JP7066572B2 - Temporary piping system for boiler blow-out and boiler blow-out method - Google Patents

Temporary piping system for boiler blow-out and boiler blow-out method Download PDF

Info

Publication number
JP7066572B2
JP7066572B2 JP2018154976A JP2018154976A JP7066572B2 JP 7066572 B2 JP7066572 B2 JP 7066572B2 JP 2018154976 A JP2018154976 A JP 2018154976A JP 2018154976 A JP2018154976 A JP 2018154976A JP 7066572 B2 JP7066572 B2 JP 7066572B2
Authority
JP
Japan
Prior art keywords
steam
temporary
superheater
boiler
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018154976A
Other languages
Japanese (ja)
Other versions
JP2020029977A (en
Inventor
弘孝 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2018154976A priority Critical patent/JP7066572B2/en
Publication of JP2020029977A publication Critical patent/JP2020029977A/en
Application granted granted Critical
Publication of JP7066572B2 publication Critical patent/JP7066572B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、主蒸気系統と再熱蒸気系統とを有する排熱回収ボイラのブローイングアウトに関し、特に、再熱蒸気系統のブローイングアウトに関する。 The present invention relates to a blowout of an exhaust heat recovery steam generator having a main steam system and a reheat steam system, and more particularly to a blowout of a reheat steam system.

ガスタービンの排ガスから熱交換によって蒸気を発生させ、その蒸気を用いて蒸気タービンを駆動して発電する、いわゆるコンバインドサイクル発電設備がある。図5は、一般的なコンバインドサイクル発電設備100のプラントの構成例を示すブロック図である。 There is a so-called combined cycle power generation facility that generates steam from the exhaust gas of a gas turbine by heat exchange and drives the steam turbine to generate electricity using the steam. FIG. 5 is a block diagram showing a configuration example of a plant of a general combined cycle power generation facility 100.

図5に示すように、コンバインドサイクル発電設備100では、発電機4と、蒸気タービン3と、ガスタービン1が設けられ、ガスタービン1で天然ガス等を燃焼させて発電機4にて発電を行う。なお、蒸気タービンとガスタービンにそれぞれ発電機を設置して発電を行う例もある。 As shown in FIG. 5, in the combined cycle power generation facility 100, a generator 4, a steam turbine 3, and a gas turbine 1 are provided, and the gas turbine 1 burns natural gas or the like to generate electricity in the generator 4. .. There is also an example in which a generator is installed in each of a steam turbine and a gas turbine to generate electricity.

ガスタービン1での発電燃焼により発生した高温の排ガスは、排熱回収ボイラ2に送られる。排熱回収ボイラ2では、その高温ガスからの熱回収により、復水器5から送られてきた給水を蒸気に変換し、蒸気タービン3に通気する。蒸気タービン3にて仕事をした蒸気は、復水器5にて復水され、復水された水は再び排熱回収ボイラ2へと送られる。 The high-temperature exhaust gas generated by the power generation combustion in the gas turbine 1 is sent to the exhaust heat recovery boiler 2. In the exhaust heat recovery boiler 2, the heat supply from the condenser 5 is converted into steam by the heat recovery from the high temperature gas, and is ventilated to the steam turbine 3. The steam that has worked in the steam turbine 3 is restored in the condenser 5, and the restored water is sent to the exhaust heat recovery boiler 2 again.

建設を完了した排熱回収ボイラ2に対し、蒸気タービン3に蒸気を通気する前に、排熱回収ボイラ2で発生する蒸気の流体力を用いて、排熱回収ボイラ2内の異物を除去する運転である、ブローイングアウトが行われる。これは、異物が蒸気タービン3に持ち込まれて蒸気タービン3の翼を損傷させないことを目的とする。 Before the steam is ventilated to the steam turbine 3 for the exhaust heat recovery boiler 2 that has been constructed, the foreign matter in the exhaust heat recovery boiler 2 is removed by using the fluid force of the steam generated in the exhaust heat recovery boiler 2. The blowing out, which is driving, is performed. This is intended to prevent foreign matter from being brought into the steam turbine 3 and damaging the blades of the steam turbine 3.

排熱回収ボイラ2には、蒸気タービン3で仕事をした蒸気を、再度加熱する、再熱蒸気系統を有するものがある。このような再熱蒸気系統を有する排熱回収ボイラ2において、再熱蒸気系統のブローイングアウトを実施する際は、主蒸気系統で発生した過熱蒸気を用いる。 Some exhaust heat recovery steam generators 2 have a reheat steam system that reheats the steam that has worked in the steam turbine 3. In the exhaust heat recovery boiler 2 having such a reheated steam system, when the blowout of the reheated steam system is carried out, the superheated steam generated in the main steam system is used.

具体的には、主蒸気系統から、蒸気タービン3をバイパスして再熱蒸気系統へと蒸気を流す配管を仮設する。また、再熱蒸気系統を通過した蒸気を系統外へ放出する配管を仮設する。そして、仮設した配管を介して主蒸気系統の過熱器で発生した過熱蒸気を再熱蒸気系統へ流入させ、その流体力で再熱蒸気系統のブローイングアウトを実施する(例えば、特許文献1参照)。 Specifically, a pipe for flowing steam from the main steam system to the reheated steam system by bypassing the steam turbine 3 is temporarily installed. In addition, a pipe will be temporarily installed to discharge the steam that has passed through the reheated steam system to the outside of the system. Then, the superheated steam generated in the superheater of the main steam system is flowed into the reheated steam system through the temporary pipe, and the reheated steam system is blown out by the fluid force (see, for example, Patent Document 1). ..

特許第6044765号公報Japanese Patent No. 6044765

主蒸気系統の過熱蒸気が流入する再熱蒸気系統の入口の接続管(低温再熱蒸気管)は、通常運転時は、蒸気タービン3で仕事をした後の蒸気、すなわち、低温の蒸気が流れる。従って、通常運転のみを考慮する場合、その材質に高い耐熱性は要求されない。 During normal operation, steam after working in the steam turbine 3, that is, low-temperature steam flows through the connection pipe (low-temperature reheat steam pipe) at the inlet of the reheat steam system into which the overheated steam of the main steam system flows. .. Therefore, when considering only normal operation, the material is not required to have high heat resistance.

しかしながら、ガスタービン1で発生するガス温度が高い場合、主蒸気系統の過熱器で発生した過熱蒸気の温度は、さらに高くなる。従って、このような場合、ブローイングアウト時に、再熱蒸気系統に流入する蒸気の温度は、通常運転時に低温再熱蒸気管に流れる蒸気の最高温度より高くなる可能性がある。 However, when the gas temperature generated by the gas turbine 1 is high, the temperature of the superheated steam generated by the superheater of the main steam system becomes even higher. Therefore, in such a case, the temperature of the steam flowing into the reheated steam system at the time of blow-out may be higher than the maximum temperature of the steam flowing through the low-temperature reheated steam pipe during normal operation.

特に、大型のコンバインドサイクル発電設備100では、例えば、この排熱回収ボイラ2の蒸気系統を高圧系、中圧系および低圧系の三重圧方式で構成して排熱回収の効率を向上させている。さらに、高圧系の過熱器として、一次、二次と2段階で構成する場合もある。このような構成の排熱回収ボイラ2では、高圧系の過熱器(高圧系が2段階の場合は、高圧二次過熱器)で発生した過熱蒸気が再熱蒸気系統のブローイングアウトに用いられる。この蒸気温度は、通常運転時の低温再熱蒸気管に流れる蒸気の温度を大きく超える可能性が高い。 In particular, in the large combined cycle power generation facility 100, for example, the steam system of the exhaust heat recovery boiler 2 is configured by a triple pressure system of a high pressure system, a medium pressure system, and a low pressure system to improve the efficiency of exhaust heat recovery. .. Further, as a high-pressure superheater, it may be configured in two stages, primary and secondary. In the exhaust heat recovery boiler 2 having such a configuration, the superheated steam generated by the high-pressure superheater (in the case of the high-pressure system having two stages, the high-pressure secondary superheater) is used for the blow-out of the reheated steam system. This steam temperature is likely to greatly exceed the temperature of the steam flowing through the low temperature reheat steam pipe during normal operation.

従って、通常運転前の、ブローイングアウトを行う短期間の運転を考慮して低温再熱蒸気管の最高使用温度が定まり、これに耐え得る材質選定が必要となる。これは、通常運転時には過剰品質となり、高コスト化につながる。 Therefore, the maximum operating temperature of the low-temperature reheat steam pipe is determined in consideration of the short-term operation of blowing out before normal operation, and it is necessary to select a material that can withstand this. This results in excessive quality during normal operation, leading to higher costs.

また、ブローイングアウトは、排熱回収ボイラ2の通常運転時にその内部で発生する最も動圧が大きくなる計画蒸気条件に対して、その最大発生動圧以上となる蒸気条件にて実施される。これにより、排熱回収ボイラ2の通常運転中に飛散する可能性のある異物を排熱回収ボイラ2外に排出する。 Further, the blowing out is carried out under the steam condition in which the maximum generated dynamic pressure is equal to or higher than the planned steam condition in which the dynamic pressure generated inside the exhaust heat recovery boiler 2 becomes the largest during the normal operation. As a result, foreign matter that may be scattered during the normal operation of the exhaust heat recovery boiler 2 is discharged to the outside of the exhaust heat recovery boiler 2.

一例として、主蒸気系統の計画蒸気条件である最大発生動圧が34,000[N/m2]であれば、主蒸気系統のブローイングアウト時に流す蒸気は34,000[N/m2]以上の動圧とする必要がある。また、再熱蒸気系統の計画蒸気条件である最大発生動圧が8,500[N/m2]であれば、再熱蒸気系統のブローイングアウト時に流す蒸気は最大発生動圧以上の8,500[N/m2]以上とする必要がある。 As an example, if the maximum generated dynamic pressure, which is the planned steam condition of the main steam system, is 34,000 [N / m2], the steam flowing during the blowout of the main steam system is 34,000 [N / m2] or more. It needs to be pressure. If the maximum generated dynamic pressure, which is the planned steam condition of the reheated steam system, is 8,500 [N / m2], the steam flowing during the blowout of the reheated steam system is 8,500 [N / m2], which is equal to or higher than the maximum generated dynamic pressure. N / m2] or more.

ただし、再熱蒸気系統のブローイングアウトは主蒸気系統からの発生蒸気を用いる。再熱蒸気系統での動圧を8,500[N/m2]以上とする場合、主蒸気系統では51,000[N/m2]以上の動圧が発生する。すなわち、再熱蒸気系統をブローイングアウトする際に主蒸気系統で発生させる動圧は、主蒸気系統のブローイングアウト時や最大発生動圧より大幅に大きくなる。 However, the steam generated from the main steam system is used for the blow-out of the reheated steam system. When the dynamic pressure in the reheat steam system is 8,500 [N / m2] or more, the dynamic pressure in the main steam system is 51,000 [N / m2] or more. That is, the dynamic pressure generated in the main steam system when the reheated steam system is blown out is significantly larger than that at the time of blowing out the main steam system or the maximum generated dynamic pressure.

従って、再熱蒸気系統のブローイングアウトを行う際には、主蒸気系統をブローイングアウトするために必要な本来の動圧以上の過剰な動圧が主蒸気系統内に加わる。これにより、主蒸気系統をブローイングアウトした時には飛散しなかった異物が、主蒸気系統から再熱蒸気系統へと飛散し、ブローイングアウト時間の長期化を招いている。 Therefore, when the reheated steam system is blown out, an excessive dynamic pressure higher than the original dynamic pressure required for blowing out the main steam system is applied to the main steam system. As a result, foreign matter that did not scatter when the main steam system was blown out is scattered from the main steam system to the reheated steam system, resulting in a longer blow-out time.

ブローイングアウト時間の長期化によって、ブローイングアウトの実施に必要な燃料および純水といったユーティリティの消費量も膨大となっている。 Due to the prolonged blow-out time, the consumption of utilities such as fuel and pure water required to carry out the blow-out is also enormous.

本発明は、上記事情に鑑みてなされたもので、主蒸気系統と再熱蒸気系統とを有する排熱回収ボイラにおいて、簡易な構成でコストの上昇を抑え、効率よく再熱蒸気系統のブローイングアウトを可能とする技術を提供することを目的とする。 The present invention has been made in view of the above circumstances, and in an exhaust heat recovery boiler having a main steam system and a reheat steam system, a simple configuration suppresses an increase in cost and efficiently blows out the reheat steam system. The purpose is to provide the technology that makes it possible.

本発明は、蒸発器で発生した蒸気を過熱器で過熱し、前記過熱器で生成された過熱蒸気を蒸気タービンに供給する主蒸気系統と、前記蒸気タービンから抽気された蒸気を、再熱器で再加熱して前記蒸気タービンに供給する再熱蒸気系統とを備えたボイラの運転開始に先立ち、前記主蒸気系統で発生させた蒸気により前記再熱蒸気系統をブローイングする運転であるブローイングアウトの際に用いられるボイラのブローイングアウト用仮設配管系統において、前記過熱器で生成された過熱蒸気を、前記蒸気タービンをバイパスして前記再熱蒸気系統に供給する第一仮設配管と、前記ブローイングアウト時に前記再熱器を通過した蒸気を大気に放出する第二仮設配管と、前記主蒸気系統の前記過熱器に供給される蒸気の一部を、前記過熱器をバイパスして当該過熱器の出口より後流に流す第三仮設配管と、を備えることを特徴する。 The present invention reheats a main steam system in which superheater generates superheater and supplies superheated steam generated by the superheater to a steam turbine, and steam extracted from the steam turbine. A blow-out operation in which the superheated steam system is blown by the steam generated in the main steam system prior to the start of operation of the boiler equipped with the superheated steam system that is reheated in the steam turbine and supplied to the steam turbine. In the temporary piping system for blow-out of the boiler used at the time, the first temporary pipe that bypasses the steam turbine and supplies the superheated steam generated by the superheater to the reheated steam system, and at the time of the blow-out. A second temporary pipe that releases the steam that has passed through the reheater to the atmosphere and a part of the steam supplied to the superheater of the main steam system are bypassed from the superheater and from the outlet of the superheater. It is characterized by being provided with a third temporary pipe that flows to the wake.

また、本発明は、上述のボイラのブローイングアウト用仮設配管系統を用いたボイラのブローイングアウト方法において、前記過熱器および前記再熱器から前記蒸気タービンへの蒸気の供給をそれぞれ遮断し、前記過熱器で生成された加熱蒸気を、前記第一仮設配管を経由して前記再熱蒸気系統に供給するとともに、前記過熱器に供給される前の蒸気の一部を、前記第三仮設配管を経由して前記第一仮設配管に供給することにより、当該第一仮設配管を経由して前記再熱蒸気系統に供給される前記過熱蒸気に混合し、混合された蒸気を前記再熱器に流入させることにより当該再熱器をブローイングし、前記再熱器をブローイング後の蒸気を、前記第二仮設配管を経由して大気に放出することを特徴とする。 Further, according to the present invention, in the boiler blow-out method using the above-mentioned temporary boiler blow-out piping system, the supply of steam from the superheater and the reheater to the steam turbine is cut off, respectively, and the superheat is performed. The heated steam generated by the boiler is supplied to the reheated steam system via the first temporary pipe, and a part of the steam before being supplied to the superheater is supplied via the third temporary pipe. Then, by supplying it to the first temporary pipe, it is mixed with the superheated steam supplied to the reheated steam system via the first temporary pipe, and the mixed steam flows into the reheater. This is characterized in that the reheater is blown and the steam after blowing the reheater is released to the atmosphere via the second temporary pipe.

本発明によれば、主蒸気系統と再熱蒸気系統とを有する排熱回収ボイラにおいて、簡易な構成でコストの上昇を抑え、効率よく再熱蒸気系統のブローイングアウトを実現できる。上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, in an exhaust heat recovery boiler having a main steam system and a reheat steam system, it is possible to suppress an increase in cost with a simple configuration and efficiently blow out the reheat steam system. Issues, configurations and effects other than those described above will be clarified by the description of the following embodiments.

本発明の実施形態の排熱回収ボイラのブローイングアウト時も含む系統構成を示す図である。It is a figure which shows the system structure including the time of blowing out of the exhaust heat recovery boiler of embodiment of this invention. 本発明の実施形態の排熱回収ボイラのブローイングアウト運転を説明するための説明図である。It is explanatory drawing for demonstrating the blow-out operation of the exhaust heat recovery boiler of embodiment of this invention. 本発明の実施形態の変形例の排熱回収ボイラの系統構成を示す図である。It is a figure which shows the system structure of the exhaust heat recovery boiler of the modification of embodiment of this invention. 本発明の実施形態の他の変形例の排熱回収ボイラの系統構成を示す図である。It is a figure which shows the system structure of the exhaust heat recovery boiler of another modification of the embodiment of this invention. コンバインドサイクル発電設備のプラント構成図である。It is a plant block diagram of the combined cycle power generation equipment.

本発明の実施形態に係る排熱回収ボイラの一例について説明する。本実施形態の排熱回収ボイラは、例えば、図5に示すコンバインドサイクル発電設備100で用いられる。 An example of the exhaust heat recovery steam according to the embodiment of the present invention will be described. The exhaust heat recovery boiler of the present embodiment is used, for example, in the combined cycle power generation facility 100 shown in FIG.

図1は、本実施形態の排熱回収ボイラ2aの系統構成図である。 FIG. 1 is a system configuration diagram of the exhaust heat recovery steam generator 2a of the present embodiment.

排熱回収ボイラ2aは、主蒸気系統と再熱蒸気系統とを備える。図1に示すように、排熱回収ボイラ2aは、主蒸気系統として、高圧系蒸気系統である高圧系41、中圧系蒸気系統である中圧系42、および、低圧系蒸気系統である低圧系43を備え、再熱蒸気系統として、再熱系44、を備える。 The exhaust heat recovery boiler 2a includes a main steam system and a reheat steam system. As shown in FIG. 1, as the main steam system, the exhaust heat recovery boiler 2a has a high-pressure system 41 which is a high-pressure steam system, a medium-pressure system 42 which is a medium-pressure steam system, and a low-pressure system which is a low-pressure steam system. A system 43 is provided, and a reheat system 44 is provided as a reheat steam system.

主蒸気系統の各蒸気系統は、それぞれ、ガスタービン1からの排ガスが流通する排ガス流路の上流側から下流側に順に、過熱器と蒸発器と節炭器と、を備える。具体的には、低圧系43は、低圧過熱器11と、低圧蒸発器10と、低圧節炭器8と、を備える。また、中圧系42は、中圧過熱器17と、中圧蒸発器16と、中圧節炭器14と、を備える。高圧系41は、高圧二次過熱器22と、高圧一次過熱器21と、高圧蒸発器20と、高圧節炭器18と、を備える。各蒸発器(低圧蒸発器10、中圧蒸発器16、高圧蒸発器20)には、それぞれ、発生した蒸気を一時的に貯留する蒸気ドラム(低圧ドラム9、中圧ドラム15、高圧ドラム19)が設けられる。 Each steam system of the main steam system includes a superheater, an evaporator, and an economizer in order from the upstream side to the downstream side of the exhaust gas flow path through which the exhaust gas from the gas turbine 1 flows. Specifically, the low-pressure system 43 includes a low-pressure superheater 11, a low-pressure evaporator 10, and a low-pressure economizer 8. Further, the medium pressure system 42 includes a medium pressure superheater 17, a medium pressure evaporator 16, and a medium pressure economizer 14. The high-pressure system 41 includes a high-pressure secondary superheater 22, a high-pressure primary superheater 21, a high-pressure evaporator 20, and a high-pressure economizer 18. Each evaporator (low pressure evaporator 10, medium pressure evaporator 16, high pressure evaporator 20) has a steam drum (low pressure drum 9, medium pressure drum 15, high pressure drum 19) for temporarily storing the generated steam. Is provided.

低圧節炭器8の入口には、復水器5からの給水を低圧節炭器8に供給する復水ライン27が接続される。復水ライン27には、復水ポンプ6と、低圧給水ポンプ7と、が設けられる。 A condensate line 27 that supplies water from the condenser 5 to the low-pressure economizer 8 is connected to the inlet of the low-pressure economizer 8. The condensate line 27 is provided with a condensate pump 6 and a low-pressure water supply pump 7.

低圧節炭器8の出口には、低圧節炭器8で加熱された給水を中圧節炭器14および高圧節炭器18へと供給する高中圧給水ライン28が設けられる。この高中圧給水ライン28には、高中圧給水ポンプ12が設けられる。 At the outlet of the low-pressure economizer 8, a high-medium-pressure water supply line 28 for supplying water heated by the low-pressure economizer 8 to the medium-pressure economizer 14 and the high-pressure economizer 18 is provided. The high / medium pressure water supply line 28 is provided with a high / medium pressure water supply pump 12.

低圧節炭器8の出口には、さらに、低圧節炭器8で加熱された給水を、低圧節炭器8の入口に再循環させる節炭器再循環ライン13が設けられる。節炭器再循環ライン13には、節炭器再循環ポンプ29が設けられる。 An economizer recirculation line 13 is further provided at the outlet of the low pressure economizer 8 to recirculate the water supplied by the low pressure economizer 8 to the inlet of the low pressure economizer 8. The economizer recirculation line 13 is provided with an economizer recirculation pump 29.

ガスタービン1からの排ガスは、最初の蒸気系統である高圧系41の高圧二次過熱器22から、最後流部に設置された低圧系43の低圧節炭器8まで送られ、その間、各蒸気系統で排ガスの保有熱の熱回収が行われる。 The exhaust gas from the gas turbine 1 is sent from the high-pressure secondary superheater 22 of the high-pressure system 41, which is the first steam system, to the low-pressure economizer 8 of the low-pressure system 43 installed at the last flow portion, and each steam during that time. The system carries out heat recovery of the retained heat of the exhaust gas.

一方、復水器5にて復水された水は、復水ポンプ6、低圧給水ポンプ7を経て排熱回収ボイラ2aの給水入口へと送られる。排熱回収ボイラ2aに供給された給水は、低圧系43、中圧系42、高圧系41の順に流れる間に排ガスとの熱交換により蒸気となり、蒸気タービン3に供給される。 On the other hand, the water restored by the condenser 5 is sent to the water supply inlet of the exhaust heat recovery boiler 2a via the condenser pump 6 and the low-pressure water supply pump 7. The water supply supplied to the exhaust heat recovery boiler 2a becomes steam by heat exchange with the exhaust gas while flowing in the order of the low pressure system 43, the medium pressure system 42, and the high pressure system 41, and is supplied to the steam turbine 3.

このとき、主蒸気系統の高圧系41では、高圧蒸発器20で発生した蒸気が、高圧ドラム19を介して高圧一次過熱器21、高圧二次過熱器22に供給され、主蒸気管24を介して、蒸気タービン3に供給される。 At this time, in the high-pressure system 41 of the main steam system, the steam generated in the high-pressure evaporator 20 is supplied to the high-pressure primary superheater 21 and the high-pressure secondary superheater 22 via the high-pressure drum 19, and through the main steam pipe 24. Is supplied to the steam turbine 3.

再熱系44は、蒸気タービン3で仕事をした蒸気を再加熱する。 The reheating system 44 reheats the steam that has worked in the steam turbine 3.

これを実現するため、再熱系44は、再熱器23と、低温再熱蒸気管25と、高温再熱蒸気管26と、を備える。低温再熱蒸気管25は、蒸気タービン3と再熱器23入口とを接続し、蒸気タービン3で仕事をした蒸気を、再熱器23へ供給する。高温再熱蒸気管26は、再熱器23出口と蒸気タービン3とを接続し、再熱器23で再加熱された蒸気を蒸気タービン3に供給する。 In order to realize this, the reheat system 44 includes a reheater 23, a low temperature reheat steam tube 25, and a high temperature reheat steam tube 26. The low-temperature reheat steam pipe 25 connects the steam turbine 3 and the inlet of the reheater 23, and supplies the steam worked in the steam turbine 3 to the reheater 23. The high-temperature reheat steam pipe 26 connects the outlet of the reheater 23 and the steam turbine 3, and supplies the steam reheated by the reheater 23 to the steam turbine 3.

上述のように、建設を完了した排熱回収ボイラ2aは、蒸気タービン3に蒸気を通気する前(通常運転開始前)に、排熱回収ボイラ2a内の異物が蒸気タービン3に持ち込まれて、蒸気タービン3の翼を損傷しないよう、ブローイングアウトを行う。ブローイングアウトには、蒸発器で発生した蒸気を用いる。すなわち、排熱回収ボイラ2a自身から蒸気を発生させて、その蒸気の流体力を用いて排熱回収ボイラ2a内から異物を除去する。 As described above, in the exhaust heat recovery boiler 2a whose construction has been completed, foreign matter in the exhaust heat recovery boiler 2a is brought into the steam turbine 3 before the steam is ventilated to the steam turbine 3 (before the start of normal operation). Blow out is performed so as not to damage the blades of the steam turbine 3. Steam generated by the evaporator is used for blowing out. That is, steam is generated from the exhaust heat recovery boiler 2a itself, and foreign matter is removed from the exhaust heat recovery boiler 2a using the fluid force of the steam.

しかしながら、再熱系44には蒸発器がない。このため、再熱系44のブローイングアウトには、上述のように、主蒸気系統の過熱蒸気を用いる。これを実現するため、本実施形態の排熱回収ボイラ2aには、再熱系44のブローイングアウト用の仮設配管が設けられる。 However, the reheat system 44 does not have an evaporator. Therefore, as described above, the superheated steam of the main steam system is used for the blow-out of the reheat system 44. In order to realize this, the exhaust heat recovery boiler 2a of the present embodiment is provided with a temporary pipe for blowing out of the reheating system 44.

以下、図1を用いて、本実施形態の排熱回収ボイラ2aの、ブローイングアウト用仮設配管系統を説明する。 Hereinafter, the temporary piping system for blowing out of the exhaust heat recovery steam generator 2a of the present embodiment will be described with reference to FIG.

本実施形態では、主蒸気系統の過熱蒸気を、蒸気タービン3をバイパスして再熱器23に送りこむため、過熱器出口(高圧二次過熱器22の出口)と再熱蒸気系統とを接続する仮設の配管である第一の仮設配管31を設ける。 In the present embodiment, in order to send the superheated steam of the main steam system to the reheater 23 by bypassing the steam turbine 3, the superheater outlet (outlet of the high-pressure secondary superheater 22) and the reheated steam system are connected. The first temporary pipe 31 which is a temporary pipe is provided.

図1に示すように、第一の仮設配管31は、主蒸気管24から分岐し、低温再熱蒸気管25に接続され、主蒸気管24から低温再熱蒸気管25に蒸気を供給する。第一の仮設配管31を介して、主蒸気系統での発生した蒸気が、再熱蒸気系統に流され、ブローイングアウトが実施される。 As shown in FIG. 1, the first temporary pipe 31 branches from the main steam pipe 24, is connected to the low temperature reheat steam pipe 25, and supplies steam from the main steam pipe 24 to the low temperature reheat steam pipe 25. The steam generated in the main steam system is flowed to the reheated steam system through the first temporary pipe 31, and blow-out is performed.

また、再熱器23を通過した蒸気を、大気に放出するための、第二の仮設配管32を設ける。図1に示すように、第二の仮設配管32は、高温再熱蒸気管26から分岐し、排気サイレンサ39に接続される。再熱系44を通過した蒸気は、排気サイレンサ39を介して大気に放出される。これにより、ブローイングアウト時に再熱器23を通過した蒸気が、蒸気タービン3に通気されるのを防ぐ。 In addition, a second temporary pipe 32 is provided to release the steam that has passed through the reheater 23 to the atmosphere. As shown in FIG. 1, the second temporary pipe 32 branches from the high temperature reheat steam pipe 26 and is connected to the exhaust silencer 39. The steam that has passed through the reheat system 44 is released to the atmosphere through the exhaust silencer 39. This prevents the steam that has passed through the reheater 23 at the time of blow-out from being aerated to the steam turbine 3.

さらに、本実施形態では、主蒸気系統から再熱系44に供給される蒸気の温度を低下させるため、主蒸気系統の過熱器に供給される蒸気の一部を、当該過熱器をバイパスして再熱系44に供給される蒸気に混合する第三の仮設配管を備える。本実施形態では、第三の仮設配管33を、例えば、図1に示すように、高圧ドラム19の出口から第一の仮設配管31に接続する。 Further, in the present embodiment, in order to lower the temperature of the steam supplied from the main steam system to the reheating system 44, a part of the steam supplied to the superheater of the main steam system is bypassed by the superheater. A third temporary pipe that mixes with the steam supplied to the reheat system 44 is provided. In the present embodiment, the third temporary pipe 33 is connected to the first temporary pipe 31 from the outlet of the high pressure drum 19, for example, as shown in FIG.

この第三の仮設配管33を介して、高圧一次過熱器21および高圧二次過熱器22で過熱前の、高圧ドラム19出口の飽和蒸気の一部が、過熱されずに第一の仮設配管31に供給され、管内の高温の蒸気と混合される。これにより、第一の仮設配管31から低温再熱蒸気管25に流入する蒸気温度を低減する。 Through the third temporary pipe 33, a part of the saturated steam at the outlet of the high pressure drum 19 before being superheated by the high pressure primary superheater 21 and the high pressure secondary superheater 22 is not overheated and the first temporary pipe 31 Is supplied to and mixed with the hot steam in the tube. As a result, the steam temperature flowing into the low temperature reheat steam pipe 25 from the first temporary pipe 31 is reduced.

なお、ブローイングアウト用の各仮設配管(31、32、33)は、ブローイングアウト時にのみ用いられる。 The temporary pipes (31, 32, 33) for blowing out are used only at the time of blowing out.

また、ブローイングアウト実施にあたっては、まず、主蒸気系統において、公知の手法でブローイングアウトを行い、その後、再熱系44のブローイングアウトを行う。 Further, in carrying out the blow-out, first, the blow-out is performed in the main steam system by a known method, and then the blow-out of the reheat system 44 is performed.

例えば、主蒸気管24の、第一の仮設配管31の分岐点よりも蒸気タービン3側に第一の遮断弁(不図示)を、高温再熱蒸気管26の、第二の仮設配管32の分岐点よりも蒸気タービン3側に第二の遮断弁(不図示)を、それぞれ設ける。また、第一の仮設配管31、第二の仮設配管32および第三の仮設配管33に、それぞれ仮設遮断弁(不図示)を設ける。 For example, a first isolation valve (not shown) on the steam turbine 3 side of the main steam pipe 24 on the steam turbine 3 side of the branch point of the first temporary pipe 31 and a second temporary pipe 32 of the high temperature reheat steam pipe 26. A second isolation valve (not shown) is provided on the steam turbine 3 side of the branch point. Further, temporary shutoff valves (not shown) are provided in the first temporary pipe 31, the second temporary pipe 32, and the third temporary pipe 33, respectively.

主蒸気系統のブローイングアウト終了後、再熱系44のブローイングアウトを開始する。再熱系44のブローイングアウト時は、まず、第一の遮断弁と第二の遮断弁とを閉じ、高圧二次過熱器22からの蒸気の蒸気タービン3への流入と、再熱器23からの蒸気の蒸気タービン3への流入とを遮断する。 After the blow-out of the main steam system is completed, the blow-out of the reheat system 44 is started. At the time of blowing out of the reheating system 44, first, the first shutoff valve and the second shutoff valve are closed, the steam from the high pressure secondary superheater 22 flows into the steam turbine 3, and the reheater 23 Is cut off from the inflow of steam into the steam turbine 3.

そして、各仮設遮断弁を開き、高圧蒸発器20で発生した蒸気を、再熱系44に供給する。なお、この時供給される蒸気は、再熱系44の最大発生動圧以上とする。これは、通常、主蒸気系統の最大発生動圧より大きい。 Then, each temporary isolation valve is opened, and the steam generated by the high-pressure evaporator 20 is supplied to the reheat system 44. The steam supplied at this time shall be equal to or higher than the maximum generated dynamic pressure of the reheating system 44. This is usually greater than the maximum dynamic pressure of the main steam system.

これにより、再熱系44のブローイングアウト時は、図2に太線で示すように、高圧二次過熱器22で過熱された蒸気が、主蒸気管24および第一の仮設配管31を介して低温再熱蒸気管25に流入する。このとき、高圧ドラム19出口の飽和蒸気の一部が、第三の仮設配管33を介して、第一の仮設配管31に供給され、低温再熱蒸気管25に流す前の蒸気に混合される。高圧二次過熱器22で過熱された蒸気と、高圧ドラム19の出口の飽和蒸気の一部とが第一の仮設配管31内で混合され、低温再熱蒸気管25を介して再熱器23に流入し、再熱器23内の異物をブローイングアウトする。ブローイングアウト後の蒸気は、再熱器23の出口から高温再熱蒸気管26、第二の仮設配管32、排気サイレンサ39を介して大気に放出される。 As a result, when the reheating system 44 is blown out, as shown by the thick line in FIG. 2, the steam superheated by the high-pressure secondary superheater 22 is cooled to a low temperature via the main steam pipe 24 and the first temporary pipe 31. It flows into the reheat steam pipe 25. At this time, a part of the saturated steam at the outlet of the high-pressure drum 19 is supplied to the first temporary pipe 31 via the third temporary pipe 33 and mixed with the steam before flowing into the low-temperature reheat steam pipe 25. .. The steam superheated by the high-pressure secondary superheater 22 and a part of the saturated steam at the outlet of the high-pressure drum 19 are mixed in the first temporary pipe 31, and the reheater 23 is passed through the low-temperature reheat steam pipe 25. And blows out foreign matter in the reheater 23. The steam after blow-out is released to the atmosphere from the outlet of the reheater 23 via the high-temperature reheat steam pipe 26, the second temporary pipe 32, and the exhaust silencer 39.

以上説明したように、本実施形態によれば、第三の仮設配管33を設け、高圧系41で過熱する前の低温の蒸気を、再熱系44のブローイングアウト用の過熱蒸気に混合する。そして、混合後の温度の下がった蒸気を低温再熱蒸気管25に流入させる。このため、設計時に、低温再熱蒸気管25の材質について、ブローイングアウト時の通過蒸気温度を考慮しなくても、ブローイングアウト用の蒸気が当該管の最高使用温度を超えて当該管を損傷する可能性が低減する。 As described above, according to the present embodiment, the third temporary pipe 33 is provided, and the low-temperature steam before being overheated by the high-pressure system 41 is mixed with the superheated steam for blowing out of the reheating system 44. Then, the steam whose temperature has dropped after mixing is allowed to flow into the low-temperature reheat steam pipe 25. Therefore, at the time of designing, the steam for blow-out exceeds the maximum operating temperature of the pipe and damages the pipe even if the material of the low-temperature reheat steam pipe 25 does not consider the passing steam temperature at the time of blow-out. Possibility is reduced.

また、第三の仮設配管33により、高圧系41を通過する蒸気流量が低減する。この高圧系41の流体力が低下することで、動圧も低下し、高圧系41内での異物の飛散量を抑えることができ、その高圧系41から流入する過熱蒸気内の異物の飛散量も抑えることができる。従って、異物の飛散量の少ない蒸気で、再熱器23のブローイングアウトを実施でき、ブローイングアウト時間を短縮できる。 Further, the third temporary pipe 33 reduces the steam flow rate passing through the high pressure system 41. By reducing the fluid force of the high pressure system 41, the dynamic pressure also decreases, the amount of foreign matter scattered in the high pressure system 41 can be suppressed, and the amount of foreign matter scattered in the superheated steam flowing from the high pressure system 41 can be suppressed. Can also be suppressed. Therefore, the blow-out of the reheater 23 can be performed with steam having a small amount of foreign matter scattered, and the blow-out time can be shortened.

このように、本実施形態によれば、排熱回収ボイラ2aにおいて、主蒸気系統から供給される蒸気の一部を、過熱器をバイパスさせるための仮設配管を設けるという簡易な構成で、コストの上昇を抑え、効率よく再熱系44のブローイングアウトを行うことができる。 As described above, according to the present embodiment, in the exhaust heat recovery boiler 2a, a temporary pipe for bypassing the superheater is provided for a part of the steam supplied from the main steam system, and the cost is reduced. It is possible to suppress the rise and efficiently blow out the reheat system 44.

なお、上記実施形態では、排熱回収ボイラ2aは、高圧系41、中圧系42および低圧系43の三重圧方式の場合を例にあげて説明したが、これに限定されない。例えば、中圧系42のない、複(二重)圧方式であってもよい。また、主蒸気系統が多重圧方式でなくてもよい。主蒸気系統の、蒸気ドラムから過熱前の飽和蒸気を取り出し、過熱蒸気を再熱器23に送り込む第一の仮設配管31内の蒸気に混合できれば、排熱回収ボイラ2a自体の構成は問わない。 In the above embodiment, the exhaust heat recovery boiler 2a has been described by taking as an example the case of the triple pressure system of the high pressure system 41, the medium pressure system 42, and the low pressure system 43, but the present invention is not limited to this. For example, a double pressure system without a medium pressure system 42 may be used. Further, the main steam system does not have to be a multiple pressure system. As long as the saturated steam before overheating can be taken out from the steam drum of the main steam system and mixed with the steam in the first temporary pipe 31 that sends the superheated steam to the reheater 23, the configuration of the exhaust heat recovery boiler 2a itself does not matter.

<変形例>
なお、例えば、排熱回収ボイラ2において、高圧過熱器が複数ある構成(以下、多段構成と呼ぶ)の場合、第三の仮設配管は、複数の高圧過熱器をバイパスするよう設けてもよい。例えば、高圧一次過熱器21の入口側から、後次の過熱器のいずれかの入口側に接続し、過熱器をバイパスさせてもよい。例えば、高圧系41が二段構成の排熱回収ボイラ2bの場合の例を、図3に示す。本図に示すように、第三の仮設配管34は、高圧一次過熱器21の入口側から分岐し、その出口側、すなわち、高圧二次過熱器22の入口側に接続される。また、バイパスさせる飽和蒸気は一部もしくは全部となる。
<Modification example>
For example, in the case of the exhaust heat recovery boiler 2 having a configuration in which a plurality of high-pressure superheaters are provided (hereinafter referred to as a multi-stage configuration), the third temporary pipe may be provided so as to bypass the plurality of high-pressure superheaters. For example, the superheater may be bypassed by connecting from the inlet side of the high-pressure primary superheater 21 to the inlet side of any of the following superheaters. For example, FIG. 3 shows an example in which the high-pressure system 41 is a two-stage exhaust heat recovery steam generator 2b. As shown in this figure, the third temporary pipe 34 branches from the inlet side of the high-pressure primary superheater 21 and is connected to the outlet side thereof, that is, the inlet side of the high-pressure secondary superheater 22. In addition, the saturated steam to be bypassed is a part or all.

なお、三次構成の場合、第三の仮設配管34は、高圧一次過熱器21の入口側から、高圧一次過熱器21と高圧二次過熱器22との中間、および、高圧二次過熱器22と高圧三次過熱器との中間のいずれかに接続される。前者の場合、過熱前の蒸気は、高圧一次過熱器21をバイパスし、後者の場合、高圧一次過熱器21および高圧二次過熱器22をバイパスする。また、四次構成の場合、一次過熱器と二次過熱器との中間、二次過熱器と三次過熱器との中間、および、三次過熱器と四次過熱器との中間のいずれかに接続される。バイパスさせる飽和蒸気は、三次構成の場合、四次構成の場合ともに一部もしくは全部となる。 In the case of the tertiary configuration, the third temporary pipe 34 is connected to the middle of the high-pressure primary superheater 21 and the high-pressure secondary superheater 22 and the high-pressure secondary superheater 22 from the inlet side of the high-pressure primary superheater 21. Connected to one of the middle with a high pressure tertiary superheater. In the former case, the steam before superheating bypasses the high-pressure primary superheater 21, and in the latter case, it bypasses the high-pressure primary superheater 21 and the high-pressure secondary superheater 22. In the case of a quaternary configuration, connect to either the middle of the primary superheater and the secondary superheater, the middle of the secondary superheater and the tertiary superheater, or the middle of the tertiary superheater and the quaternary superheater. Will be done. The saturated steam to be bypassed is a part or all in both the tertiary configuration and the quaternary configuration.

また、同じく、高圧系41が多段構成の場合、第三の仮設配管は、二次以降の後次の過熱器のいずれかの入口側から当該過熱器をバイパスして第一の仮設配管31に接続してもよい。例えば、高圧系41が二段構成の排熱回収ボイラ2cの場合の例を、図4に示す。本図に示すように、第三の仮設配管35は、高圧一次過熱器21の出口側、すなわち、高圧二次過熱器22の入口側から分岐し、第一の仮設配管31に接続される。また、バイパスさせる飽和蒸気は一部もしくは全部となる。 Similarly, when the high-pressure system 41 has a multi-stage configuration, the third temporary pipe is connected to the first temporary pipe 31 by bypassing the superheater from the inlet side of any of the secondary and subsequent superheaters. You may connect. For example, FIG. 4 shows an example in which the high-pressure system 41 is a two-stage exhaust heat recovery steam generator 2c. As shown in this figure, the third temporary pipe 35 branches from the outlet side of the high-pressure primary superheater 21, that is, the inlet side of the high-pressure secondary superheater 22, and is connected to the first temporary pipe 31. In addition, the saturated steam to be bypassed is a part or all.

このように、第三の仮設配管は、ブローイングアウト時に、主蒸気系統の、過熱器に供給される前の蒸気の一部もしくは全部を、過熱器をバイパスして当該過熱器の出口より後流に流すよう接続されていればよく、これらの変形例は、排熱回収ボイラ2の構成に応じて、適宜選択される。 In this way, at the time of blow-out, the third temporary pipe bypasses the superheater and wakes a part or all of the steam of the main steam system before being supplied to the superheater from the outlet of the superheater. These modifications may be appropriately selected depending on the configuration of the exhaust heat recovery steam 2.

一般に、排熱回収ボイラ2の伝熱管パネルは、入口ヘッダと出口ヘッダとの間に伝熱管が配置されるよう設置される。水と蒸気を分離する高圧ドラム19から最初の伝熱管パネルである高圧一次過熱器21のヘッダへ接続される連絡管は、排熱回収ボイラ2毎に入口ヘッダおよび出口ヘッダのいずれかに接続される。すなわち、高圧ドラム19から流出した蒸気が最初に接続された伝熱管パネル(高圧一次過熱器21)の上から下向きに流れるように流路が形成されるケースもあれば、下から上向きに流れるよう流路が形成されるケースもある。各変形例は、このような排熱回収ボイラ2の構成に応じて、分岐する第三の仮設配管の長さが短く、かつ、配管がシンプルになるよう、適宜選択する。これにより、ブローイングアウト時の仮設配管の取り回しがシンプルになり、コスト的なメリットが期待できる。 Generally, the heat transfer tube panel of the exhaust heat recovery boiler 2 is installed so that the heat transfer tube is arranged between the inlet header and the outlet header. The connecting pipe connected from the high pressure drum 19 that separates water and steam to the header of the high pressure primary superheater 21 which is the first heat transfer tube panel is connected to either the inlet header or the outlet header for each exhaust heat recovery boiler 2. The header. That is, in some cases, a flow path is formed so that the steam flowing out of the high-pressure drum 19 flows downward from the top of the heat transfer tube panel (high-pressure primary superheater 21) to which the steam flows out first, and the steam flows upward from the bottom. In some cases, a flow path is formed. Each modification is appropriately selected so that the length of the third temporary pipe to be branched is short and the pipe is simple according to the configuration of the exhaust heat recovery boiler 2. This simplifies the handling of temporary piping at the time of blow-out, and can be expected to have a cost advantage.

また、上記実施形態、変形例では、ドラム型の排熱回収ボイラを例にあげて説明したが、排熱回収ボイラの型式は、これに限定されない。例えば、蒸気ドラムの代わりに、汽水分離器を用いる、貫流型であってもよい。また、伝熱管パネルが水平方向に配列した横型の排熱回収ボイラのほか、伝熱管パネルが上下方向に配列した竪型の排熱回収ボイラでも良い。発電設備の規模、蒸気系統の構成、給水ポンプ類の配置等も、特に上記実施形態、変形例に限定されず、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能である。 Further, in the above-described embodiments and modifications, the drum-type exhaust heat recovery boiler has been described as an example, but the type of the exhaust heat recovery boiler is not limited to this. For example, a once-through type may be used in which a brackish water separator is used instead of the steam drum. Further, in addition to the horizontal type exhaust heat recovery boiler in which the heat transfer tube panels are arranged in the horizontal direction, a vertical type exhaust heat recovery boiler in which the heat transfer tube panels are arranged in the vertical direction may be used. The scale of the power generation facility, the configuration of the steam system, the arrangement of the water supply pumps, etc. are not particularly limited to the above-described embodiments and modifications, and are within a range that does not deviate from the technical idea of the present invention, depending on the design and the like. Various changes are possible.

1:ガスタービン、2:排熱回収ボイラ、2a:排熱回収ボイラ、2b:排熱回収ボイラ、2c:排熱回収ボイラ、3:蒸気タービン、4:発電機、5:復水器、6:復水ポンプ、7:低圧給水ポンプ、8:低圧節炭器、9:低圧ドラム、10:低圧蒸発器、11:低圧過熱器、12:高中圧給水ポンプ、13:節炭器再循環ライン、14:中圧節炭器、15:中圧ドラム、16:中圧蒸発器、17:中圧過熱器、18:高圧節炭器、19:高圧ドラム、20:高圧蒸発器、21:高圧一次過熱器、22:高圧二次過熱器、23:再熱器、24:主蒸気管、25:低温再熱蒸気管、26:高温再熱蒸気管、27:復水ライン、28:高中圧給水ライン、29:節炭器再循環ポンプ、
31:第一の仮設配管、32:第二の仮設配管、33:第三の仮設配管、34:第三の仮設配管、35:第三の仮設配管、39:排気サイレンサ、
41:高圧系、42:中圧系、43:低圧系、44:再熱系、
100:コンバインドサイクル発電設備
1: Gas turbine 2: Exhaust heat recovery boiler, 2a: Exhaust heat recovery boiler, 2b: Exhaust heat recovery boiler, 2c: Exhaust heat recovery boiler, 3: Steam turbine, 4: Generator, 5: Water recovery device, 6 : Condensation pump, 7: Low pressure water supply pump, 8: Low pressure economizer, 9: Low pressure drum, 10: Low pressure evaporator, 11: Low pressure superheater, 12: High and medium pressure water supply pump, 13: Economizer recirculation line , 14: Medium pressure economizer, 15: Medium pressure drum, 16: Medium pressure evaporator, 17: Medium pressure superheater, 18: High pressure economizer, 19: High pressure drum, 20: High pressure evaporator, 21: High pressure Primary superheater, 22: High pressure secondary superheater, 23: Reheater, 24: Main steam pipe, 25: Low temperature reheat steam pipe, 26: High temperature reheat steam pipe, 27: Restoration line, 28: High medium pressure Water supply line, 29: Economizer recirculation pump,
31: 1st temporary piping, 32: 2nd temporary piping, 33: 3rd temporary piping, 34: 3rd temporary piping, 35: 3rd temporary piping, 39: exhaust silencer,
41: High pressure system, 42: Medium pressure system, 43: Low pressure system, 44: Reheat system,
100: Combined cycle power generation equipment

Claims (8)

蒸発器で発生した蒸気を過熱器で過熱し、前記過熱器で生成された過熱蒸気を蒸気タービンに供給する主蒸気系統と、前記蒸気タービンから抽気された蒸気を、再熱器で再加熱して前記蒸気タービンに供給する再熱蒸気系統とを備えたボイラの運転開始に先立ち、前記主蒸気系統で発生させた蒸気により前記再熱蒸気系統をブローイングする運転であるブローイングアウトの際に用いられるボイラのブローイングアウト用仮設配管系統において、
前記過熱器で生成された過熱蒸気を、前記蒸気タービンをバイパスして前記再熱蒸気系統に供給する第一仮設配管と、
前記ブローイングアウト時に前記再熱器を通過した蒸気を大気に放出する第二仮設配管と、
前記主蒸気系統の前記過熱器に供給される蒸気の一部を、前記過熱器をバイパスして当該過熱器の出口より後流に流す第三仮設配管と、を備えることを特徴するボイラのブローイングアウト用仮設配管系統。
The steam generated in the evaporator is overheated by the superheater, and the main steam system that supplies the superheated steam generated by the superheater to the steam turbine and the steam extracted from the steam turbine are reheated by the reheater. It is used at the time of blowing out, which is an operation of blowing the reheated steam system with the steam generated in the main steam system prior to the start of operation of the boiler equipped with the reheated steam system supplied to the steam turbine. In the temporary piping system for blow-out of the boiler
A first temporary pipe that bypasses the steam turbine and supplies the superheated steam generated by the superheater to the reheated steam system.
A second temporary pipe that releases steam that has passed through the reheater to the atmosphere at the time of blowing out, and
Boiler blowing characterized by comprising a third temporary pipe that bypasses the superheater and allows a part of steam supplied to the superheater of the main steam system to flow to the wake from the outlet of the superheater. Temporary piping system for out.
請求項1記載のボイラのブローイングアウト用仮設配管系統において、
前記第三仮設配管は、前記過熱器の前流から前記第一仮設配管に接続されることを特徴とするボイラのブローイングアウト用仮設配管系統。
In the temporary piping system for blowing out of the boiler according to claim 1,
The third temporary pipe is a temporary piping system for blowing out of a boiler, characterized in that the front flow of the superheater is connected to the first temporary pipe.
請求項2記載のボイラのブローイングアウト用仮設配管系統において、
前記主蒸気系統の蒸発器は、発生した蒸気を一時的に貯留する蒸気ドラムを備え、
前記第三仮設配管は、前記主蒸気系統の蒸気ドラム出口から前記第一仮設配管に接続されることを特徴とするボイラのブローイングアウト用仮設配管系統。
In the temporary piping system for blowing out of the boiler according to claim 2,
The main steam system evaporator is equipped with a steam drum for temporarily storing the generated steam.
The third temporary pipe is a temporary pipe system for blowing out of a boiler, characterized in that the steam drum outlet of the main steam system is connected to the first temporary pipe.
請求項2記載のボイラのブローイングアウト用仮設配管系統において、
前記主蒸気系統は、前記過熱器を複数備え、
前記第三仮設配管は、複数の前記過熱器のうち所定の前記過熱器の入口側から前記第一仮設配管に接続されることを特徴とするボイラのブローイングアウト用仮設配管系統。
In the temporary piping system for blowing out of the boiler according to claim 2,
The main steam system includes a plurality of the superheaters.
The third temporary pipe is a temporary piping system for blowing out of a boiler, characterized in that the third temporary pipe is connected to the first temporary pipe from the inlet side of a predetermined superheater among the plurality of superheaters.
請求項1記載のボイラのブローイングアウト用仮設配管系統において、
前記第三仮設配管は、前記過熱器の入口側から当該過熱器の出口側に接続されることを特徴とするボイラのブローイングアウト用仮設配管系統。
In the temporary piping system for blowing out of the boiler according to claim 1,
The third temporary piping system is a temporary piping system for blowing out of a boiler, which is connected from the inlet side of the superheater to the outlet side of the superheater.
請求項1記載のボイラのブローイングアウト用仮設配管系統において、
前記主蒸気系統は、前記過熱器を複数備え、
前記第三仮設配管は、複数の前記過熱器のうち、前記蒸気タービンからの排ガスが流通する排ガス流路の最も下流に配置される前記過熱器の入口側から、当該過熱器より前記排ガス流路の上流側に配置されるいずれかの前記過熱器の入口側に接続されることを特徴とするボイラのブローイングアウト用仮設配管系統。
In the temporary piping system for blowing out of the boiler according to claim 1,
The main steam system includes a plurality of the superheaters.
The third temporary pipe is the exhaust gas flow path from the superheater from the inlet side of the superheater arranged at the most downstream side of the exhaust gas flow path through which the exhaust gas from the steam turbine flows among the plurality of the superheaters. Temporary piping system for blow-out of a boiler, characterized in that it is connected to the inlet side of any of the superheaters located on the upstream side of the boiler.
請求項1記載のボイラのブローイングアウト用仮設配管系統において、
前記ボイラは、前記主蒸気系統として、それぞれ、前記蒸気タービンからの排ガスが流通する排ガス流路の上流側から下流側に順に前記過熱器、前記蒸発器および節炭器を有する高圧系、中圧系および低圧系を備え、各前記蒸発器には、発生した蒸気を一時的に貯留する蒸気ドラムがそれぞれ接続される排熱回収ボイラであって、
前記第一仮設配管は、前記高圧系の前記過熱器で生成された前記過熱蒸気を前記蒸気タービンに供給する主蒸気管から、前記蒸気タービンから抽気された蒸気を前記再熱器に供給する低温再熱蒸気管に接続され、
前記第二仮設配管は、前記再熱器で再加熱された蒸気を前記蒸気タービンに供給する高温再熱蒸気管に接続されて前記再熱器を通過した蒸気を大気に放出し、
前記第三仮設配管は、前記高圧系の前記蒸気ドラムの出口から前記第一仮設配管に接続されること
を特徴とするボイラのブローイングアウト用仮設配管系統。
In the temporary piping system for blowing out of the boiler according to claim 1,
The boiler is a high-pressure system having the superheater, the evaporator, and the coal-saving device in order from the upstream side to the downstream side of the exhaust gas flow path through which the exhaust gas from the steam turbine flows, and the medium pressure, respectively, as the main steam system. It is an exhaust heat recovery boiler provided with a system and a low pressure system, and a steam drum for temporarily storing generated steam is connected to each of the evaporators.
The first temporary pipe is a low temperature that supplies steam extracted from the steam turbine to the reheater from a main steam pipe that supplies the superheated steam generated by the superheater of the high pressure system to the steam turbine. Connected to a reheat steam tube,
The second temporary pipe is connected to a high-temperature reheat steam pipe that supplies steam reheated by the reheater to the steam turbine, and releases steam that has passed through the reheater to the atmosphere.
The third temporary pipe is a temporary pipe system for blowing out of a boiler, characterized in that the third temporary pipe is connected to the first temporary pipe from the outlet of the steam drum of the high pressure system.
請求項1に記載のボイラのブローイングアウト用仮設配管系統を用いたボイラのブローイングアウト方法において、
前記過熱器および前記再熱器から前記蒸気タービンへの蒸気の供給をそれぞれ遮断し、
前記過熱器で生成された加熱蒸気を、前記第一仮設配管を経由して前記再熱蒸気系統に供給するとともに、前記過熱器に供給される前の蒸気の一部を、前記第三仮設配管を経由して前記第一仮設配管に供給することにより、当該第一仮設配管を経由して前記再熱蒸気系統に供給される前記過熱蒸気に混合し、
混合された蒸気を前記再熱器に流入させることにより当該再熱器をブローイングし、
前記再熱器をブローイング後の蒸気を、前記第二仮設配管を経由して大気に放出することを特徴とするボイラのブローイングアウト方法。
In the boiler blow-out method using the temporary boiler blow-out piping system according to claim 1.
The supply of steam from the superheater and the reheater to the steam turbine is cut off, respectively.
The heated steam generated by the superheater is supplied to the reheated steam system via the first temporary pipe, and a part of the steam before being supplied to the superheater is partially supplied to the third temporary pipe. By supplying to the first temporary pipe via the above, it is mixed with the superheated steam supplied to the reheated steam system via the first temporary pipe.
The reheater is blown by flowing the mixed steam into the reheater.
A method for blowing out a boiler, which comprises releasing steam after blowing the reheater to the atmosphere via the second temporary pipe.
JP2018154976A 2018-08-21 2018-08-21 Temporary piping system for boiler blow-out and boiler blow-out method Active JP7066572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018154976A JP7066572B2 (en) 2018-08-21 2018-08-21 Temporary piping system for boiler blow-out and boiler blow-out method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018154976A JP7066572B2 (en) 2018-08-21 2018-08-21 Temporary piping system for boiler blow-out and boiler blow-out method

Publications (2)

Publication Number Publication Date
JP2020029977A JP2020029977A (en) 2020-02-27
JP7066572B2 true JP7066572B2 (en) 2022-05-13

Family

ID=69624178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018154976A Active JP7066572B2 (en) 2018-08-21 2018-08-21 Temporary piping system for boiler blow-out and boiler blow-out method

Country Status (1)

Country Link
JP (1) JP7066572B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023157708A1 (en) * 2022-02-18 2023-08-24 三菱重工業株式会社 Steam turbine system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000297611A (en) 1999-04-14 2000-10-24 Toshiba Corp Exhaust heat recovery system and operation method of the same
US20080236616A1 (en) 2007-03-27 2008-10-02 Boyle Energy Services & Technology, Inc. Method and apparatus for commissioning power plants
JP2012082971A (en) 2010-10-06 2012-04-26 Mitsubishi Heavy Ind Ltd Boiler, gas turbine combined cycle plant, and temperature control method
JP6044765B2 (en) 2012-10-22 2016-12-14 三菱日立パワーシステムズ株式会社 Temporary piping system for blowing out boiler and blowing out method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS545104A (en) * 1977-06-15 1979-01-16 Hitachi Ltd Scale removing method for superheater and reheater
JPS61261604A (en) * 1985-05-15 1986-11-19 Hitachi Ltd Blowing-out device
JP2870759B2 (en) * 1988-06-10 1999-03-17 三菱重工業株式会社 Combined power generator
US5628179A (en) * 1993-11-04 1997-05-13 General Electric Co. Steam attemperation circuit for a combined cycle steam cooled gas turbine
JPH10331607A (en) * 1997-06-03 1998-12-15 Babcock Hitachi Kk Exhaust heat recovery boiler blowing device and a boiler blowing-out method
JP3808987B2 (en) * 1997-09-18 2006-08-16 株式会社東芝 Operation method of combined cycle power plant
JP4560349B2 (en) * 2004-08-06 2010-10-13 日本クラウンコルク株式会社 Plastic cap with excellent liquid splash prevention

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000297611A (en) 1999-04-14 2000-10-24 Toshiba Corp Exhaust heat recovery system and operation method of the same
US20080236616A1 (en) 2007-03-27 2008-10-02 Boyle Energy Services & Technology, Inc. Method and apparatus for commissioning power plants
JP2012082971A (en) 2010-10-06 2012-04-26 Mitsubishi Heavy Ind Ltd Boiler, gas turbine combined cycle plant, and temperature control method
JP6044765B2 (en) 2012-10-22 2016-12-14 三菱日立パワーシステムズ株式会社 Temporary piping system for blowing out boiler and blowing out method

Also Published As

Publication number Publication date
JP2020029977A (en) 2020-02-27

Similar Documents

Publication Publication Date Title
JP2009092372A (en) Supercritical steam combined cycle and its method
JP4225679B2 (en) Combined cycle power plant
JPH06317106A (en) Steam-gas turbine composite type power plant
JP5860597B2 (en) System and method for preheating exhaust heat recovery boiler piping
CN102840575A (en) Composite cycle power generation system improved in efficiency
JP2010038162A (en) System and assembly for preheating fuel in combined cycle power plant
EP3077632B1 (en) Combined cycle system
JP3679094B2 (en) Operation method and equipment of gas / steam combined turbine equipment
US10287922B2 (en) Steam turbine plant, combined cycle plant provided with same, and method of operating steam turbine plant
JP7066572B2 (en) Temporary piping system for boiler blow-out and boiler blow-out method
JP2010242673A (en) Steam turbine system and method for operating the same
CN206755145U (en) Turbine high-pressure bypasses desuperheat water lines
JP4718333B2 (en) Once-through exhaust heat recovery boiler
WO2016047400A1 (en) Boiler, combined cycle plant, and steam cooling method for boiler
KR101520238B1 (en) Gas turbine cooling system, and gas turbine cooling method
JP2000304204A (en) Drain discharging device for boiler
JP2007298244A (en) Exhaust heat recovery boiler
JP4842071B2 (en) Operation method of once-through exhaust heat recovery boiler and operation method of power generation equipment
JP2002371807A (en) Turbine equipment and steam converting device
JPH0392507A (en) Turbine bypass device for steam turbine
JP2012082971A (en) Boiler, gas turbine combined cycle plant, and temperature control method
JP2000220412A (en) Repowering system of steam power generating equipment
JP2022161839A (en) Combined cycle power plant having serial heat exchangers
JP2000045712A (en) Combined cycle generating plant
JPH0913917A (en) Medium-pressure steam quantity adjusting method for combined cycle power plant

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20210610

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220113

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220427

R150 Certificate of patent or registration of utility model

Ref document number: 7066572

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150