JPS5993906A - Steam turbine plant - Google Patents

Steam turbine plant

Info

Publication number
JPS5993906A
JPS5993906A JP20331282A JP20331282A JPS5993906A JP S5993906 A JPS5993906 A JP S5993906A JP 20331282 A JP20331282 A JP 20331282A JP 20331282 A JP20331282 A JP 20331282A JP S5993906 A JPS5993906 A JP S5993906A
Authority
JP
Japan
Prior art keywords
steam
reheater
pressure
valve
feed water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20331282A
Other languages
Japanese (ja)
Inventor
Hiroshi Hamano
浜野 博
Takemi Sasamuro
笹室 武美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20331282A priority Critical patent/JPS5993906A/en
Publication of JPS5993906A publication Critical patent/JPS5993906A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/40Use of two or more feed-water heaters in series

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To make the recovery of heating steam by a reheater ever so easy as well as to prevent a temperature of feed water from dropping, by installing an on-off valve in piping which interconnects the reheater and a high pressure feed water heater, and also installing the on-off valve in another piping which interconnects the feed water heater at the low temperature side and the reheater through. CONSTITUTION:An atomic power generation plant consists of a reactor and a steam generator 1, a high pressure turbine 3, a reheater 5, a low pressure turbine 6, a condenser 8, etc. An on-off valve 24 is installed in piping 16 which interconnects the reheater 5 and a high pressure feed water heater 12 through. Likewise, the on-off valve 24 is also installed in another piping 22 which interconnects a low pressure feed water heater 10 and the reheater 5 through. In time of partial load operation, an on-off valve 19 opens while another on-off valve 23 closes, switching an extraction steam point from X to Y. At this time, these on-off valves 24 and 23 turn to open and close respectively whereby the accompanying steam of heating steam in the reheater 5 is led by the low temperature feed water heater 10. Doing like this, flowing of the heating steam in the reheater is also stabilized so that a reaction core is stabilized too.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は蒸気タービンプラントに係り、特に部分負荷運
転時の運転状態の改善を図った蒸気タービンプラントに
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a steam turbine plant, and more particularly to a steam turbine plant with improved operating conditions during partial load operation.

〔発明の技術的背景〕[Technical background of the invention]

例えば、原子力発電プラントでは、電力系統の安定化の
ために全容量タービンバイノ?スが設けられ、電力系統
事故時などには原子力発電プラントを所内負荷相当の出
力で運転することとしている。
For example, in nuclear power plants, full-capacity turbine binoculars are used to stabilize the power system. In the event of a power system accident, nuclear power plants are operated at an output equivalent to the on-site load.

即ち、事故時などには、全容量タービンバイパスを動作
させて蒸気タービンに送られる蒸気量を減少させ、蒸気
タービンの出力を定格出力の半分以下に落とし運転を行
なっている。
That is, in the event of an accident, the full capacity turbine bypass is operated to reduce the amount of steam sent to the steam turbine, and the steam turbine is operated by reducing its output to less than half of its rated output.

ところが、蒸気タービンの抽気蒸気を加熱蒸気として用
いる原子力発電プラントの給水系統では、蒸気タービン
に送られる蒸気量が減少すると加熱蒸気が減少した分給
水の温度も下がることになり、原子炉内での温度上昇が
大きくなる。
However, in the water supply system of a nuclear power plant that uses extracted steam from a steam turbine as heating steam, when the amount of steam sent to the steam turbine decreases, the temperature of the feed water decreases to compensate for the decrease in heating steam, and the temperature inside the reactor decreases. Temperature rise increases.

このため原子炉内部で部分的に温度差が大きくなり、プ
ラント寿命を考えた場合に好ましくない条件となり、場
合によっては全容量タービンバイパスの作動時間を制約
する必要を生ずる。
As a result, temperature differences become large locally within the nuclear reactor, creating conditions that are unfavorable in terms of plant life, and in some cases creating a need to restrict the operating time of the full-capacity turbine bypass.

この点を改善したものとして第1図に示す原子力発成プ
ラントがある。この第1図にお匹て符号1は原子炉及び
蒸気発生装置を示す。第1図のプラントでは蒸気発生装
置1によって発生した高温・高圧の蒸気(主蒸気)は蒸
気加減弁18が配設された主蒸気管2を通り高圧タービ
ン3に送られ、ここで蒸気の運動エネルギが機械仕事に
変換される。
There is a nuclear power generation plant shown in Figure 1 that improves this point. In FIG. 1, reference numeral 1 indicates a nuclear reactor and a steam generator. In the plant shown in FIG. 1, high-temperature, high-pressure steam (main steam) generated by a steam generator 1 is sent to a high-pressure turbine 3 through a main steam pipe 2 equipped with a steam control valve 18, where the steam Energy is converted into mechanical work.

次いで、高圧タービン3を通過した蒸気は連絡管4を介
し再熱器5に送られ、ここで蒸気は高圧タービン3の途
中段落の点Yより抽気管14を介して再熱器5に導入す
る加熱蒸気によって加熱される。
Next, the steam that has passed through the high-pressure turbine 3 is sent to the reheater 5 via the connecting pipe 4, where the steam is introduced into the reheater 5 via the bleed pipe 14 from point Y in the middle of the high-pressure turbine 3. Heated by heated steam.

次いで、再熱器5で加熱された蒸気は低圧タービン6に
送られ、ここで再び蒸気の運動エネルギが機械仕事に変
換される。而して、この機械仕事に変換されたエネルギ
及び前記機械仕事に変換されたエネルギは発電機7を駆
動させるために用いられる。
Next, the steam heated in the reheater 5 is sent to the low pressure turbine 6, where the kinetic energy of the steam is again converted into mechanical work. The energy converted into mechanical work and the energy converted into mechanical work are used to drive the generator 7.

また、低圧タービン6を通過した蒸気は復水器8に送ら
れ、ここで蒸気は冷却凝縮され復水とされる。この復水
はポンプ9により吸引され低圧給水加熱器10に送水さ
れ、ここで復水は加熱される。
Further, the steam that has passed through the low-pressure turbine 6 is sent to a condenser 8, where the steam is cooled and condensed to become condensed water. This condensate is sucked by the pump 9 and sent to the low pressure feed water heater 10, where it is heated.

次いで、加熱後の復水はポンプ11により昇圧され給水
となり高圧給水加熱器12に送水され、ここで給水は高
圧タービン3の途中段落の点Xより抽気管13を介して
高圧給水加熱器12に導入する抽気蒸気によって加熱さ
れる。而して、加熱後の給水は蒸気発生装置1に還流さ
れる。
Next, the heated condensate is pressurized by the pump 11 to become feed water and is sent to the high-pressure feed water heater 12, where the feed water is passed from point It is heated by the introduced bleed steam. Thus, the heated feed water is returned to the steam generator 1.

一方、再熱器5に導入した加熱蒸気は、一部がドレンと
なり連絡管15を通って高圧給水加熱器12に回収され
る。ま念ドレンとならない加熱蒸気は随伴蒸気となり連
絡管16を通って高圧給水加熱器12に回収される。
On the other hand, a portion of the heated steam introduced into the reheater 5 becomes drain and is recovered to the high-pressure feed water heater 12 through the connecting pipe 15. The heated steam that is not drained becomes accompanying steam and is recovered to the high-pressure feed water heater 12 through the connecting pipe 16.

以上が通常運転の場合であるが、蒸気加減弁18の上流
側の主蒸気管2から分岐し復水器8に達するパイ・やス
管17に配設された全容量バイパス弁17aが作動し部
分負荷にG行すると、蒸気加減弁18の開度が狭められ
、主蒸気の一部は復水器8ヘバイパスされ、残りの主蒸
気が高圧タービン3に送られる。この結果、高圧タービ
ン3から抽気管13を介して高圧給水加熱器12に送ら
れる蒸気が減少し、給水の温度が定格運転時に比べかな
り低下することは免れないが、抽気管13に介装された
開閉弁19を閉じ、前記抽気管14より分岐し開閉弁1
9の下流側の抽気管13に連通ずるバイパス抽気管九に
配設された開閉弁21を開き、高圧給水加熱器12に供
給する加熱蒸気の圧力を上げることにより蒸気発生装置
1への給水の温度低下を抑制している。
The above is a case of normal operation, but the full capacity bypass valve 17a installed in the pipe 17 that branches from the main steam pipe 2 on the upstream side of the steam control valve 18 and reaches the condenser 8 is activated. When going to partial load G, the opening degree of the steam control valve 18 is narrowed, a part of the main steam is bypassed to the condenser 8, and the remaining main steam is sent to the high-pressure turbine 3. As a result, the steam sent from the high-pressure turbine 3 to the high-pressure feedwater heater 12 via the bleed pipe 13 decreases, and the temperature of the feed water inevitably falls considerably compared to the rated operation. The on-off valve 19 is closed, and the on-off valve 1 is branched from the bleed pipe 14.
The water supply to the steam generator 1 is increased by opening the on-off valve 21 disposed in the bypass bleed pipe 9 that communicates with the bleed pipe 13 on the downstream side of the 9, and increasing the pressure of the heated steam supplied to the high-pressure feed water heater 12. Suppresses temperature drop.

〔背景技術の問題点〕[Problems with background technology]

しかしながら、高圧タービン3の再熱器5への抽気点と
高圧給水加熱器12への抽気点とが同一点Yである場合
又は再熱器5への抽気点が高圧給水加熱器12への抽気
点より低圧側にある場合には次のような問題を生ずる。
However, if the point of air extraction to the reheater 5 of the high-pressure turbine 3 and the point of air extraction to the high-pressure feedwater heater 12 are the same point Y, or the point of air extraction to the reheater 5 is the same as the point of extraction to the high-pressure feedwater heater 12. If the pressure is on the lower pressure side than the point, the following problem will occur.

即ち、高圧給水加熱器抽気蒸気の圧力損失より再熱器加
熱蒸気の随伴蒸気が再熱器内を通過すること等による圧
力損失の方が大きいため、再熱器5の加熱蒸気の圧力よ
りも高圧給水加熱器12の器内圧の方が高くなる場合が
あり、その結果前記随伴蒸気の回収が不安定となり、再
熱器5における加熱蒸気の流動が不安定化する。
In other words, the pressure loss due to the accompanying steam of the reheater heating steam passing through the reheater is greater than the pressure loss of the high-pressure feed water heater bleed steam, so the pressure of the heating steam of the reheater 5 is The internal pressure of the high-pressure feed water heater 12 may become higher, and as a result, recovery of the accompanying steam becomes unstable, and the flow of heated steam in the reheater 5 becomes unstable.

〔本発明の目的〕[Object of the present invention]

本発明はかかる点に鑑みなされたもので2本発明の目的
は、部分負荷運転における高圧給水加熱器への抽気蒸気
の抽気点の切替えによって生じる再熱器加熱蒸気の随伴
蒸気回収の不安定化を抑制し、ひいては再熱器加熱蒸気
の流動を安定化させることにより部分負荷でも安定した
運用が可能な蒸気タービンプラントを得ることにある。
The present invention has been made in view of these points. 2. The purpose of the present invention is to reduce the instability of the accompanying steam recovery of the reheater heating steam caused by switching the extraction point of the bleed steam to the high pressure feed water heater during partial load operation. The object of the present invention is to obtain a steam turbine plant that can be operated stably even under partial load by suppressing the flow of steam heated by a reheater and stabilizing the flow of steam heated by a reheater.

〔発明の概要〕[Summary of the invention]

前記目的は、高圧タービンから流出し低圧側タービンに
供給される蒸気を、前記高圧タービンの途中段落から抽
出された抽気により再熱する再熱器を設けるとともに、
低圧側タービンに供給される蒸気と熱交換した蒸気を高
圧給水加熱器に導入するようにした蒸気タービンプラン
トにおいて、前記再熱器と高圧給水加熱器とを連通ずる
配管に開閉弁を設けるとともに、前記低圧側タービンお
よび高圧給水加熱器間の管路に配設された復水器又は低
圧側給水加熱器と前記再熱器とを連通ずる配管を設け、
さらにこの配管に開閉弁を設けることによって達成され
る。
The purpose is to provide a reheater for reheating the steam flowing out of the high pressure turbine and supplied to the low pressure turbine using extracted air extracted from an intermediate stage of the high pressure turbine;
In a steam turbine plant in which steam heat-exchanged with steam supplied to a low-pressure side turbine is introduced into a high-pressure feedwater heater, an on-off valve is provided in a pipe communicating with the reheater and the high-pressure feedwater heater, and A condenser disposed in a pipe line between the low-pressure side turbine and the high-pressure feedwater heater, or a pipe that communicates the low-pressure side feedwater heater with the reheater, is provided,
Furthermore, this can be achieved by providing an on-off valve in this piping.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を第2図の実施例に基づいて説明す名。なお
、第2図において第1図と同一符号は同一要素を示すも
のであり、その説明は省略する。
The present invention will be explained below based on the embodiment shown in FIG. Note that in FIG. 2, the same reference numerals as in FIG. 1 indicate the same elements, and a description thereof will be omitted.

また、本発明は火力、原子力を用いた蒸気タービンプラ
ントに関するものであるが、ここでは原子力発電プラン
トにつき説明する。
Furthermore, although the present invention relates to a steam turbine plant using thermal power or nuclear power, a nuclear power plant will be explained here.

第2図の原子力発電グランドでは、再熱器5と高圧給水
加熱器12とを連通し再熱器5から高圧給水加熱器12
へ随伴蒸気を導く連絡管16に、低圧給水加熱器10に
接続する分岐配管22が設けられている。この分岐配管
22には開閉弁nが配設されており、また連絡管16の
分岐配管nとの分岐点より下流位置には開閉弁別が配設
されている。
In the nuclear power generation ground shown in FIG. 2, the reheater 5 and the high pressure feed water heater 12 are connected to each other, and
A branch pipe 22 that connects to the low-pressure feed water heater 10 is provided in the connecting pipe 16 that guides the accompanying steam to the low-pressure feed water heater 10 . This branch pipe 22 is provided with an on-off valve n, and an on-off valve is provided at a position downstream from the junction of the communication pipe 16 with the branch pipe n.

次に、第2図の原子力発電プラントの部分負荷運転時の
作用につき説明すれば、抽気管13の開閉弁19が閉、
抽気管側の開閉弁21が開となり、抽気点は定格運転時
の抽気点Xから抽気点Yに切替えられる。また、この時
、連絡管16の開閉弁あが閉、分岐配管nの開閉弁nが
開となり、再熱器5の加熱蒸気の随伴空気は分岐配管n
に導入さ、h%圧圧水水加熱器10導かれる。
Next, to explain the operation during partial load operation of the nuclear power plant shown in FIG. 2, the on-off valve 19 of the bleed pipe 13 closes
The on-off valve 21 on the bleed pipe side is opened, and the bleed point is switched from bleed point X during rated operation to bleed point Y. Also, at this time, the on-off valve of the communication pipe 16 is opened and closed, and the on-off valve n of the branch pipe n is opened, and the accompanying air of the heated steam of the reheater 5 is transferred to the branch pipe n.
The water heater 10 is introduced into the h% pressure water heater.

以上の実施例によれば9部分負荷運転において、再熱器
加熱蒸気の随伴蒸気の回収先をより低圧側に切替えるの
で、再熱器加熱蒸気の随伴蒸気の回収が容易となり、再
熱器加熱蒸気の流動も安定する。
According to the above embodiment, in the 9 part load operation, the recovery destination of the accompanying steam of the reheater heating steam is switched to the lower pressure side, so the recovery of the accompanying steam of the reheater heating steam is facilitated, and the reheater heating The flow of steam is also stabilized.

また、上記実施例は第3図のように変形することも可能
である。即ち、圧力検出器6,26をそれぞれ連絡管1
6.抽気管13に設け、高圧給水加熱器12への抽気蒸
気の圧力の方が再熱器加熱蒸気の圧力よりも高くなった
時に、開閉弁23を開、開閉弁別を閉とし、再熱器5の
加熱蒸気の随伴蒸気を分岐配管22に4人するようにし
、随伴蒸気の回収先を高圧給水加熱器12から低圧給水
加熱器1oに切替えてもよい。
Further, the above embodiment can also be modified as shown in FIG. That is, the pressure detectors 6 and 26 are connected to the connecting pipe 1.
6. It is provided in the bleed pipe 13, and when the pressure of the bleed steam to the high-pressure feed water heater 12 becomes higher than the pressure of the reheater heating steam, the on-off valve 23 is opened and the on-off valve is closed, and the reheater 5 The accompanying steam of the heating steam may be transferred to the branch pipe 22 by four people, and the collection destination of the accompanying steam may be switched from the high-pressure feed water heater 12 to the low-pressure feed water heater 1o.

このようにすれば、なお一層再熱器加熱蒸気の回収が効
果的に行なわれることとなる。
In this way, the reheater heating steam can be recovered even more effectively.

なお2本発明においては、上記の如く低圧給水加熱器に
随伴蒸気を回収する代わりに、複数の給でもよい。
In addition, in the present invention, instead of recovering the accompanying steam to the low-pressure feedwater heater as described above, a plurality of steam may be supplied.

また、第1の実施例及び第2の実施例においては、分岐
配管四を連絡管16より分岐させているが。
Further, in the first embodiment and the second embodiment, the branch pipe 4 is branched from the communication pipe 16.

本発明においては実施例に限定されるものでなく。The present invention is not limited to the examples.

復水器又は低圧側給水加熱器と再熱器とを直接配管にて
連通せしめても良いものである。
The condenser or the low-pressure side feed water heater and the reheater may be connected directly through piping.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明の蒸気タービンプラントは、再熱器
と高圧給水加熱器とを連通ずる配管に開閉弁を設けると
ともに、低圧側給水加熱器と再熱器とを連通ずる配管を
設け、さらにこの配管に開閉弁を設けているので、再熱
器加熱蒸気の回収が容易となり、再熱器加熱蒸気の流動
も安定するため、給水温度の低下が抑制され、しかも炉
心が前走化するという効果を有する。
As described above, the steam turbine plant of the present invention provides an on-off valve in the piping that communicates the reheater and the high-pressure feedwater heater, and also provides the piping that communicates the low-pressure side feedwater heater and the reheater, and further This piping is equipped with an on-off valve, which makes it easy to recover the reheater heating steam and stabilizes the flow of the reheater heating steam, which suppresses the drop in feed water temperature and allows the reactor core to move forward. have an effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の原子力発電プラントの模式図。 第2図は本発明の実施例の模式図、第3図は第2図の変
形例の模式図である。 1・・・原子炉及び蒸気発生装置、3・・・高圧タービ
 泰ン、5・・・再熱器、右・・・低圧タービン、7・
・・発電機。 8・・・復水器、10・・・低圧給水加熱器、12・・
・高圧給水加熱器、16・・・連絡管、22・・・分岐
配管、23.24・・・開閉弁。 出願人代理人  猪  股   清
Figure 1 is a schematic diagram of a conventional nuclear power plant. FIG. 2 is a schematic diagram of an embodiment of the present invention, and FIG. 3 is a schematic diagram of a modification of FIG. 1... Nuclear reactor and steam generator, 3... High pressure turbine, 5... Reheater, Right... Low pressure turbine, 7...
··Generator. 8... Condenser, 10... Low pressure feed water heater, 12...
・High pressure water heater, 16...Connection pipe, 22...Branch pipe, 23.24...Opening/closing valve. Applicant's agent Kiyoshi Inomata

Claims (1)

【特許請求の範囲】 1)高圧タービンから流出し低圧側タービンに供給され
る蒸気を、前記高圧タービンの途中段落から抽出された
抽気により再熱する再熱器を設けるとともに、低圧側タ
ービンに供給される蒸気と熱交換した蒸気を高圧給水加
熱器に導入するようにした蒸気タービンプラントにおい
て、前記再熱器と高圧給水加熱器とを連通ずる配管に開
閉弁を設けるとともに、前記低圧側タービンおよび高圧
給水加熱器間の管路に配設された復水器又は低圧側給水
加熱器と前記再熱器とを連通する配管を設け、さらにこ
の配管に開閉弁を設けたことを特徴とする蒸気タービン
プラント。 2)前記復水器又は低圧側給水加熱器と前記再熱器とを
連通ずる配管は、前記再熱器と前記高圧給水加熱器とを
連通ずる前記配管の開閉弁より上流位置から分岐してい
ることを特徴とする特許請求の範囲第1項記載の蒸気タ
ービンプラント。
[Scope of Claims] 1) A reheater is provided to reheat the steam flowing out from the high-pressure turbine and supplied to the low-pressure turbine using extracted air extracted from an intermediate stage of the high-pressure turbine, and the steam is supplied to the low-pressure turbine. In a steam turbine plant in which steam heat-exchanged with steam that is heated is introduced into a high-pressure feedwater heater, an on-off valve is provided in piping that communicates the reheater and the high-pressure feedwater heater, and the low-pressure side turbine and Steam characterized by having a pipe that communicates the reheater with a condenser or a low-pressure side feed water heater arranged in a pipe line between high-pressure feed water heaters, and further providing an on-off valve in this pipe. turbine plant. 2) The piping that communicates the condenser or the low-pressure feedwater heater with the reheater is branched from a position upstream of the on-off valve of the piping that communicates the reheater and the high-pressure feedwater heater. A steam turbine plant according to claim 1, characterized in that:
JP20331282A 1982-11-19 1982-11-19 Steam turbine plant Pending JPS5993906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20331282A JPS5993906A (en) 1982-11-19 1982-11-19 Steam turbine plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20331282A JPS5993906A (en) 1982-11-19 1982-11-19 Steam turbine plant

Publications (1)

Publication Number Publication Date
JPS5993906A true JPS5993906A (en) 1984-05-30

Family

ID=16471937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20331282A Pending JPS5993906A (en) 1982-11-19 1982-11-19 Steam turbine plant

Country Status (1)

Country Link
JP (1) JPS5993906A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102330578A (en) * 2010-07-14 2012-01-25 中国电力工程顾问集团华东电力设计院 Full-load efficient heat regenerative system for power plant
CN102679318A (en) * 2011-03-18 2012-09-19 中国电力工程顾问集团华东电力设计院 Full-load efficient reheating and boiler inlet air heating system
CN110553301A (en) * 2019-09-25 2019-12-10 北京国电蓝天节能科技开发有限公司 heat supply method and system for air cooling unit
CN110553300A (en) * 2019-09-25 2019-12-10 北京国电蓝天节能科技开发有限公司 heating system and method for wet cooling unit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102330578A (en) * 2010-07-14 2012-01-25 中国电力工程顾问集团华东电力设计院 Full-load efficient heat regenerative system for power plant
CN102679318A (en) * 2011-03-18 2012-09-19 中国电力工程顾问集团华东电力设计院 Full-load efficient reheating and boiler inlet air heating system
CN110553301A (en) * 2019-09-25 2019-12-10 北京国电蓝天节能科技开发有限公司 heat supply method and system for air cooling unit
CN110553300A (en) * 2019-09-25 2019-12-10 北京国电蓝天节能科技开发有限公司 heating system and method for wet cooling unit
CN110553300B (en) * 2019-09-25 2021-05-28 国电龙源节能技术有限公司 Heating system and method for wet cooling unit
CN110553301B (en) * 2019-09-25 2021-09-28 国电龙源节能技术有限公司 Heat supply method and system for air cooling unit

Similar Documents

Publication Publication Date Title
JPS6193208A (en) Turbine bypass system
CN110793011A (en) Two-stage steam extraction type medium-temperature and medium-pressure waste incineration power generation system and use method thereof
JP3679094B2 (en) Operation method and equipment of gas / steam combined turbine equipment
JPS5993906A (en) Steam turbine plant
US4862692A (en) Supercritical pressure once-through boiler
JP4871935B2 (en) Method for converting a reheat-type power plant and a non-reheat-type power plant into a reheat-type power plant
JPH05248604A (en) Waste heat recovery boiler
JP7066572B2 (en) Temporary piping system for boiler blow-out and boiler blow-out method
JPH062806A (en) Water supplying and heating device
JP3133183B2 (en) Combined cycle power plant
JPH0392507A (en) Turbine bypass device for steam turbine
JP2923122B2 (en) Drain recovery equipment for nuclear power plants
JPH03115707A (en) Combined power plant
JPH08200010A (en) Composite power plant and method for operating the same
JP3745419B2 (en) Waste heat recovery boiler
JPS6062604A (en) Reheater heating steam system of power generating plant
JPH0814009A (en) Operation control method for pressurized fluidized bed boiler type composite cycle power plant
JPH0751887B2 (en) Turbin overspeed suppression system
JPS59134307A (en) Steam turbine plant
JP4014948B2 (en) Multi-axis combined cycle plant and control method thereof
JPH08121112A (en) Single-shaft combined-cycle power generating equipment
JPH0250004A (en) Control system of pressure inside deaerator
JPS58210306A (en) Steam turbine plant
JPH0356723Y2 (en)
JPH11166403A (en) Turbine bypass steam supply device