖めて原子炉に
給水する給水加熱器7及び以上の機器を結ぶ配管より成
る。原子炉1の発生蒸気は、タービン2で仕事をした後
復水器5に導びかれ凝縮に復水となる。復水け、タービ
ン抽気ライン13の抽気蒸気を熱源とする給水加熱器7
で暖められ原子炉IK給水される。
This plant consists of a nuclear reactor 1 that is a steam source, a turbine 2 that converts the thermal energy of the steam into operating energy, a condenser 5 that circulates the turbine exhaust steam, and a feed water heater that warms the condensate and supplies water to the reactor. It consists of pipes connecting the equipment 7 and the above equipment. The steam generated in the nuclear reactor 1 performs work in the turbine 2, and then is led to the condenser 5 where it is condensed into condensate. Feed water heater 7 whose heat source is extracted steam from the condensate drain and turbine extraction line 13
The reactor is heated by water and supplied to the reactor IK.

このようなプラントにおいて原子炉給水温度は第3図に
示す様にプラント負荷によって変化する。
In such a plant, the reactor feed water temperature changes depending on the plant load, as shown in FIG.

ところが低負荷時において原子炉給水温度が下降すると
、原子炉におけるボイドの発生が抑制される為に必要蒸
気量を得られないという問題があった。
However, when the reactor feed water temperature decreases during low load, the generation of voids in the reactor is suppressed, resulting in a problem in that the necessary amount of steam cannot be obtained.

また更に公知の湿分分離再熱器付原子力タービンプラン
トの系統は第2図に示す様になっている。
Furthermore, the system of a known nuclear power turbine plant with a moisture separator and reheater is shown in FIG.

プラントは蒸気源である原子炉1、蒸気のもつ熱エネル
ギを運動エネルギに変換する高圧タービン2及び低圧タ
ービン4、高圧タービン2より出た蒸気を再熱し及び湿
分を除去させる湿分分離再熱器3、低圧タービンを出た
蒸気を復水する復水器5、復水を暖めて原子炉に給水す
る低圧給水加熱器6及び高圧給水加熱器7及び以上の機
器間の配管より構成される。原子炉発生蒸気は高圧ター
ビン2に導びかれ、仕事をした後、湿分分離再熱器3で
乾燥、再熱され低圧タービン4へ流入する。
The plant consists of a nuclear reactor 1 which is a steam source, a high pressure turbine 2 and a low pressure turbine 4 which convert the thermal energy of the steam into kinetic energy, and a moisture separation reheating system which reheats the steam output from the high pressure turbine 2 and removes moisture. A condenser 5 that condenses the steam exiting the low-pressure turbine, a low-pressure feedwater heater 6 and a high-pressure feedwater heater 7 that warm the condensate and supply water to the reactor, and piping between the above equipment. . The reactor-generated steam is led to a high-pressure turbine 2 and, after doing work, is dried and reheated in a moisture separator reheater 3 and flows into a low-pressure turbine 4.

低圧タービン4で仕事をした蒸気は復水器5へ導ひかれ
復水となる。復水け、低圧給水加熱器6及び高圧給水加
熱器7で熱せられた後、原子炉1に供給される。また、
湿分分離再熱器3の再熱用熱源としては、原子炉発生蒸
気c以下主蒸気と略す)及び高圧タービン油気蒸気(以
下高圧抽気と略す]を使用する。両系統からの加熱蒸気
は湿分分離再熱器3にて高圧タービン排気蒸気と熱交換
した後、高圧給水加熱器7に導ひかれ、再び熱源として
使用されドレンとなる。
The steam that has done work in the low pressure turbine 4 is led to the condenser 5 and becomes condensed water. After being heated in a condensate drain, a low-pressure feedwater heater 6 and a high-pressure feedwater heater 7, it is supplied to the reactor 1. Also,
As the heat source for reheating the moisture separation reheater 3, reactor generated steam (hereinafter referred to as main steam) and high pressure turbine oil steam (hereinafter referred to as high pressure extracted air) are used.Heating steam from both systems is After exchanging heat with the high-pressure turbine exhaust steam in the moisture separation reheater 3, the water is led to the high-pressure feed water heater 7, where it is used again as a heat source and becomes a drain.

この様なプラントにおいても同様に原子炉給水1度は第
3図に示す様に変化する為、低負荷時に、必要蒸気量を
得られないという問題がめった。
In such a plant, the reactor feed water temperature also changes as shown in FIG. 3, so the problem often arises that the required amount of steam cannot be obtained at low loads.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、低負荷時において、給水加熱器への供
給蒸気に、高エンタルピ蒸気を取入れて、原子炉給水温
度をある一定値以上に保つ様な原子力タービンプラント
運転方法を提供することにある。
An object of the present invention is to provide a nuclear turbine plant operating method that maintains the reactor feed water temperature above a certain value by incorporating high enthalpy steam into the steam supplied to the feed water heater during low load times. be.

〔発明の概要〕[Summary of the invention]

本発明の多、点は低負荷時に原子炉給水温度が低下する
ことを防ぐ為、プラント負荷が予め定められた値以下に
なると給水加熱器に供給する蒸気に通常供給蒸気よりも
上流側の抽気を取入れるように制?1lllすることに
ある。また湿分分離再熱器付のタービンにおいてはこの
取入れを行なうと、温分分1i1L再熱器に供給する高
圧抽気の景が減るが、高圧排気の流用−はほぼ同一の為
湿分分離再熱器出口ドレンのエンタルピは相対的に低下
する。この為上述の取入れを行なうと同時に、湿分分離
再熱器の出口ドレンのうち高圧抽気より供給された蒸気
の排出側ドレンの排出先を高圧給水加熱器より、低圧給
水加熱器に変更する。以上の操作により原子炉給水温度
は一定値以上に保たれる。また、この切換を急速に行な
うと、圧力が過渡的に低下するため湿分分離再熱器出口
ドレンがフラッシュするので、このフラッシュを起こさ
ない様な低速で弁切換を行なう。また、高圧給水加熱器
への供給蒸気の切換えと、湿分分離再熱器からの排出側
ドレンの行先の切換え時間が大きくずれると・湿分分離
再熱器内に圧力変動が生じ、圧力低下の場合は、出口ド
レンがフラッシュすることがあるので、上記2つの切換
えを同期させるようにしたことを特徴とするものである
The key point of the present invention is that in order to prevent the reactor feed water temperature from decreasing during low load, when the plant load falls below a predetermined value, the steam supplied to the feed water heater is extracted from the steam on the upstream side of the normally supplied steam. Is there a regulation to incorporate it? It's about doing 1llll. In addition, in a turbine equipped with a moisture separation reheater, if this is introduced, the amount of high-pressure extracted air supplied to the hot 1i1L reheater will be reduced, but since the diversion of high-pressure exhaust air is almost the same, the moisture separation and reheating The enthalpy of the heater outlet drain is relatively reduced. Therefore, at the same time as the above-mentioned intake is carried out, the destination of the outlet drain of the moisture separation reheater, which discharges the steam supplied from the high-pressure extraction gas, is changed from the high-pressure feedwater heater to the low-pressure feedwater heater. The above operations keep the reactor feed water temperature above a certain value. Furthermore, if this switching is performed rapidly, the pressure will drop transiently and the outlet drain of the moisture separation reheater will flush, so the valve switching is performed at a low speed that does not cause this flashing. In addition, if there is a large difference in the time between switching the steam supplied to the high-pressure feedwater heater and switching the destination of the discharge side drain from the moisture separation reheater, pressure fluctuations will occur in the moisture separation reheater, resulting in a pressure drop. In this case, the outlet drain may flush, so the above two switchings are synchronized.

〔発明の実施例〕 本発明の一実施例を第5図に示す。第1図の系統に、低
負荷時に、給水加熱器7へ高温の蒸気を供給する為の抽
気蒸気管17及び供給抽気切換弁16を追加し、切換弁
16をプラント負荷が予め定めた値以下になったとき開
くようにした。
[Embodiment of the Invention] An embodiment of the present invention is shown in FIG. A bleed steam pipe 17 and a supply bleed switching valve 16 are added to the system shown in Fig. 1 to supply high-temperature steam to the feedwater heater 7 during low load, and the switching valve 16 is set so that the plant load is below a predetermined value. I made it open when the

本系統を用いて、プラントを制御した場合、原子炉給水
温度は、プラント負荷に対し第4図の特性となる。即ち
、切換弁16が閉じているAの範囲においては、従来の
第3図の特性と同様に給水加熱器7への供給蒸気は、抽
気ライン13かものみ供給する。一方、プラント負荷が
0%以下のBの範囲においては、切換弁16を開いて、
高温、高圧の抽気蒸気を加熱蒸気として供給する。この
場合、給水加熱器7の給水出口温度がDC以下となるこ
とを防ぐ為原子炉給水出口温度を検知し供給抽気切換弁
16の必要量だけ開いて高エンタルピ蒸気を給水加熱器
7に供給する。
When a plant is controlled using this system, the reactor feed water temperature has the characteristics shown in FIG. 4 with respect to the plant load. That is, in the range A where the switching valve 16 is closed, the steam supplied to the feed water heater 7 is supplied only to the extraction line 13, similar to the conventional characteristic shown in FIG. On the other hand, in range B where the plant load is 0% or less, the switching valve 16 is opened and
Supply high-temperature, high-pressure extraction steam as heating steam. In this case, in order to prevent the feedwater outlet temperature of the feedwater heater 7 from falling below DC, the reactor feedwater outlet temperature is detected and the supply bleed switching valve 16 is opened by the required amount to supply high enthalpy steam to the feedwater heater 7. .

供給抽気切換弁16の制御は、実際の原子炉給水温度と
目標温度DCの偏差が0となる迄供給抽気切換弁16を
開ける。また、供給抽気切換弁16は、電動弁とすると
ともできるが、大口径等の理由で油圧、l駆動とするこ
ともできる。その−例を第6図に示す。弁駆動機構は、
制御系からの電気信号29を油圧信号に変換する電油変
換器19.11〕、油変換器19よりの油圧信号で開閉
する弁駆動油圧シリンダ27油圧シリンダのストローク
を制預11糸にフィードバックする差動トランス28よ
りなる。制御系からの弁開信号により電池変換器19は
、油圧シリンダ27の下部に給油し供給蒸気切換弁16
金開ける。弁のストロークは差動トランス28により制
御系にフィードバックされる。
The supply bleed air switching valve 16 is controlled by opening the supply bleed air switching valve 16 until the deviation between the actual reactor feed water temperature and the target temperature DC becomes zero. Further, the supply bleed air switching valve 16 can be an electric valve, but it can also be hydraulically driven for reasons such as a large diameter. An example is shown in FIG. The valve drive mechanism is
An electro-hydraulic converter 19.11 that converts the electrical signal 29 from the control system into a hydraulic signal; a valve-driven hydraulic cylinder 27 that opens and closes according to the hydraulic signal from the oil converter 19; and a valve-driven hydraulic cylinder 27 that feeds back the stroke of the hydraulic cylinder to the control thread 11. It consists of a differential transformer 28. In response to a valve opening signal from the control system, the battery converter 19 supplies oil to the lower part of the hydraulic cylinder 27 and closes the supply steam switching valve 16.
Open money. The valve stroke is fed back to the control system by a differential transformer 28.

次に、湿分分離再熱暴利のプラントにおける本発明の他
の実施例を第7図について説明する。第2図に示す従来
系統に追加して、低負荷時に高圧給水加熱器7への供給
蒸気を切換える為の高圧抽気供給管17、供給抽気切換
弁16、及び湛分分離再熱器3の出口ドレンを低圧給水
加熱器6に導く為のドレン管18、低圧給水加熱器人口
ドレン弁15を設置する。
Next, another embodiment of the present invention in a moisture separation reheat profiteering plant will be described with reference to FIG. In addition to the conventional system shown in FIG. 2, there is a high-pressure bleed air supply pipe 17, a supply bleed air switching valve 16, and an outlet of the water separation reheater 3 for switching the steam supplied to the high-pressure feed water heater 7 during low load. A drain pipe 18 for guiding drain to the low pressure feed water heater 6 and a low pressure feed water heater artificial drain valve 15 are installed.

原子炉給水蒸気温度は、第4図に示すように、プラント
の低負荷域で、一定となる・即ち・Aの範囲においては
従来と同様、高圧給水加熱器供給蒸気は第7図の抽気ラ
イン13より供給し、湿分分離再熱器ドレン11は高圧
給水加熱器人口ドレン弁14を開けて高圧給水加熱器7
へ排出する。
As shown in Figure 4, the reactor feed steam temperature remains constant in the low load range of the plant, i.e. in the range A, as before, the high pressure feed water heater supply steam is supplied to the bleed line in Figure 7. 13, and the moisture separation reheater drain 11 is connected to the high pressure feed water heater 7 by opening the high pressure feed water heater artificial drain valve 14.
discharge to.

一方、プラント負荷が0%以下のBの範囲においては、
原子炉給水温度がDtll”より低下することを防ぐ為
、原子炉給水温度を検知し供給抽気切換弁1Gを開いて
高エンタルピ蒸気を高圧給水加熱器7に供給すると同時
に、湿分分離再熱器3の出口ドレン11の接続先を変更
する為高圧給水加熱器人口ドレン弁14を閉め、低圧給
水加熱器人口ドレン弁15を開く。これにより原子炉給
水温度はDtTに保たれる。
On the other hand, in range B where the plant load is 0% or less,
In order to prevent the reactor feed water temperature from dropping below Dtll, the reactor feed water temperature is detected and the supply bleed switching valve 1G is opened to supply high enthalpy steam to the high pressure feed water heater 7, and at the same time, the moisture separation reheater In order to change the connection destination of the outlet drain 11 of No. 3, the high pressure feed water heater artificial drain valve 14 is closed and the low pressure feed water heater artificial drain valve 15 is opened.Thereby, the reactor feed water temperature is maintained at DtT.

以上3つの弁の開閉は、第8図に示す機構で行なう。本
機17りは、雷、油変換器19、アクチュエータ20、
ラック21、ピニオン22、カム軸23、カム24、カ
ムレバー25、パイロンHP26、弁駆動シリンダ27
、差動トランス28より成る。
The above three valves are opened and closed by the mechanism shown in FIG. This machine 17 includes lightning, oil converter 19, actuator 20,
Rack 21, pinion 22, camshaft 23, cam 24, cam lever 25, pylon HP 26, valve drive cylinder 27
, a differential transformer 28.

電池変換器19へ、アクチュエータ開方向の入方信号2
9がはいると、電油変換器19は、アクチュエータ20
の下のボートに油を供給する。これによりアクチュエー
タ20のピストンは上昇し、ラック21を押し上げる。
Incoming signal 2 in actuator opening direction to battery converter 19
When 9 is inserted, the electro-hydraulic converter 19 is connected to the actuator 20.
supplying oil to the boat below. This causes the piston of the actuator 20 to rise and push up the rack 21.

ラック21の上昇と供にピニオン22が反時剖方向に回
転し、カム軸23及びカム24も同様に反時計方向に回
転する。
As the rack 21 rises, the pinion 22 rotates counterclockwise, and the camshaft 23 and cam 24 similarly rotate counterclockwise.

カム24の形状によりカムレバー25が上下し、パイロ
ット弁26を上下させて弁駆動シリンダの下部に油を供
給または排出する。これにより、高圧給水加熱器入口ド
レン弁14を開閉する。図5では省略しているカニ、低
圧給水加熱器人口ドレン弁15、供給抽気切換弁16も
同一のカム軸23上のカムにより開閉される。弁の開閉
モードは図9の様にする。即ち、第4図のへの範囲では
アクチュエータストローク00点で運転しており、プラ
ント負荷C%の点でアクチュエータをストロークさせ、
まず、高圧給水加熱器人口ドレン弁14を開め、低圧給
水加熱器人口ドレン弁15を開ける。その後供給抽気切
換弁を心安な開度逸聞ける。
The shape of the cam 24 causes the cam lever 25 to move up and down, which moves the pilot valve 26 up and down to supply or discharge oil to the lower part of the valve drive cylinder. This opens and closes the high-pressure feedwater heater inlet drain valve 14. The crab, low-pressure feed water heater artificial drain valve 15, and supply bleed air switching valve 16, which are omitted in FIG. 5, are also opened and closed by a cam on the same camshaft 23. The opening/closing mode of the valve is as shown in FIG. That is, in the range of Fig. 4, the actuator stroke is operated at the 00 point, and the actuator is stroked at the point of the plant load C%.
First, the high-pressure feed water heater artificial drain valve 14 is opened, and the low-pressure feed water heater artificial drain valve 15 is opened. After that, the supply bleed air switching valve can be opened to a safe level.

この時、高圧タービンよりの抽気量を一定とする為、低
圧給水加熱器人口ドレン弁15をある開度迄(3]める
必要がある。従って、低圧給水加熱器人口ドレン弁15
の開度を決定する為にはまず、高圧給水加熱器人口ドレ
ン弁14と低圧給水加熱器人口ドレン弁15の切替えを
まず最初に行ない、その後で供給抽気切換弁16の開け
、低圧給水加熱器人口ドレン弁14を微開する。
At this time, in order to keep the amount of air extracted from the high-pressure turbine constant, it is necessary to open the low-pressure feed water heater artificial drain valve 15 to a certain opening (3).
In order to determine the opening degree of Slightly open the artificial drain valve 14.

供給抽気切換弁の開度は原子炉給水温度を検知して決定
する。従ってプラント負荷の下降に伴ない、アクチュエ
ータ200ストロークは大きくなることとなる。本切換
は、湿分分離再熱器3の出口ドレンのフラッシュを防止
する為、予め定めた時間以上かけてゆっくり行なうこと
とする。
The opening degree of the supply bleed air switching valve is determined by detecting the reactor feed water temperature. Therefore, as the plant load decreases, the stroke of the actuator 200 increases. This switching should be performed slowly over a predetermined period of time to prevent the outlet drain of the moisture separator and reheater 3 from flashing.

本実施例によれば、弁の開閉を同一のカム軸を用いて行
なう為、弁相互の開度の関係は第9図に示される通り一
定である為、弁の誤動作による事故は皆無となる。
According to this embodiment, since the valves are opened and closed using the same camshaft, the relationship between the opening degrees of the valves is constant as shown in Fig. 9, so there are no accidents due to valve malfunction. .

また、弁の動作を全て電気的に行なうことも射口Iシで
ある。即し、各々の弁に重油変換器を取伺けて直接弁駆
動シリンダを開閉することとなる。この方法によれば、
機構を簡単に4”ることかできる。
It is also an injection port that all valve operations are performed electrically. In other words, a heavy oil converter can be connected to each valve to directly open and close the valve drive cylinder. According to this method,
The mechanism can be easily extended to 4".

〔発明の効果〕〔Effect of the invention〕

本発明によれ(・1′、プラント低負荷運転時において
も、原子炉給水温度が低下し、必要蒸気量を得られない
という問題点全解決することができる。
According to the present invention (1'), even during low load plant operation, the problem that the reactor feed water temperature decreases and the necessary amount of steam cannot be obtained can be completely solved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は公知の原子力タービンプラントの系統図、第2
図は湿分分離再熱器を備えた原子力タービンプラントの
系統図、第3図は、従来の系統におけるプラント負荷と
給水温度の関係を示す特性図、第4図は、本発明方法を
実施した場合のプラント負荷と給水温度の関係を示す特
性図、第5図は本発明を実施する原子力タービンプラン
トの系統図・第6図は切換弁を示す図、第7図は、本発
明を実施する湿分分離再熱器を備えた原子力タービンプ
ラントの系統図、第8図は、切換弁の構造を示す図、第
9図は、弁の開度特性図である。 1・・・原子炉、2・・・タービン、5・・・復水器、
7・・・給水加熱器、13・・・抽気ライン、16・・
・切換弁、13図 0 100 ブラ)ト 員拘 (%ノ フ・う)L目前 (%) 75図 Y4図 : 1 ¥70 し 78図 紡鳴 第’? l’l 了り+[111−タ ストロ−2(す
Figure 1 is a system diagram of a known nuclear turbine plant;
The figure is a system diagram of a nuclear turbine plant equipped with a moisture separation reheater, Figure 3 is a characteristic diagram showing the relationship between plant load and feed water temperature in a conventional system, and Figure 4 is a diagram showing the relationship between plant load and feed water temperature in a conventional system. FIG. 5 is a system diagram of a nuclear turbine plant in which the present invention is implemented. FIG. 6 is a diagram showing a switching valve. A system diagram of a nuclear turbine plant equipped with a moisture separation reheater, FIG. 8 is a diagram showing the structure of a switching valve, and FIG. 9 is a diagram showing the opening characteristic of the valve. 1... Nuclear reactor, 2... Turbine, 5... Condenser,
7... Feed water heater, 13... Bleeding line, 16...
・Switching valve, 13 fig. l'l Finish + [111-ta Stro-2 (Su

Claims (1)

【特許請求の範囲】 1、蒸気発生源である原子炉、蒸気の持つ熱エネルギを
運動エネルギに変換するタービン、タービン排出蒸気を
復水する復水器、領水を暖め原子炉に給水する給水加熱
器より成る原子力タービンプラントにおいて、プラント
低負荷時に給水加熱器へ供給する加熱蒸気に高エンタル
ピのものを取入れることにより原子炉給水温度を設定値
以上に保つことを特徴とする原子力タービンプラント運
転方法。 2.4’Hr請求のイ・包囲第1項において、プラント
効率向上の為、給水加熱器に取入れる高エンタルピ蒸気
をタービン抽気蒸気とすることを特徴とする原子力ター
ビンプラント運転方法。 3、fI′¥W[請求の範囲第1項において、さらに給
水加熱器が直列に複数あり、タービンとして高圧タービ
ンと低圧タービンを持ち、高圧タービン抽気蒸気を乾燥
及び高エンタルピ蒸気を用いて再熱する湿分分離再熱器
を有する原子力タービンプラントにおいて、プラント低
負荷時に、高圧側の給水加熱器の供給蒸気に高エンタル
ピ蒸気を取入れると同時に、湿分分離再熱器の出口ドレ
ン排出先を高圧側の給水加熱器より低圧側の給水加熱器
に切換えることによって、原子力給水温度を設定値以上
に保つことを特徴とする原子力タービンプラント運転方
法。 4、特許請求の範囲第3項において、湿分分離器出口ド
レンの排出先の切換を、湿分分離器出口ドレンがフラッ
シュを起こさない様な設定時間以上で行なうことを特徴
とするタービンプラント運転方法。
[Claims] 1. A nuclear reactor as a steam generation source, a turbine that converts the thermal energy of the steam into kinetic energy, a condenser that condenses the turbine exhaust steam, and a feed water heater that warms territorial water and supplies water to the reactor. A method for operating a nuclear turbine plant, characterized in that the temperature of the reactor feed water is maintained at a set value or higher by incorporating high enthalpy into the heating steam supplied to the feed water heater during low load of the plant. . 2. A method for operating a nuclear power turbine plant in item 1 of the 4'Hr claim, characterized in that, in order to improve plant efficiency, high enthalpy steam taken into the feedwater heater is used as turbine extraction steam. 3, fI'\W [In claim 1, there is further a plurality of feed water heaters in series, a high pressure turbine and a low pressure turbine as turbines, and the high pressure turbine extracted steam is dried and reheated using high enthalpy steam. In a nuclear power turbine plant with a moisture separator reheater, when the plant is under low load, high enthalpy steam is introduced into the feed water heater supply steam on the high pressure side, and at the same time, the outlet drain of the moisture separator reheater is A nuclear turbine plant operating method characterized by maintaining nuclear power feed water temperature above a set value by switching from a high pressure side feed water heater to a low pressure side feed water heater. 4. The turbine plant operation according to claim 3, characterized in that the discharge destination of the moisture separator outlet drain is switched for a set time or longer such that the moisture separator outlet drain does not flash. Method.
JP58180361A 1983-09-30 1983-09-30 Method of operating nuclear power turbine plant Pending JPS6073397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58180361A JPS6073397A (en) 1983-09-30 1983-09-30 Method of operating nuclear power turbine plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58180361A JPS6073397A (en) 1983-09-30 1983-09-30 Method of operating nuclear power turbine plant

Publications (1)

Publication Number Publication Date
JPS6073397A true JPS6073397A (en) 1985-04-25

Family

ID=16081898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58180361A Pending JPS6073397A (en) 1983-09-30 1983-09-30 Method of operating nuclear power turbine plant

Country Status (1)

Country Link
JP (1) JPS6073397A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3460203A4 (en) * 2016-05-20 2019-05-08 Mitsubishi Hitachi Power Systems, Ltd. Steam turbine plant
US20200392343A1 (en) * 2018-02-28 2020-12-17 Fujifilm Corporation Composition, cured product, color filter, method for producing color filter, solid-state imaging element, image display device, and compound

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5748696A (en) * 1980-09-08 1982-03-20 Hitachi Ltd Power control device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5748696A (en) * 1980-09-08 1982-03-20 Hitachi Ltd Power control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3460203A4 (en) * 2016-05-20 2019-05-08 Mitsubishi Hitachi Power Systems, Ltd. Steam turbine plant
US10787934B2 (en) 2016-05-20 2020-09-29 Mitsubishi Hitachi Power Systems, Ltd. Steam turbine plant
US20200392343A1 (en) * 2018-02-28 2020-12-17 Fujifilm Corporation Composition, cured product, color filter, method for producing color filter, solid-state imaging element, image display device, and compound

Similar Documents

Publication Publication Date Title
EP0178617B1 (en) Steam turbine plant having a turbine bypass system
EP0931911A2 (en) Combined cycle power plant
US11092040B2 (en) Combined heat recovery device
US5850739A (en) Steam turbine power plant and method of operating same
TW202035853A (en) Heat storage device, power generation plant, and operation control method during fast cut back
US3882680A (en) By-pass system
WO1983001812A1 (en) Sliding pressure flash tank
US3212477A (en) Forced flow steam generator and method of starting same
US3457725A (en) Apparatus for covering a peak load or a rapidly changing load in a steam turbine plant
US4336105A (en) Nuclear power plant steam system
CN210118175U (en) Pressurized water reactor nuclear power unit two-loop thermodynamic system self-adaptation steam supply system
JPS6073397A (en) Method of operating nuclear power turbine plant
JPH05248604A (en) Waste heat recovery boiler
CN210153765U (en) Boiler thermodynamic system
JPS5823207A (en) Thermoelectric power plant equipped with stored steam power generation system
JP2006063886A (en) Thermal power plant
US3411299A (en) Peak load operation in steam power plants
JP2002115807A (en) Driving turbine operation method for boiler feedwater pump, and its operation apparatus
Byeon et al. Designing a standard thermal power plant for daily startup/shutdown: the HP Bypass control and safety function
JPH0467001B2 (en)
JPS5993906A (en) Steam turbine plant
JPH05209503A (en) Compound generating plant having steam drum
JPS63194110A (en) Once-through boiler
JPH0135244B2 (en)
JPS5857010A (en) Two-stage reheating system thermal power plant