JPS58210306A - Steam turbine plant - Google Patents

Steam turbine plant

Info

Publication number
JPS58210306A
JPS58210306A JP9251382A JP9251382A JPS58210306A JP S58210306 A JPS58210306 A JP S58210306A JP 9251382 A JP9251382 A JP 9251382A JP 9251382 A JP9251382 A JP 9251382A JP S58210306 A JPS58210306 A JP S58210306A
Authority
JP
Japan
Prior art keywords
steam
storage device
turbine
valve
feed water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9251382A
Other languages
Japanese (ja)
Other versions
JPS6239647B2 (en
Inventor
Teruhide Hamamatsu
浜松 照秀
Hiroshi Hamano
浜野 博
Yoshiho Nakai
中井 良穂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Central Research Institute of Electric Power Industry
JFE Engineering Corp
Original Assignee
Toshiba Corp
Central Research Institute of Electric Power Industry
Tokyo Shibaura Electric Co Ltd
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Central Research Institute of Electric Power Industry, Tokyo Shibaura Electric Co Ltd, NKK Corp, Nippon Kokan Ltd filed Critical Toshiba Corp
Priority to JP9251382A priority Critical patent/JPS58210306A/en
Publication of JPS58210306A publication Critical patent/JPS58210306A/en
Publication of JPS6239647B2 publication Critical patent/JPS6239647B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/38Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating the engines being of turbine type

Abstract

PURPOSE:To effectively use the energy of steam by-passed around a steam turbine, by storing the by-passed steam and thereafter supplying the steam to a machine in a plant. CONSTITUTION:When the load upon a steam turbine is not higher than a set level, valves 16, 19 in by-pass pipes 17, 18 are open so that by-passed steam is reserved in a storage unit 22. In rated operation, valves 26a-26c in feed pipes 25a-25c are sequentially opened so that the reserved steam is supplied in an almost saturated state to low-pressure feed water heaters 12a-12c and heats condensate.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、蒸気タービンプラントに係り、特にタービン
バイパス装置を有する蒸気タービンプラントに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a steam turbine plant, and more particularly to a steam turbine plant having a turbine bypass device.

〔発明の技術的背景〕[Technical background of the invention]

第1図は、一般的なタービンバイパス装置を有する蒸気
タービンプラントの概略系統図であって。
FIG. 1 is a schematic system diagram of a steam turbine plant having a general turbine bypass device.

ボイラ1で発生した蒸気は主蒸気管2を経て高圧タービ
ン3に導入され、そこで仕事を行ない、高圧タービン3
で仕事を行なった蒸気は低温再熱蒸気管4を経て再熱器
5に導入される。上記再熱器5で再熱された蒸気は、高
温再熱蒸気管6を経て中圧タービン7および低圧タービ
ン8に順次供給され、そこでそれぞれ仕事を行ない発電
機9を駆動する。低圧タービン8で仕事を終えた蒸気は
復水器10に流入してそこで復水せしめられ、上記復水
は復水ポンプ11によって複数の低圧給水加熱器12a
 、 12b 、 12cを順次通過した後、脱気器1
3に送られ復水中のガス成分が除去される。
The steam generated in the boiler 1 is introduced into the high pressure turbine 3 through the main steam pipe 2, where it performs work and the high pressure turbine 3
The steam that has done work is introduced into the reheater 5 via the low temperature reheat steam pipe 4. The steam reheated by the reheater 5 is sequentially supplied to an intermediate pressure turbine 7 and a low pressure turbine 8 through a high temperature reheat steam pipe 6, where each performs work and drives a generator 9. The steam that has completed its work in the low-pressure turbine 8 flows into the condenser 10 and is condensed there.
, 12b, 12c sequentially, the deaerator 1
3 to remove gas components in the condensate.

ガス成分が除去された復水は、給水ポンプ14によって
直列に配設された複数台の高圧給水加熱器15a 、 
15b 、 15c に順次送給されて加熱された後、
前記ボイラ1に還流される。
The condensate from which the gas components have been removed is sent to a plurality of high-pressure feed water heaters 15a arranged in series by the feed water pump 14,
After being sequentially fed to 15b and 15c and heated,
It is refluxed to the boiler 1.

ところで、前記主蒸気管2と低温再熱蒸気管4とは、開
閉弁16を有する第1のバイパス導管17ニよって互い
に接続されており、また高温再熱蒸気管6には、復水器
10に連接した第2のバイパス導管18が接続されてい
る。上記第2のバイパス導管18には、開閉弁19およ
び減温器20が設けられており、七〇滅温器20には、
復水ポンプ11から吐出された復水の一部が冷却水とし
て弁21を介して供給されるようにしである。
By the way, the main steam pipe 2 and the low temperature reheat steam pipe 4 are connected to each other by a first bypass pipe 17 having an on-off valve 16, and the high temperature reheat steam pipe 6 is connected to a condenser 10. A second bypass conduit 18 is connected thereto. The second bypass conduit 18 is provided with an on-off valve 19 and a desuperheater 20, and the desuperheater 20 includes:
A portion of the condensate discharged from the condensate pump 11 is supplied as cooling water through the valve 21.

しかして、上記プラントにおいては、プラント起動時或
は負荷しゃ断時においてボイラ1で発生した蒸気は、主
蒸気管2に接続された第1のバイパス導管17を通り低
温再熱蒸気管4に流入し、再熱器5.高温再熱蒸気管6
およびtB2のバイパス導管18を経て復水器10に回
収される。
Therefore, in the above plant, the steam generated in the boiler 1 at the time of plant startup or load cutoff flows into the low temperature reheat steam pipe 4 through the first bypass conduit 17 connected to the main steam pipe 2. , reheater5. High temperature reheat steam pipe 6
and is recovered to the condenser 10 via the bypass conduit 18 of tB2.

〔背景技術の問題点〕[Problems with background technology]

ところが、この種プラントにおいては、プラントの起動
時或は負荷しゃ断時にボイラ1で発生した蒸気が、バイ
パス導管を経て復水器に導入されるので、ボイラで発生
した蒸気エネルギが復水器に吸収されてしまうことにな
り、熱エネルギを無駄に放出することになる等の問題点
がある。
However, in this type of plant, the steam generated in the boiler 1 at the time of plant startup or load cut-off is introduced into the condenser through the bypass pipe, so the steam energy generated in the boiler is absorbed into the condenser. This causes problems such as wasteful release of heat energy.

特に、近年の電力需要形態は昼間需要が多く、夜間の需
要は比較的少なく、需要の変動が激しい傾向にある。そ
こで、昼と夜との需要のアンバランスに対する一つの方
法として、発電プラントにタービンバイパス装置を設け
て毎日起動・停止を速やかに行な5発電プラントが増加
している。
In particular, in recent years, electricity demand has tended to have a large amount of demand during the day, relatively little demand at night, and demand fluctuations tend to be severe. Therefore, as a way to address the imbalance between demand between day and night, the number of power plants is increasing by installing a turbine bypass device in the power plant to quickly start and stop the plant every day.

しかして、上記プラントにおいては、毎日起動・停止時
に蒸気タービンを駆動することなしにボイラで発生した
蒸気エネルギを復水器に放出することとなり、その熱エ
ネルギの損失はかなり大きいものとなる等の不都合があ
る。
However, in the above plants, the steam energy generated in the boiler is released to the condenser without driving the steam turbine during startup and shutdown every day, resulting in a considerable loss of thermal energy. It's inconvenient.

〔発明の目的〕[Purpose of the invention]

本発明はこのような点に鑑み、蒸気タービンをバイパス
する蒸気のエネルギを有効に利用し得るようにした蒸気
タービンプラントを提供することを目的とする。
In view of these points, an object of the present invention is to provide a steam turbine plant that can effectively utilize the energy of steam bypassing a steam turbine.

〔発明の概要〕[Summary of the invention]

本発明は、タービンバイパス装置を設けた蒸気タービン
プラントにおい【、蒸気タービンをバイパスした蒸気を
貯蔵する蒸気貯蔵装置を設けるとともに、その蒸気貯蔵
装置に貯蔵された蒸気を、例えば給水加熱器に対して蒸
気供給管を介して供給するようにしたことを特徴とする
The present invention provides a steam turbine plant equipped with a turbine bypass device, a steam storage device for storing steam that has bypassed a steam turbine, and a steam storage device that stores steam that has bypassed a steam turbine, and supplies the steam stored in the steam storage device to, for example, a feed water heater. It is characterized in that the steam is supplied via a steam supply pipe.

〔発明の実施例〕[Embodiments of the invention]

以下、第2図および第3図を参照して本発明の一実施例
について説明する。なお、第1図と同一部分には同一符
号を付しその詳細な説明は省略する。
An embodiment of the present invention will be described below with reference to FIGS. 2 and 3. Note that the same parts as in FIG. 1 are given the same reference numerals, and detailed explanation thereof will be omitted.

第2図において、再熱器5で再熱された蒸気を中圧ター
ビン7に供給する高温再熱蒸気管6には、中圧タービン
7等をバイパスして上記再熱蒸気を流すための第2のバ
イパス導管18の一端が接続されており、その第2のバ
イパス導管18の他端には蒸気貯蔵装置22が接続され
ている。上記第2のバイパス導管18には開閉弁19お
よび減温器美が設けられており、その減温器20にはポ
ンプ幻によって蒸気貯蔵装置22内の温水が冷却用水と
して供給されるようにしである。
In FIG. 2, a high-temperature reheat steam pipe 6 that supplies the steam reheated in the reheater 5 to the intermediate pressure turbine 7 has a pipe that bypasses the intermediate pressure turbine 7 and the like to flow the reheated steam. One end of the second bypass conduit 18 is connected to the other end of the second bypass conduit 18, and a steam storage device 22 is connected to the other end of the second bypass conduit 18. The second bypass conduit 18 is provided with an on-off valve 19 and an attemperator, and the attemperator 20 is supplied with hot water in the steam storage device 22 as cooling water by a pump. be.

一方、上記蒸気貯蔵装置22には蒸気取出管スが設けら
れている。その蒸気取出管おからは各低圧給水加熱器1
2a 、 12b 、 12cに対応して蒸気供給管2
5a # 25b 、 25cが分岐導出せしめられ、
その先端部がそれぞれ低圧給水加熱器12a 、 1j
ib 、 12cに接続されており、上記各蒸気供給管
25a 、 25b 、 25cには、それぞれ開閉弁
26a 、 26b 、 26cおよび逆止弁27a 
、 27b 、 27cが設けられている。
On the other hand, the steam storage device 22 is provided with a steam extraction pipe. The steam extraction pipe okara is connected to each low-pressure feed water heater 1.
Steam supply pipe 2 corresponding to 2a, 12b, 12c
5a # 25b, 25c are branched out,
The tips thereof are the low pressure feed water heaters 12a and 1j, respectively.
ib, 12c, and each of the steam supply pipes 25a, 25b, 25c has an on-off valve 26a, 26b, 26c and a check valve 27a, respectively.
, 27b, and 27c are provided.

第3図は、上記開閉弁26a 、 26b 、 26 
Cの開閉制御を行う制御系統図であって、制御装置おに
は各逆止弁27a 、 27b 、 77cの閉動作信
号が入力され、その入力信号によって上記制御装置28
から各開閉弁26a 、 26b 、 26cに開閉動
作指令信号が出力されるようにしである。
FIG. 3 shows the on-off valves 26a, 26b, 26.
This is a control system diagram for controlling the opening and closing of the check valves 27a, 27b, and 77c.
An opening/closing operation command signal is output from the opening/closing valves 26a, 26b, and 26c to each opening/closing valve 26a, 26b, and 26c.

すなわち、各低圧給水加熱器12a 、 12b 、 
12cのうち高圧側の低圧給水加熱器12cに接続され
た蒸気供給管25cの逆止弁27cが、蒸気貯蔵装置器
内の圧力と上記低圧給水加熱器12cの器内圧力との関
係で閉じると、その閉動作信号によって制御装置器から
開閉弁26cに閉動作指令信号が発生され、さらに上記
低圧給水加熱器12cより低圧側の給水加熱器12bに
接続された蒸気供給管25bの開閉弁26bに開動作信
号が発生される。以後同様にして各逆止弁の閉動作に応
じて順次開閉弁の開閉動作が行なわれる。
That is, each low pressure feed water heater 12a, 12b,
When the check valve 27c of the steam supply pipe 25c connected to the low-pressure feedwater heater 12c on the high-pressure side of the 12c closes due to the relationship between the pressure inside the steam storage device and the internal pressure of the low-pressure feedwater heater 12c. In response to the closing operation signal, a closing operation command signal is generated from the control device to the on-off valve 26c, and further to the on-off valve 26b of the steam supply pipe 25b connected to the feed water heater 12b on the lower pressure side than the low pressure feed water heater 12c. An opening operation signal is generated. Thereafter, similarly, the opening and closing operations of the on-off valves are sequentially performed in response to the closing operations of each check valve.

しかして、上記プラントにおいては、例えばプラント起
動時には、開閉弁16および19が開らかれる。したが
って、高圧タービン3.中圧タービン7および低圧ター
ビン8には図示しない制御弁によって必要蒸気量のみが
通気され、ボイラ1で発生した蒸気の大部分は、第1の
バイパス導管17゜再熱器5.および第2のバイパス導
管18を通り、減温器20で減温されて蒸気貯蔵装置2
2に熱水として貯蔵される。
Thus, in the above plant, the on-off valves 16 and 19 are opened, for example, when the plant is started up. Therefore, high pressure turbine 3. Only the required amount of steam is vented to the intermediate pressure turbine 7 and the low pressure turbine 8 by a control valve (not shown), and most of the steam generated in the boiler 1 is passed through the first bypass conduit 17° and the reheater 5. and the second bypass conduit 18, the temperature is reduced in the attemperator 20, and the steam storage device 2
2. It is stored as hot water.

このようにして、蒸気タービンの負荷が上昇し設定負荷
に達すると、両バイパス導管17 、18に設けられた
開閉弁16 、19が閉じられ、ボイラ1で発生じた蒸
気が各タービンに順次供給され、蒸気タービンは負荷上
昇し、定格運転に移行する。
In this way, when the load on the steam turbine increases and reaches the set load, the on-off valves 16 and 19 provided in both bypass conduits 17 and 18 are closed, and the steam generated in the boiler 1 is sequentially supplied to each turbine. The load on the steam turbine increases and the steam turbine shifts to rated operation.

一方、プラント停止時には、蒸気タービンの負荷が設定
負荷以下になると、両バイパス導管17゜18の開閉弁
16 、19が開となり、蒸気貯蔵装置22に蒸気ター
ビンをバイパスした蒸気が貯蔵される。
On the other hand, when the plant is stopped, when the load on the steam turbine becomes less than the set load, the on-off valves 16 and 19 of both bypass conduits 17 and 18 are opened, and the steam that has bypassed the steam turbine is stored in the steam storage device 22.

ところで、蒸気タービンプラントが定格運転の時には、
低圧給水加熱器12a 、 12b 、 12Cに接続
された蒸気供給管25a 、 25b 、 215cの
開閉弁26R,26b 。
By the way, when a steam turbine plant is in rated operation,
Opening/closing valves 26R, 26b of steam supply pipes 25a, 25b, 215c connected to low pressure feed water heaters 12a, 12b, 12C.

26cが高圧側の給水加熱器側より順次開かれ、蒸気貯
蔵装置22に貯蔵された熱水が減圧され略飽和蒸気とな
って、給水加熱器12a 、 12b 、 12c K
通常のタービンからの抽気とともに復水の加熱用蒸気と
して供給される。
26c are sequentially opened from the feed water heater side on the high pressure side, and the hot water stored in the steam storage device 22 is depressurized and becomes approximately saturated steam, and the feed water heaters 12a, 12b, 12c K
It is supplied as steam for heating condensate along with the extraction air from a normal turbine.

すなわち、蒸気タービンプラントが定格運転に入ると、
蒸気貯蔵装置22より発生する蒸気の圧力より低い給水
加熱器の器内圧のうち一番高い圧力の給水加熱器に接続
された蒸気供給管の開閉弁がまず開放される。
In other words, when a steam turbine plant enters rated operation,
First, the on-off valve of the steam supply pipe connected to the feedwater heater having the highest pressure among the internal pressures of the feedwater heater that are lower than the pressure of steam generated from the steam storage device 22 is opened.

例えば、低圧給水加熱器12cの器内圧が一番高く、蒸
気貯蔵装置22より発生する蒸気の熱を回収可能とする
と、まず開閉弁26cが開き、他の開閉弁26g 、 
26bは閉じられた状態忙あり、上記開閉弁26cを経
て低圧給水加熱器12Cに蒸気貯蔵装置nからの蒸気が
供給される。ところで、上記蒸気貯蔵装置22で発生す
る蒸気は減圧によって発生するものであるから、この発
生蒸気の圧力は時間の経過とともに低下し、この蒸気圧
力が低圧給水加熱器12cの器内圧力より低くなると、
逆止弁270が閉じる。したがって、この逆止弁27c
の閉信号が制御装置器に印加され、その制御装置部から
の出力信号によって、開閉弁26cが閉じられ、次の開
閉弁26bが開かれる。同様にして、逆止弁27bが閉
じると、制御装置おによって開閉弁26bが閉じ化 られ、開閉弁26bが開かれ、低圧給水加熱器12aに
蒸気貯蔵装置22からの蒸気が加熱蒸気として供給され
る。
For example, if the internal pressure of the low-pressure feed water heater 12c is the highest and the heat of the steam generated from the steam storage device 22 can be recovered, the on-off valve 26c opens first, and the other on-off valves 26g,
26b is in a closed state, and steam from the steam storage device n is supplied to the low pressure feed water heater 12C via the on-off valve 26c. By the way, since the steam generated in the steam storage device 22 is generated by depressurization, the pressure of the generated steam decreases over time, and when this steam pressure becomes lower than the internal pressure of the low-pressure feed water heater 12c. ,
Check valve 270 closes. Therefore, this check valve 27c
A close signal is applied to the control device, and the output signal from the control device closes the on-off valve 26c and opens the next on-off valve 26b. Similarly, when the check valve 27b closes, the control device closes the on-off valve 26b, opens the on-off valve 26b, and supplies the steam from the steam storage device 22 to the low-pressure feed water heater 12a as heated steam. Ru.

このようにして、蒸気貯蔵装置22の発生蒸気圧力が低
圧給水加熱器12aの器内圧より低くなると、逆止弁2
7!Iが閉となり、制御装置28によって開閉弁26a
が閉じられ、蒸気貯蔵装置22からのタービンサイクル
への蒸気の供給は停止する。
In this way, when the steam pressure generated in the steam storage device 22 becomes lower than the internal pressure of the low pressure feed water heater 12a, the check valve 2
7! I is closed, and the control device 28 turns on/off valve 26a.
is closed and the supply of steam from the steam storage device 22 to the turbine cycle is stopped.

なお、上記実施例においては、低圧給水加熱器に蒸気貯
蔵装置22からの蒸気を供給するものを示したが、上記
蒸気貯蔵装置より発生する蒸気の圧力が高ければ、脱気
器或は高圧給水加熱器において蒸気貯蔵装置からの発生
蒸気の熱エネルギを回収させることもできる。また、複
数の給水加熱器に同時に蒸気貯蔵装置の発生蒸気を供給
して七〇熱エネルギを回収させるようにしてもよい。さ
らに原子力タービンプラントにも適用できる。
In the above embodiment, steam from the steam storage device 22 is supplied to the low-pressure feed water heater, but if the pressure of the steam generated from the steam storage device is high, a deaerator or high-pressure water feed water heater may be used. It is also possible to recover the thermal energy of the generated steam from the steam storage device in the heater. Alternatively, the steam generated by the steam storage device may be supplied to a plurality of feed water heaters at the same time to recover 70% thermal energy. It can also be applied to nuclear turbine plants.

なお、本実施例では低圧給水加熱器12a 、 12b
 。
Note that in this embodiment, the low-pressure feed water heaters 12a and 12b
.

12cから低圧タービン8への蒸気の逆流を防止するた
めにオリフィス等の流量を制御する装置を開閉弁26a
 t 26b 、 26cの下流側に設置するのが望ま
しい。
An on-off valve 26a that controls the flow rate of an orifice or the like to prevent backflow of steam from 12c to the low-pressure turbine 8
It is desirable to install it on the downstream side of t 26b and t 26c.

〔発明の効果〕〔Effect of the invention〕

以上説明したように1本発明においては蒸気タービンを
バイパスしたバイパス蒸気を蒸気貯蔵装置に一旦貯蔵し
、定格運転時にその蒸気を給水加熱器等の加熱用蒸気の
一部としたので、例えば上記蒸気貯蔵装置から蒸気の供
給を受けている給水加熱器では、上記蒸気貯蔵装置から
供給される蒸気の熱量分だけ本来のタービンからの抽気
蒸気量が少なくてすみ、タービン入口蒸気量すなわちボ
イラ発生蒸気量が少なくなり、ボイラの燃料消費量を節
約することができ、従来復水器に棄てていた蒸気エネル
ギを回収することができて、プラント効率を大幅に向上
することができる。また、高圧側の給水加熱器から順に
、蒸気貯蔵装置からの蒸気を供給するようにした場合に
は、蒸気貯蔵装置より発生する蒸気の利用可能な圧力範
囲が増大し、利用できる熱エネルギ量を増大させること
ができる。
As explained above, in the present invention, the bypass steam that bypasses the steam turbine is temporarily stored in the steam storage device, and during rated operation, the steam is used as part of the heating steam for the feed water heater, etc.; In a feedwater heater that receives steam from a storage device, the amount of extracted steam from the turbine is reduced by the amount of heat of the steam supplied from the steam storage device, and the amount of steam at the turbine inlet, that is, the amount of steam generated by the boiler, is reduced by the amount of heat of the steam supplied from the steam storage device. This reduces fuel consumption in the boiler, and recovers steam energy that was conventionally wasted in the condenser, greatly improving plant efficiency. In addition, if steam is supplied from the steam storage device in order from the feed water heater on the high pressure side, the usable pressure range of the steam generated from the steam storage device will increase, and the amount of usable thermal energy will be reduced. can be increased.

このように本発明においては、従来活用されていなかっ
た蒸気を効率よ(有効に利用することができて、プラン
トの効率を向上させることができる等の効果を奏する。
As described above, in the present invention, steam that has not been utilized in the past can be used efficiently (effectively), and the efficiency of the plant can be improved.

,

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の蒸気タービンプラントの概略系統図、第
2図は本発明の蒸気タービンプラントの概略系統図、第
3図は蒸気供給管に設けられた開閉弁の制御系統図であ
る。 1・・・ボイ2.2・・・主蒸気管、3・・・高圧ター
ビン、4・・・低温再熱蒸気管、5・・・再熱器、6・
・・高温再熱蒸気管、12a 、 12b 、 12c
・・・低圧給水加熱器、17・・・第1のバイパス導管
、18・・・第2のバイパス導管、20・・・減温器、
22・・・蒸気貯蔵装置、25a。 25b 、 25c ・−蒸気供給管、26a 、 2
6b 、 26c −開閉弁、27a 、 27b 、
 27c ・−・逆止弁。 出願人代理人  猪  股    清 躬1繍
FIG. 1 is a schematic system diagram of a conventional steam turbine plant, FIG. 2 is a schematic system diagram of a steam turbine plant of the present invention, and FIG. 3 is a control system diagram of an on-off valve provided in a steam supply pipe. 1...Boy 2.2...Main steam pipe, 3...High pressure turbine, 4...Low temperature reheat steam pipe, 5...Reheater, 6...
・・High temperature reheat steam pipe, 12a, 12b, 12c
...Low pressure feed water heater, 17...First bypass conduit, 18...Second bypass conduit, 20...Attemperator,
22... Steam storage device, 25a. 25b, 25c - Steam supply pipe, 26a, 2
6b, 26c - on-off valve, 27a, 27b,
27c ---Check valve. Applicant's agent: Inomata Kiyomi 1st year

Claims (1)

【特許請求の範囲】 1、タービンバイパス装置を設けた蒸気タービンプラン
トにおいて、蒸気タービンをバイパスした蒸気を貯蔵す
る蒸気貯蔵装置を設けるとともK、その蒸気貯蔵装置に
貯蔵された蒸気を、加熱用蒸気を必要とするプラント内
機器に対して蒸気供給管を介して供給するようにしたこ
とを特徴とする蒸気タービンプラント。 2、蒸気貯蔵装置は、それぞれ開閉弁および逆止弁を有
する蒸気供給管を介して複数の給水加熱器に接続されて
いることを特徴とする特許請求の範囲第1項記載の蒸気
タービンプラント。 3、各蒸気供給管に設けられた開閉弁は、高圧側の給水
加熱器に連接されたものから順に開放されるようにした
ことを特徴とする特許請求の範囲第2項記載の蒸気ター
ビンプラント。 4、蒸気貯蔵装置は、脱気器に接続されていることを特
徴とする特許請求の範囲第1項記載の蒸気タービンプラ
ント。 5、蒸気貯蔵装置にバイパス蒸気を導くバイノ(ス導管
には、開閉弁および減温器がこの順に配設されているこ
とを特徴とする特許請求の範囲第1項乃至第4項のいず
れかに記載の蒸気タービンプラント。
[Claims] 1. In a steam turbine plant equipped with a turbine bypass device, a steam storage device for storing steam that has bypassed the steam turbine is provided, and the steam stored in the steam storage device is used for heating purposes. A steam turbine plant characterized in that steam is supplied to equipment within the plant that requires steam through a steam supply pipe. 2. The steam turbine plant according to claim 1, wherein the steam storage device is connected to a plurality of feed water heaters via steam supply pipes each having an on-off valve and a check valve. 3. The steam turbine plant according to claim 2, wherein the on-off valves provided in each steam supply pipe are opened in order from those connected to the feed water heater on the high pressure side. . 4. The steam turbine plant according to claim 1, wherein the steam storage device is connected to a deaerator. 5. Any one of claims 1 to 4, characterized in that an on-off valve and a desuperheater are arranged in this order in the binos conduit that guides the bypass steam to the steam storage device. A steam turbine plant described in .
JP9251382A 1982-05-31 1982-05-31 Steam turbine plant Granted JPS58210306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9251382A JPS58210306A (en) 1982-05-31 1982-05-31 Steam turbine plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9251382A JPS58210306A (en) 1982-05-31 1982-05-31 Steam turbine plant

Publications (2)

Publication Number Publication Date
JPS58210306A true JPS58210306A (en) 1983-12-07
JPS6239647B2 JPS6239647B2 (en) 1987-08-24

Family

ID=14056393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9251382A Granted JPS58210306A (en) 1982-05-31 1982-05-31 Steam turbine plant

Country Status (1)

Country Link
JP (1) JPS58210306A (en)

Also Published As

Publication number Publication date
JPS6239647B2 (en) 1987-08-24

Similar Documents

Publication Publication Date Title
JP3481983B2 (en) How to start a steam turbine
JP5227352B2 (en) System and method for pre-warming a heat recovery steam generator and associated steam line
JP5860597B2 (en) System and method for preheating exhaust heat recovery boiler piping
JP3795124B2 (en) Steam turbine operation
GB2453849A (en) Steam power plant with additional bypass pipe used to control power output
JPH10306708A (en) Combined cycle generating plant
JPS58107803A (en) Power generation plant
JPS5823207A (en) Thermoelectric power plant equipped with stored steam power generation system
JPS58210306A (en) Steam turbine plant
JP7066572B2 (en) Temporary piping system for boiler blow-out and boiler blow-out method
JP2004245184A (en) Reheat steam turbine plant and starting method for the plant
JPS6212363B2 (en)
JP3065794B2 (en) Feed water heating device
JP4090584B2 (en) Combined cycle power plant
JPH062806A (en) Water supplying and heating device
JPS5993906A (en) Steam turbine plant
JPH0233845B2 (en) JOKITAABIN PURANTONONTENHOHO
JP2752226B2 (en) Drain pump warming device
JPS5939122Y2 (en) combined plant
JPS60178908A (en) Steam turbine plant and its operation method
JPH04128502A (en) Steam turbine plant
JPS59180011A (en) Heat recovering apparatus of steam turbine plant
SU1361356A1 (en) Method of attaining peak power
JPH01313605A (en) Combined power generating set
JPS5820908A (en) Electric power plant