JP2000297611A - Exhaust heat recovery system and operation method of the same - Google Patents

Exhaust heat recovery system and operation method of the same

Info

Publication number
JP2000297611A
JP2000297611A JP11106313A JP10631399A JP2000297611A JP 2000297611 A JP2000297611 A JP 2000297611A JP 11106313 A JP11106313 A JP 11106313A JP 10631399 A JP10631399 A JP 10631399A JP 2000297611 A JP2000297611 A JP 2000297611A
Authority
JP
Japan
Prior art keywords
steam
pressure
superheater
pipe
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11106313A
Other languages
Japanese (ja)
Other versions
JP3880746B2 (en
Inventor
Hiroyuki Tao
浩之 田尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10631399A priority Critical patent/JP3880746B2/en
Publication of JP2000297611A publication Critical patent/JP2000297611A/en
Application granted granted Critical
Publication of JP3880746B2 publication Critical patent/JP3880746B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Abstract

PROBLEM TO BE SOLVED: To reduce thermal stress generated in a merge portion by allowing, via a second adjusting valve, a part of the steam in the middle step of a high- temperature heater on the upstream side of exhaust gas to merge into a steam pipe, which allows part of the steam at the outlet of a heater on the downstream side of the exhaust gas to merge into the high-temperature heater outlet on the upstream side of the exhaust gas. SOLUTION: A part of the steam extracted from the middle step of a high- pressure secondary heater 10 is merged into a high-pressure secondary heater bypass pipe 27 via a high-pressure secondary heater middle step communication pipe 30 and high-pressure secondary heater middle step flow rate adjusting vale 31, so as to adjust the steam temperature inside the high-pressure secondary heater bypass pipe 27. In this way, by merging steam into the high-pressure secondary heater bypass pipe 27 by means of the high-pressure secondary heater middle step communication pipe 30 so as to adjust the steam temperature inside the bypass pipe 27, the steam temperature difference is decreased. Therefore, thermal stress and thermal shock in the merge portion pipe can be relaxed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はガスタービンと蒸気
タービンの組み合わせによるコンバインドサイクル発電
プラントの排ガスの熱を回収する排熱回収装置およびそ
の運転方法に係り、好適な蒸気性状および温度の蒸気を
蒸気タービン駆動用蒸気及びガスタービン冷却用蒸気と
して供給し得るような排熱回収装置およびその運転方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust heat recovery apparatus for recovering heat of exhaust gas of a combined cycle power plant using a combination of a gas turbine and a steam turbine and a method of operating the same. The present invention relates to an exhaust heat recovery device that can be supplied as steam for driving a turbine and steam for cooling a gas turbine, and an operation method thereof.

【0002】[0002]

【従来の技術】ガスタービンと蒸気タービンを組み合わ
せたコンバインドサイクル発電プラントは、ガスタービ
ンの高温部の材料と冷却技術の向上によりガスタービン
の入口温度を向上させることができるため、近年発電設
備の主流となりつつある。コンバインドサイクル発電の
高効率化の一環として、ガスタービンの高温部、特に翼
の冷却媒体として蒸気を使用することが検討されてお
り、技術的には特開平5-163960号公報、特願平9-019528
号などに記載されている。ガスタービンの入口ガス温度
は現在でも1300℃に達しており、今後1500℃を超えるこ
とが予想されている。
2. Description of the Related Art In a combined cycle power plant combining a gas turbine and a steam turbine, the inlet temperature of the gas turbine can be improved by improving the material of the high temperature portion of the gas turbine and the cooling technology. It is becoming. As part of increasing the efficiency of combined cycle power generation, the use of steam as a cooling medium for high-temperature parts of gas turbines, especially blades, has been studied. -019528
No. etc. The gas temperature at the inlet of the gas turbine is still reaching 1300 ° C, and is expected to exceed 1500 ° C in the future.

【0003】このような高温下では従来の空気を用いた
翼の冷却では冷却効果が不十分となることから、蒸気を
使用した翼冷却を用いたガスタービンが開発され、これ
を用いたガスタービン蒸気タービンコンバインドサイク
ル発電プラントが計画されている。前記文献にはこのよ
うな蒸気冷却ガスタービンを使用したコンバインドサイ
クル発電設備が記載されている。
At such a high temperature, the cooling effect of the conventional blade cooling using air is insufficient. Therefore, a gas turbine using blade cooling using steam has been developed, and a gas turbine using the same has been developed. A steam turbine combined cycle power plant is being planned. The above document describes a combined cycle power generation facility using such a steam-cooled gas turbine.

【0004】蒸気をガスタービンの冷却媒体として使用
する場合に問題となることは、冷却用の蒸気温度と蒸気
性状である。高温のガスタービンの翼の中を流れること
と、非常に微細に形成された流路を流れることから、た
とえ微小な蒸気中の不純物でも高温下で翼内面の微細流
路への不純物の付着を引き起こす可能性があり、一度不
純物が付着すると複雑な流路形状のため、翼の冷却不全
を引き起こし翼の損傷につながる可能性がある。このた
め、ガスタービンの翼冷却用の蒸気は高い清浄度が要求
されることから、従来給水を蒸気中にスプレーして行っ
ていた蒸気温度制御が使用できず、過熱器を分割して一
部過熱器をバイパスする事によって蒸気温度を制御する
方式がとられていた。以下、図4を用いて従来技術のガ
スタービン蒸気タービンコンバインドサイクル発電設備
の概要を説明する。
[0004] When steam is used as a cooling medium for a gas turbine, what is problematic is the steam temperature and steam properties for cooling. Since the gas flows through the blades of a high-temperature gas turbine and flows through extremely fine channels, it is possible to prevent the impurities in the minute steam from adhering to the fine channels on the inner surface of the blade at high temperatures. Once the impurities are attached, it may cause blade cooling failure due to the complicated channel shape, which may lead to blade damage. For this reason, steam for cooling the blades of the gas turbine requires a high degree of cleanliness.Steam temperature control, which was conventionally performed by spraying feedwater into steam, cannot be used. A method of controlling the steam temperature by bypassing the superheater has been adopted. Hereinafter, an outline of a conventional gas turbine steam turbine combined cycle power generation facility will be described with reference to FIG.

【0005】図4において、大気から圧縮機1に吸い込
まれた空気は圧縮機1で圧縮された後、燃焼器で燃料と
ともに燃焼し高温のガスとなってガスタービン2に流入
する。ガスタービンを出たガスは 600℃程度の温度のガ
スとなって排熱回収ボイラ8に流入する。排熱回収ボイ
ラ8で熱吸収され、温度の低下したガスは 100℃程度と
なって排熱回収ボイラ8から大気へ流出する。
[0005] In FIG. 4, air taken into the compressor 1 from the atmosphere is compressed by the compressor 1, then burns together with fuel in a combustor, flows into a gas turbine 2 as high-temperature gas. The gas leaving the gas turbine becomes a gas having a temperature of about 600 ° C. and flows into the exhaust heat recovery boiler 8. The gas that has been absorbed by the heat recovery steam generator 8 and has dropped in temperature becomes about 100 ° C. and flows out of the heat recovery steam generator 8 into the atmosphere.

【0006】一方、水は復水器7から低圧給水ポンプ41
によって排熱回収ボイラ8に給水される。まず、低圧節
炭器21に給水され、ここで温度が上昇した後、一部の給
水は低圧ドラム24に給水され、蒸発後、低圧飽和蒸気管
45から低圧過熱器17を通った後、低圧過熱器出口連絡管
46によって低圧蒸気タービン6へ供給される。
On the other hand, water is supplied from the condenser 7 to the low-pressure feed pump 41.
Thus, water is supplied to the exhaust heat recovery boiler 8. First, water is supplied to the low-pressure economizer 21. After the temperature rises, part of the water is supplied to the low-pressure drum 24, and after evaporation, the low-pressure saturated steam pipe
After passing through the low-pressure superheater 17 from 45, the low-pressure superheater outlet connecting pipe
It is supplied to the low-pressure steam turbine 6 by 46.

【0007】また、他の給水は中圧給水ポンプ43、高圧
給水ポンプ44でそれぞれ圧力を高められた後、中圧ドラ
ム23、高圧ドラム22に給水される。中圧ドラム23に給水
された給水は中圧蒸発器18で蒸気となった後、中圧飽和
蒸気管36を経て中圧過熱器15を通った後、低温再熱蒸気
管34で低温再熱蒸気と混合された後、ガスタービンの翼
冷却蒸気としてガスタービン冷却蒸気管38からガスター
ビン蒸気冷却管路39に供給され、ガスタービンの翼等を
冷却した後、再熱器12で再熱され高温の蒸気となって高
温再熱蒸気管40に合流し、中圧蒸気タービン5に流れ込
む。
The other water is supplied to the medium pressure drum 23 and the high pressure drum 22 after the pressure is increased by the medium pressure water supply pump 43 and the high pressure water supply pump 44, respectively. The feedwater supplied to the medium-pressure drum 23 becomes steam in the medium-pressure evaporator 18, passes through the medium-pressure superheater 15 through the medium-pressure saturated steam pipe 36, and then is reheated in the low-temperature reheat steam pipe 34. After being mixed with the steam, it is supplied as gas turbine blade cooling steam from a gas turbine cooling steam pipe 38 to a gas turbine steam cooling line 39, and after cooling the gas turbine blades and the like, is reheated by a reheater 12. It becomes high-temperature steam and joins the high-temperature reheat steam pipe 40 and flows into the medium-pressure steam turbine 5.

【0008】さらに、高圧蒸気ドラム22に給水された給
水は、高圧蒸発器13,14で蒸発した後、高圧飽和蒸気管
25より高圧1次過熱器11に流入する。これは高圧1次過
熱器で過熱された後、蒸気は高圧2次過熱器10に流れ込
む。また一部の蒸気は高圧2次過熱器10をバイパスする
高圧2次過熱器バイパス管27、高圧2次過熱器バイパス
流量調節弁28を介して高圧2次過熱器出口連絡管29に合
流し、高圧2次過熱器10出口の蒸気温度を低下さた後、
高圧3次過熱器入口連絡管32から高圧3次過熱器9に流
入し、蒸気タービン入口蒸気として 540℃の蒸気となっ
て高圧蒸気タービン4に供給される。高圧蒸気タービン
4で膨張した蒸気は低温再熱管34に流入する。
Further, the water supplied to the high-pressure steam drum 22 is evaporated in the high-pressure evaporators 13 and 14, and then the high-pressure saturated steam
It flows into the high pressure primary superheater 11 from 25. After being superheated by the high-pressure primary superheater, the steam flows into the high-pressure secondary superheater 10. Some of the steam joins the high-pressure secondary superheater outlet connecting pipe 29 through the high-pressure secondary superheater bypass pipe 27 that bypasses the high-pressure secondary superheater 10 and the high-pressure secondary superheater bypass flow control valve 28, After lowering the steam temperature at the outlet of the high-pressure secondary superheater 10,
The steam flows into the high-pressure tertiary superheater 9 from the high-pressure tertiary superheater inlet connection pipe 32 and is supplied to the high-pressure steam turbine 4 as 540 ° C. steam as steam turbine inlet steam. The steam expanded by the high-pressure steam turbine 4 flows into the low-temperature reheat pipe 34.

【0009】一部の低温再熱蒸気は中圧蒸気とともにガ
スタービン冷却用蒸気としてガスタービン冷却蒸気管38
からガスタービン蒸気冷却管路39に流入する。また、一
部の蒸気は再熱器12によって温度を上昇して高温再熱蒸
気となって高温再熱蒸気管40から中圧蒸気タービン5に
流入する。最終的に蒸気タービンで膨張し仕事をした蒸
気は復水器7によって復水となり、再びサイクルに供給
される。
A part of the low-temperature reheated steam is supplied to the gas turbine cooling steam pipe 38 together with the medium-pressure steam as steam for cooling the gas turbine.
From the gas turbine steam cooling pipe 39. Further, a part of the steam is raised in temperature by the reheater 12, becomes high-temperature reheat steam, and flows into the medium-pressure steam turbine 5 from the high-temperature reheat steam pipe 40. Eventually, the steam expanded and worked by the steam turbine is condensed by the condenser 7 and supplied to the cycle again.

【0010】[0010]

【発明が解決しようとする課題】このような構成のガス
タービン蒸気タービンコンバインドサイクル発電プラン
トにおいては、高圧2次過熱器バイパス管27と高圧2次
過熱器出口連絡管29の蒸気合流部においては、両者の蒸
気温度差が最大で約 180℃〜 190℃となるため、配管合
流部で非常に大きな熱応力,熱衝撃が生じるという問題
がある。
In the gas turbine / steam turbine combined cycle power plant having the above-described structure, the high-pressure secondary superheater bypass pipe 27 and the high-pressure secondary superheater outlet connecting pipe 29 have a steam converging section. Since the steam temperature difference between the two is about 180 ° C to 190 ° C at the maximum, there is a problem that very large thermal stress and thermal shock occur at the junction of the pipes.

【0011】また、高圧2次過熱器バイパス管27を通過
する蒸気流量は、設計計画点(定格負荷)ではバイパス
蒸気が不要であるのに対し、部分負荷時にはバイパス蒸
気が必要となるというように、運転状態に左右されるた
め、運転状態が変わり、バイパス管内の蒸気流量が急激
に変化した場合、短時間で大きな熱応力,熱衝撃が配管
合流部に生じるという問題がある。
The steam flow rate passing through the high-pressure secondary superheater bypass pipe 27 is such that bypass steam is not required at the design planning point (rated load), but is required at partial load. Since the operating condition changes depending on the operating condition, when the operating condition changes and the steam flow rate in the bypass pipe changes rapidly, there is a problem that a large thermal stress and thermal shock are generated at the pipe junction in a short time.

【0012】これは図5に示すようにガスタービンの特
性として部分負荷においてガス温度が高温になること、
および蒸気流量が少なくなることによって伝熱面が余
り、過熱器出口蒸気温度が高温となることが重なり、高
圧3次過熱器出口蒸気温度を制御するために2次節炭器
のバイパスによる蒸気冷却が多くなることによってさら
に高圧2次過熱器出口蒸気温度が上昇する事による。
As shown in FIG. 5, the characteristic of the gas turbine is that the gas temperature becomes high at a partial load,
In addition, since the heat transfer surface becomes excessive due to the decrease in the steam flow rate and the superheater outlet steam temperature becomes high, the steam cooling by the bypass of the secondary economizer is controlled to control the high pressure tertiary superheater outlet steam temperature. This is because the steam temperature at the outlet of the high-pressure secondary superheater further increases as the amount increases.

【0013】本発明は以上のような従来技術の問題を解
決するためになされたもので、高圧過熱器のバイパス管
と、前記高圧過熱器よりも排ガス上流側に設置された高
圧過熱器の出口連絡管の蒸気温度差によりその合流部に
発生する熱応力の低減を図った排熱回収装置およびその
運転方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art, and includes a bypass pipe of a high-pressure superheater and an outlet of a high-pressure superheater installed on the exhaust gas upstream side of the high-pressure superheater. An object of the present invention is to provide an exhaust heat recovery device that reduces thermal stress generated at a junction thereof due to a difference in steam temperature of a communication pipe, and an operation method thereof.

【0014】[0014]

【課題を解決するための手段】本発明の請求項1は、ガ
スタービンと蒸気タービンを備えたコンバインドサイク
ル発電プラントの排ガスの熱を回収する排熱回収ボイラ
内に蒸発器と過熱器を有し、蒸発器の排ガス上流側、蒸
発器の中間または蒸発器の排ガス下流側に配設された過
熱器の一部出口蒸気を、排ガス上流側に配設された高温
過熱器出口蒸気と第1の調節弁を介して混合させること
によって、過熱器出口蒸気温度の調節を行う排熱回収装
置において、排ガス下流側過熱器出口蒸気の一部を排ガ
ス上流側高温過熱器出口へ合流させる蒸気配管へ、排ガ
ス上流側高温過熱器中段における蒸気の一部を第2の調
節弁を介して合流させるようにしたことを特徴とする。
また本発明の請求項2は、第1の調節弁または第2の調
節弁の少なくともいずれか一方をその所定の開度以上で
運転するようにしたことを特徴とする。
According to a first aspect of the present invention, an evaporator and a superheater are provided in an exhaust heat recovery boiler for recovering heat of exhaust gas from a combined cycle power plant having a gas turbine and a steam turbine. The outlet steam of the superheater disposed on the exhaust gas upstream side of the evaporator, in the middle of the evaporator or on the exhaust gas downstream side of the evaporator, with the high-temperature superheater outlet steam disposed on the exhaust gas upstream side and the first steam. In the exhaust heat recovery device that adjusts the superheater outlet steam temperature by mixing through the control valve, to a steam pipe that joins a part of the exhaust gas downstream side superheater outlet steam to the exhaust gas upstream side high temperature superheater outlet, A part of the steam in the middle stage of the exhaust gas upstream-side high-temperature superheater is combined via the second control valve.
A second aspect of the present invention is characterized in that at least one of the first control valve and the second control valve is operated at a predetermined opening degree or more.

【0015】[0015]

【発明の実施の形態】本発明の実施の形態を図1,図
2,図3を参照して説明する。なお、図中図4と同一部
分には同一符号をつけて、説明は省略する。図1におい
て、高圧1次過熱器11は高圧蒸発器(#1)13と高圧蒸
発器(#2)14の間に配設されている。高圧1次過熱器
11を出た蒸気は、高圧1次過熱器出口連絡管26と高圧2
次過熱器10を介して高圧2次過熱器出口連絡管29へ向か
う系統と、高圧2次過熱器バイパス管27と高圧2次過熱
器バイパス流量調節弁28を介して高圧2次過熱器出口連
絡管29へ向かう系統に分岐された後、高圧2次過熱器出
口連絡管29で合流し、高圧3次過熱器9の入口の蒸気温
度を調節し得るようになっている。さらに、高圧2次過
熱器バイパス管27には、高圧2次過熱器10の中段から抽
出した蒸気の一部を、高圧2次過熱器中段連絡管30と高
圧2次過熱器中段流量調節弁31を介して合流させること
によって、高圧2次過熱器バイパス管内蒸気温度を調節
し得るようになっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. In the figure, the same parts as those in FIG. 4 are denoted by the same reference numerals, and description thereof will be omitted. In FIG. 1, a high-pressure primary superheater 11 is disposed between a high-pressure evaporator (# 1) 13 and a high-pressure evaporator (# 2) 14. High pressure primary superheater
The steam leaving 11 is connected to the high pressure primary superheater outlet connecting pipe 26 and the high pressure 2 superheater.
The system which goes to the high pressure secondary superheater outlet communication pipe 29 via the secondary superheater 10 and the high pressure secondary superheater outlet communication via the high pressure secondary superheater bypass pipe 27 and the high pressure secondary superheater bypass flow rate control valve 28 After branching into a system leading to the pipe 29, they join at a high pressure secondary superheater outlet connecting pipe 29 so that the steam temperature at the inlet of the high pressure tertiary superheater 9 can be adjusted. Further, a part of the steam extracted from the middle stage of the high-pressure secondary superheater 10 is supplied to the high-pressure secondary superheater bypass pipe 27, and the high-pressure secondary superheater middle-stage communication pipe 30 and the high-pressure secondary superheater middle-stage flow control valve 31. To adjust the steam temperature in the bypass pipe of the high-pressure secondary superheater.

【0016】図2に示す通り、高圧2次過熱器中段連絡
管30により高圧2次過熱器バイパス管27へ蒸気を合流さ
せ、バイパス管内の蒸気温度を調節することによって、
従来の系統においては蒸気合流部で最大約 180℃〜 190
℃であった蒸気温度差を小さくすることができるため、
合流部配管に生じる熱応力,熱衝撃を緩和することがで
きる。
As shown in FIG. 2, the steam is joined to the high-pressure secondary superheater bypass pipe 27 by the high-pressure secondary superheater middle connecting pipe 30, and the steam temperature in the bypass pipe is adjusted.
In conventional systems, the maximum temperature is about 180 ° C to 190 ° C at the steam junction.
The steam temperature difference, which was ℃, can be reduced,
Thermal stress and thermal shock generated in the junction pipe can be reduced.

【0017】また図3に示す通り、高圧2次過熱器バイ
パス流量調節弁28を常に一定開度以上で運転すること
で、弁を閉から開とした時の配管合流部での急激な温度
変化を抑え、図中「本発明による作用1」に示すよう
に、従来のものに比べ熱応力,熱衝撃を緩和することが
できる。
As shown in FIG. 3, the high-pressure secondary superheater bypass flow control valve 28 is always operated at a certain opening degree or more, so that a rapid temperature change at the pipe junction when the valve is closed to open. , And as shown in "Function 1 according to the present invention" in the figure, thermal stress and thermal shock can be reduced as compared with the conventional one.

【0018】また、高圧2次過熱器中段流量調節弁31を
常に一定開度以上で運転することで、調節弁を閉から開
とした時の配管合流部での急激な温度変化を抑え、図中
「本発明による作用2」に示すように熱応力,熱衝撃を
さらに緩和する事ができる。
Also, by constantly operating the high-pressure secondary superheater middle stage flow control valve 31 at a fixed opening or more, a sudden temperature change at the pipe junction when the control valve is closed to open can be suppressed. As shown in “Function 2 according to the present invention”, thermal stress and thermal shock can be further reduced.

【0019】[0019]

【発明の効果】本発明の排熱回収装置およびその運転方
法によれば、高圧過熱器出口における各合流蒸気の温度
差を小さくする事ができ、配管合流部に発生する熱応力
を小さくする事ができる。そのため、配管材料を高級化
しなくてよい、熱応力が緩和され寿命が延びるなどの効
果がある。また、合流部形状についても、熱応力が低減
される事で選択幅が広がり、熱応力低減のための特殊な
合流部形状を採用する必要がなくなるという効果が期待
できる。
According to the exhaust heat recovery apparatus and the operation method of the present invention, it is possible to reduce the temperature difference between the combined steams at the outlet of the high-pressure superheater and to reduce the thermal stress generated at the pipe junction. Can be. Therefore, there is an effect that it is not necessary to upgrade the piping material, thermal stress is relaxed, and the life is extended. In addition, with respect to the shape of the junction, the reduction of the thermal stress broadens the selection range, and it can be expected that there is no need to adopt a special shape of the junction for reducing the thermal stress.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の排熱回収装置を備えたコ
ンバインドサイクル発電プラントの図。
FIG. 1 is a diagram of a combined cycle power plant including an exhaust heat recovery device according to an embodiment of the present invention.

【図2】本発明の実施の形態の排熱回収装置およびその
運転方法の作用を説明する図。
FIG. 2 is a diagram illustrating the operation of the exhaust heat recovery device and the operation method thereof according to the embodiment of the present invention.

【図3】本発明の実施の形態の排熱回収装置およびその
運転方法の作用を説明する図。
FIG. 3 is a diagram illustrating the operation of the exhaust heat recovery device and the operation method thereof according to the embodiment of the present invention.

【図4】従来の排熱回収装置を備えたコンバインドサイ
クル発電プラントの図。
FIG. 4 is a diagram of a combined cycle power plant equipped with a conventional exhaust heat recovery device.

【図5】1次,2次過熱器の出口温度とバイパス流量比
を示す説明図。
FIG. 5 is an explanatory diagram showing outlet temperatures of primary and secondary superheaters and a bypass flow rate ratio.

【符号の説明】[Explanation of symbols]

1…圧縮機、2…ガスタービン、3…発電機、4…高圧
蒸気タービン、5…中圧蒸気タービン、6…低圧蒸気タ
ービン、7…復水器、8…排熱回収ボイラ、9…高圧3
次過熱器、10…高圧2次過熱器、11…高圧1次過熱器、
12…再熱器、13…高圧蒸発器(#1)、14…高圧蒸発器
(#2)、15…中圧過熱器、16高圧節炭器、17…低圧過
熱器、18…中圧蒸発器、19…中圧節炭器、20…低圧蒸発
器、21…低圧節炭器、22…高圧ドラム、23…中圧ドラ
ム、24…低圧ドラム、25…高圧飽和蒸気管、26…高圧1
次過熱器出口連絡管、27…高圧2次過熱器バイパス管、
28…高圧2次過熱器バイパス流量調節弁、29…高圧2次
過熱器出口連絡管、30…高圧2次過熱器中段連絡管、31
…高圧2次過熱器中段流量調節弁、32…高圧3次過熱器
入口連絡管、33…高圧主蒸気管、34…低温再熱蒸気管、
35…再熱器入口連絡管、36…中圧飽和蒸気管、37…中圧
過熱器出口連絡管、38…ガスタービン冷却蒸気管、39…
ガスタービン蒸気冷却管路、40…高温再熱蒸気管、41…
低圧給水ポンプ、42…低圧給水管、43…中圧給水ポン
プ、44…高圧給水ポンプ、45…低圧飽和蒸気管、46…低
圧過熱器出口連絡管。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Gas turbine, 3 ... Generator, 4 ... High pressure steam turbine, 5 ... Medium pressure steam turbine, 6 ... Low pressure steam turbine, 7 ... Condenser, 8 ... Exhaust heat recovery boiler, 9 ... High pressure 3
Secondary superheater, 10 high-pressure secondary superheater, 11 high-pressure primary superheater,
12 ... reheater, 13 ... high pressure evaporator (# 1), 14 ... high pressure evaporator (# 2), 15 ... medium pressure superheater, 16 high pressure economizer, 17 ... low pressure superheater, 18 ... medium pressure evaporation Vessel, 19: medium pressure economizer, 20: low pressure evaporator, 21: low pressure economizer, 22: high pressure drum, 23: medium pressure drum, 24: low pressure drum, 25: high pressure saturated steam pipe, 26: high pressure 1
Secondary superheater outlet connection pipe, 27 ... High pressure secondary superheater bypass pipe,
28 high-pressure secondary superheater bypass flow control valve, 29 high-pressure secondary superheater outlet connection pipe, 30 high-pressure secondary superheater middle connection pipe, 31
... High pressure secondary superheater middle stage flow control valve, 32 ... High pressure tertiary superheater inlet connection pipe, 33 ... High pressure main steam pipe, 34 ... Low temperature reheat steam pipe,
35… Reheater inlet connection pipe, 36… Medium pressure saturated steam pipe, 37… Medium pressure superheater outlet connection pipe, 38… Gas turbine cooling steam pipe, 39…
Gas turbine steam cooling line, 40… High temperature reheat steam line, 41…
Low pressure water supply pump, 42… Low pressure water supply pipe, 43… Medium pressure water supply pump, 44… High pressure water supply pump, 45… Low pressure saturated steam pipe, 46… Low pressure superheater outlet connection pipe.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ガスタービンと蒸気タービンを備えたコ
ンバインドサイクル発電プラントの排ガスの熱を回収す
る排熱回収ボイラ内に蒸発器と過熱器を有し、蒸発器の
排ガス上流側、蒸発器の中間または蒸発器の排ガス下流
側に配設された過熱器の一部出口蒸気を、排ガス上流側
に配設された高温過熱器出口蒸気と第1の調節弁を介し
て混合させることによって、過熱器出口蒸気温度の調節
を行う排熱回収装置において、排ガス下流側過熱器出口
蒸気の一部を排ガス上流側高温過熱器出口へ合流させる
蒸気配管へ、排ガス上流側高温過熱器中段における蒸気
の一部を第2の調節弁を介して合流させるようにしたこ
とを特徴とする排熱回収装置。
1. An exhaust heat recovery boiler for recovering heat of exhaust gas of a combined cycle power plant equipped with a gas turbine and a steam turbine has an evaporator and a superheater. Alternatively, the superheater is formed by mixing a part of the outlet steam of the superheater disposed on the exhaust gas downstream side of the evaporator with the high-temperature superheater outlet vapor disposed on the exhaust gas upstream side via the first control valve. In the exhaust heat recovery device that adjusts the outlet steam temperature, part of the steam in the middle stage of the exhaust gas upstream high-temperature superheater to the steam pipe that joins part of the exhaust gas downstream superheater outlet steam to the exhaust gas upstream high-temperature superheater outlet Are combined via a second control valve.
【請求項2】 第1の調節弁または第2の調節弁の少な
くともいずれか一方をその所定の開度以上で運転するよ
うにしたことを特徴とする請求項1記載の排熱回収装置
の運転方法。
2. The operation of the exhaust heat recovery apparatus according to claim 1, wherein at least one of the first control valve and the second control valve is operated at a predetermined opening degree or more. Method.
JP10631399A 1999-04-14 1999-04-14 Waste heat recovery device and operation method thereof Expired - Fee Related JP3880746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10631399A JP3880746B2 (en) 1999-04-14 1999-04-14 Waste heat recovery device and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10631399A JP3880746B2 (en) 1999-04-14 1999-04-14 Waste heat recovery device and operation method thereof

Publications (2)

Publication Number Publication Date
JP2000297611A true JP2000297611A (en) 2000-10-24
JP3880746B2 JP3880746B2 (en) 2007-02-14

Family

ID=14430505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10631399A Expired - Fee Related JP3880746B2 (en) 1999-04-14 1999-04-14 Waste heat recovery device and operation method thereof

Country Status (1)

Country Link
JP (1) JP3880746B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002168410A (en) * 2000-12-05 2002-06-14 Babcock Hitachi Kk Waste heat recovery boiler
JP2020029977A (en) * 2018-08-21 2020-02-27 三菱日立パワーシステムズ株式会社 Temporary piping system for blowing-out of boiler and method for blowing out boiler

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002168410A (en) * 2000-12-05 2002-06-14 Babcock Hitachi Kk Waste heat recovery boiler
JP2020029977A (en) * 2018-08-21 2020-02-27 三菱日立パワーシステムズ株式会社 Temporary piping system for blowing-out of boiler and method for blowing out boiler
JP7066572B2 (en) 2018-08-21 2022-05-13 三菱重工業株式会社 Temporary piping system for boiler blow-out and boiler blow-out method

Also Published As

Publication number Publication date
JP3880746B2 (en) 2007-02-14

Similar Documents

Publication Publication Date Title
US6393822B2 (en) Cooling steam supply method of a combined cycle power generation plant
US6178734B1 (en) Combined cycle power generation plant and operating method thereof
JP4395254B2 (en) Combined cycle gas turbine
US20100170218A1 (en) Method for expanding compressor discharge bleed air
JPH06264763A (en) Combined plant system
JP2009092372A (en) Supercritical steam combined cycle and its method
JPH094417A (en) Composite cycle-system
CA2179867A1 (en) Method and apparatus of conversion of a reheat steam turbine power plant to a non-reheat combined cycle power plant
JP2010242673A (en) Steam turbine system and method for operating the same
JP3926048B2 (en) Combined cycle power plant
JPH074210A (en) Steam-cooled gas turbine combined plant
JP3880746B2 (en) Waste heat recovery device and operation method thereof
JP7066572B2 (en) Temporary piping system for boiler blow-out and boiler blow-out method
JP2915885B1 (en) Gas turbine combined cycle system
JP2004245184A (en) Reheat steam turbine plant and starting method for the plant
JP2005344528A (en) Combined cycle power generating plant and method for starting the same
JP2002213208A (en) Combined cycle power generating equipment and operating method thereof
JP5475315B2 (en) Combined cycle power generation system
JP3790146B2 (en) Combined cycle power plant and operation method thereof
JP3722928B2 (en) Waste heat recovery boiler unit
JPH05163961A (en) Combined cycle power generation plant
JP2000130107A (en) Combined cycle power plant with gas turbine
JP2004353604A (en) Steam turbine
JP2000045712A (en) Combined cycle generating plant
JP3524731B2 (en) Recovery steam-cooled gas turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees