JP2004353604A - Steam turbine - Google Patents

Steam turbine Download PDF

Info

Publication number
JP2004353604A
JP2004353604A JP2003154362A JP2003154362A JP2004353604A JP 2004353604 A JP2004353604 A JP 2004353604A JP 2003154362 A JP2003154362 A JP 2003154362A JP 2003154362 A JP2003154362 A JP 2003154362A JP 2004353604 A JP2004353604 A JP 2004353604A
Authority
JP
Japan
Prior art keywords
turbine
pressure turbine
cooling medium
supply system
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003154362A
Other languages
Japanese (ja)
Other versions
JP4220309B2 (en
Inventor
Kohei Nagane
浩平 永根
Katsuya Yamashita
勝也 山下
Yoshiki Niizeki
良樹 新関
Hiroyuki Kawagishi
裕之 川岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003154362A priority Critical patent/JP4220309B2/en
Publication of JP2004353604A publication Critical patent/JP2004353604A/en
Application granted granted Critical
Publication of JP4220309B2 publication Critical patent/JP4220309B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steam turbine in which turbine components of a low-pressure turbine can secure a high level of strength guarantee coping with ultrahigh temperature main steam or reheated steam. <P>SOLUTION: The steam turbine is configured by combining a condensation system 2 and a water supply system 3 with a turbine system 1. A cooling medium supply system 27 for supplying cooling medium from the water supply system 3 is provided to a connecting part of a medium-pressure turbine 6 and a low-pressure turbine 7 in the turbine system 1. Control means 29, 30, 31a, 31b for controlling the cooling medium supplied to the connecting part are provided to the cooling medium supply system 27 when medium-pressure turbine exhaust supplied from the medium-pressure turbine 6 to the low-pressure turbine 7 is in a dry steam region. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、蒸気タービンに係り、特に高圧タービンや中圧タービンに供給される蒸気の高温化がなされても低圧タービンの構成部品に高い強度保証を維持させた蒸気タービンに関する。
【0002】
【従来の技術】
最近の蒸気タービンでは、プラント熱効率の向上の強化見直しの一環として主蒸気または再熱蒸気の高温化が検討されている。
【0003】
主蒸気または再熱蒸気の高温化は、ランキンサイクルの特性を巧みに利用するものであり、蒸気の温度を高くすればする程、プラントの出力および熱効率をより一層向上させることができるとされている。
【0004】
このため、蒸気タービンは、ひところの比較的低温、低圧の蒸気条件から主蒸気および再熱蒸気のそれぞれの温度を538℃/566℃または538℃/538℃の一段再熱にほぼ定着しつつある。
【0005】
しかし、最近のように、COやNOx等の汚染化合物による温暖化現象や環境破壊等が地球規模レベルでクローズアップされている今日、蒸気タービンの分野でも燃料の消費をより一層少なくさせて単機容量の増加とともにプラント熱効率を向上させる研究開発が進められており、その一つに高圧タービンに供給する主蒸気の温度を700℃以上にするか、あるいは中圧タービンに供給する再熱蒸気の温度を700℃以上とするかが提案されている。
【0006】
中圧タービンに温度700℃以上の再熱蒸気を供給する技術では、中圧タービンを第1中圧タービンと第2中圧タービンとに区分けし、区分けした第1中圧タービンをトップタービンとして配置し、第2中圧タービンをボトムタービンとして配置する従来のコンベンショナルな蒸気タービンに組み込んだものである(特許文献1参照)。
【0007】
第1中圧タービンをトップタービンとして配置した場合、試算によれば、プラント熱効率が50%以上であり、また、超高温の再熱蒸気を供給する割合には製造コストが比較的低コストであり、その成果が期待されている。
【0008】
【特許文献1】
特願2003−125672号公報
【0009】
【発明が解決しようとする課題】
従来、火力発電プラントでは、主蒸気温度または再熱蒸気温度が538℃〜566℃に対し、タービン構成部品、特にタービンロータ、タービンノズル、タービン動翼等の高温部品に改良された耐熱材を用いて高い強度を維持させていた。
【0010】
しかし、主蒸気または再熱蒸気の温度が700℃以上になると、改良された耐熱材では高い強度保証を維持させることが難しくなりつつある。
【0011】
また、高圧タービンにしても中圧タービンにしてもその入口圧力とその出口圧力との圧力比を変えずに、主蒸気または再熱蒸気の温度のみを超高温化させると、負荷(出力)変動運転如何によっては、低圧タービン出口側が湿り蒸気域になったり、乾き蒸気域になったり変動し、蒸気の状態変化を受けてタービン高温部品の強度に悪影響を与える等の問題があった。
【0012】
このため、蒸気タービンには、タービン構成部品の強度保証を高く維持できる新たな技術の実現化が求められており、その解決手段として蒸気による冷却の採用が進められている。
【0013】
しかし、蒸気冷却の採用と言えども、蒸気タービンにとって未開発の分野であり、試行錯誤を繰り返している。
【0014】
本発明は、このような事情に基づいてなされたものであり、超高温の主蒸気または再熱蒸気に対処して低圧タービンのタービン構成部品に高い強度保証を維持させる蒸気タービンを提供することを目的とする。
【0015】
【課題を解決するための手段】
本発明に係る蒸気タービンは、上述の目的を達成するために、請求項1に記載したように、タービン系に、復水系および給水系を組み合せた蒸気タービンにおいて、前記タービン系の中圧タービンと低圧タービンとの接続部分に、前記給水系からの冷却媒体を供給する冷却媒体供給系を設けるとともに、この冷却媒体供給系に、前記中圧タービンから前記低圧タービンに供給する中圧タービン排気が乾き蒸気域のとき、前記接続部分に供給される前記冷却媒体を制御する制御手段を備えたものである。
【0016】
また、本発明に係る蒸気タービンは、上述の目的を達成するために、請求項2に記載したように、タービン系に、復水系および給水系を組み合せた蒸気タービンにおいて、前記タービン系の中圧タービンと低圧タービンとの接続部分に、前記復水系からの冷却媒体を供給する冷却媒体供給系を設けるとともに、この冷却媒体供給系に、前記中圧タービンから前記低圧タービンに供給する中圧タービン排気が乾き蒸気域のとき、前記接続部分に供給される前記冷却媒体を制御する制御手段を備えたものである。
【0017】
また、本発明に係る蒸気タービンは、上述の目的を達成するために、請求項3に記載したように、冷却媒体供給系は、冷却媒体の取出し口を給水系の脱気器出口側に接続させる構成にしたものである。
【0018】
また、本発明に係る蒸気タービンは、上述の目的を達成するために、請求項4に記載したように、冷却媒体供給系は、冷却媒体の取出し口を給水系の第1給水ポンプ出口側に接続させる構成にしたものである。
【0019】
また、本発明に係る蒸気タービンは、上述の目的を達成するために、請求項5に記載したように、冷却媒体供給系は、冷却媒体の取出し口を給水系の第2給水ポンプ出口側に接続させる構成にしたものである。
【0020】
また、本発明に係る蒸気タービンは、上述の目的を達成するために、請求項6に記載したように、冷却媒体供給系は、冷却媒体の取出し口を給水系の第4高圧給水ポンプ出口側に接続させる構成にしたものである。
【0021】
また、本発明に係る蒸気タービンは、上述の目的を達成するために、請求項7に記載したように、冷却媒体供給系は、冷却媒体の取出し口を復水系の復水ポンプ出口側に接続させる構成にしたものである。
【0022】
また、本発明に係る蒸気タービンは、上述の目的を達成するために、請求項8に記載したように、冷却媒体供給系は、スプレイノズルを備えたものである。
【0023】
また、本発明に係る蒸気タービンは、上述の目的を達成するために、請求項9に記載したように、中圧タービンと低圧タービンとの接続部分は、連絡管であることを特徴とするものである。
【0024】
また、本発明に係る蒸気タービンは、上述の目的を達成するために、請求項10に記載したように、中圧タービンと低圧タービンとの接続部分は、前記中圧タービンの出口であることを特徴とするものである。
【0025】
また、本発明に係る蒸気タービンは、上述の目的を達成するために、請求項11に記載したように、中圧タービンと低圧タービンとの接続部分は、前記中圧タービンの最終段落の出口であることを特徴とするものである。
【0026】
また、本発明に係る蒸気タービンは、上述の目的を達成するために、請求項12に記載したように、制御手段は、タービン系の低圧タービンの入口側と出口側とのそれぞれに設けた検出器からの信号が予め定められた設定値を超えたとき、その偏差に基づいて、冷却媒体供給系に設けた調整弁に弁開閉演算信号を与え、連絡管に冷却媒体の供給指令を出す演算制御部を備えたものである。
【0027】
また、本発明に係る蒸気タービンは、上述の目的を達成するために、請求項13に記載したように、検出器は、タービン系の低圧タービンに流入する中圧タービン排気および前記低圧タービンから出る低圧タービン排気の圧力、温度、湿り度のうち、いずれか一種を検出するものである。
【0028】
【発明の実施の形態】
以下、本発明に係る蒸気タービンの実施形態を図面および図面に付した符号を引用して説明する。
【0029】
本実施形態に係る蒸気タービンは、タービン系1に復水系2と給水系3とを組み合せた構成になっている。
【0030】
タービン系1は、ボイラ4と、互いを軸結合させた高圧タービン5、中圧タービン6、低圧タービン7、発電機8を備え、ボイラ4から発生した主蒸気(駆動蒸気)を主蒸気管9を介して高圧タービン5に供給し、ここで膨張仕事をさせて動力を発生させ、膨張仕事を終えた高圧タービン排気を低温再熱管10を介してボイラ4内の再熱器11に供給し、再熱器11で熱エネルギを失った主蒸気を再熱させ、その再熱蒸気を高温再熱管12を介して中圧タービン6に供給している。
【0031】
また、タービン系1は、中圧タービン6に供給された再熱蒸気に膨張仕事をさせて動力を発生させ、膨張仕事を終えた中圧タービン排気を、例えばクロスオーバ管等の連絡管13を介して低圧タービン7に供給し、ここでも膨張仕事をさせて動力を発生させ、その動力で発電機8を駆動し、この間、膨張仕事を終えた低圧タービン排気を復水系2に供給している。
【0032】
一方、復水系2は、復水の流れに沿って順に、復水器14、復水ポンプ15、第1低圧給水加熱器16、第2低圧給水加熱器17、第3低圧給水加熱器18、第4低圧給水加熱器19を備え、低圧タービン7からの低圧タービン排気を復水器14で凝縮して復水にし、その復水を復水ポンプ15で圧送させ、第1〜第4低圧給水加熱器16,17,18,19で低圧タービン7からの低圧タービン抽気を熱源として順次、予熱(再生)させている。
【0033】
また、給水系3は、給水の流れに沿って順に、脱気器20、第1給水ポンプ21、第2給水ポンプ22、第1高圧給水加熱器23、第2高圧給水加熱器24、第3高圧給水加熱器25、第4高圧給水加熱器26を備え、脱気器20で復水系2の第4低圧給水加熱器19から供給される復水を、中圧タービン6からの中圧タービン抽気を熱源として加熱脱気させて給水にし、その給水を第1給水ポンプ21および第2給水ポンプ22で昇圧させ、第1〜第4高圧給水加熱器23,24,25,26で中圧タービン6からの中圧タービン抽気、高圧タービン5からの高圧タービン抽気および低温再熱管10からの抽気を熱源として順次予熱(再生)させた後、ボイラ4に戻している。
【0034】
また、給水系3は、脱気器20の出口側から分岐し、中圧タービン6と低圧タービン7とを互いに接続させる、例えばクロスオーバ管等の連絡管13に接続する冷却水供給系27を備え、脱気器20で復水系2からの復水を加熱脱気させた給水を、冷却水供給系27からスプレイノズル28を介して連絡管13を流れる中圧タービン排気にスプレイさせる構成になっている。なお、冷却水供給系27は、連絡管13に限らず、中圧タービン6の出口または、中圧タービン6の最終段落の出口に接続してもよい。
【0035】
冷却水供給系27は、調整弁29、演算制御部30、低圧タービン7の入口側および出口側のそれぞれに設けた検出器31a,31bを備え、各検出器31a,31bで検出した中圧タービン排気および低圧タービン7で膨張仕事を終えた低圧タービン排気のそれぞれの圧力、温度、湿り度のうち、いずれか一種の検出信号を演算制御部30に送り、ここで予め定められた設定値を超えた(乾き蒸気域)とき、その偏差に基づいて弁開閉信号を演算し、その演算信号を調整弁29に与えて弁を開閉させ、中圧タービン排気が乾き蒸気域になっているとき、スプレイノズル28から給水をスプレイし、湿り蒸気域に変更させる構成になっている。
【0036】
図3は、縦軸に連絡管13に冷却水としての給水を供給する流量を示し、横軸に低圧タービン7の出口温度を示す冷却媒体供給線図である。この冷却媒体供給線図において、低圧タービン7の低圧タービン排気の温度が予め定められた温度Tを超えて低圧タービン排気が乾き蒸気域に入ったとき、冷却水供給系27のスプレイノズル28からの給水が連絡管13に供給され、連絡管13を流れる中圧タービン排気を乾き蒸気域から湿り蒸気域に変更させている。
【0037】
なお、本実施形態は、中圧タービン排気を乾き蒸気域から湿り蒸気域に変更させる際、給水または復水を冷却水として用いたが、給水または復水に代えて蒸気を用いてもよい。蒸気を用いる場合、図3に示すように、流量が多くなるが、蒸気に含まれる気泡の粒径を制御することがない点で有利である。
【0038】
また、給水または復水を冷却水として用いる場合、給水または復水中に、例えば、気泡等の比較的大きな粒径の気体が含まれていることがあるが、冷却水供給系27からスプレイノズル28を介して連絡管13に給水を供給する際、スプレイノズル28には、図2に示すように、気泡の粒径を斜線で示す気泡の粒径の大きさまで細く砕く機構を備えているので、気泡の破裂に伴って発生する壊食等の心配はない。
【0039】
このように、本実施形態は、給水系2の脱気器20の出口側から分岐し、中圧タービン6と低圧タービン7とを互いに接続させる連絡管13に接続して冷却水供給系27を設けるとともに、中圧タービン6の中圧タービン排気が乾き蒸気域になっているとき、冷却水供給系27の調整弁29を開閉制御させ、連絡管13に流れる中圧タービン排気に冷却水を供給して湿り蒸気域に変更させる演算制御部30を備えたので、高圧タービン5に供給する主蒸気または中圧タービン6に供給する再熱蒸気を超高温化させても乾き蒸気域のまま低圧タービン7に供給することがなく、低圧タービン7の構成部品の強度保証を高く維持させることができる。
【0040】
なお、本実施形態は、中圧タービン6の中圧タービン排気が乾き蒸気域のとき、湿り蒸気域に変更させる冷却水を給水系3の脱気器20の出口側から取り出しているが、この例に限らず、例えば、図4に示すように、復水系2の復水ポンプ15の出口側から分岐して冷却水供給系27を設けてもよく、あるいは、例えば、図5および図6に示すように、給水系3の第1給水ポンプ21の出口側、あるいは第2給水ポンプ22の出口側から分岐して冷却水供給系27を設けてもよく、さらに、図7に示すように、給水系30の第4高圧給水加熱器26の出口側から分岐して冷却水供給系27を設けてもよい。
【0041】
【発明の効果】
以上の説明のとおり、本発明に係る蒸気タービンは、給水系および復水系からのうち、いずれか一方からの冷却媒体を中圧タービンの最終段落出口、中圧タービンの出口および中圧タービンと低圧タービンとを互いに接続させる連絡管とのうち、いずれか一方に冷却媒体を供給する冷却媒体供給系を設けるとともに、中圧タービンの中圧タービン排気が乾き蒸気域になっているとき、冷却媒体供給系の調整弁を開閉制御させ、連絡管に流れる中圧タービン排気に冷却媒体を供給して湿り蒸気域に変更させる制御手段を備えたので、高圧タービンに供給する主蒸気または中圧タービンに供給する再熱蒸気を超高温化させても乾き蒸気域のまま低圧タービンに供給することがなく、低圧タービンの構成部品の強度保証を高く維持させることができる。
【図面の簡単な説明】
【図1】本発明に係る蒸気タービンの第1実施形態を示す概略系統図。
【図2】本発明に係る蒸気タービンにおいて、冷却媒体を中圧タービン排気に供給する場合、冷却媒体に含まれる気泡の粒径と流速との関係を示す線図。
【図3】本発明に係る蒸気タービンにおいて、中圧タービン排気に冷却媒体を供給する冷却媒体供給線図。
【図4】本発明に係る蒸気タービンの第2実施形態を示す概略系統図。
【図5】本発明に係る蒸気タービンの第3実施形態を示す概略系統図。
【図6】本発明に係る蒸気タービンの第4実施形態を示す概略系統図。
【図7】本発明に係る蒸気タービンの第5実施形態を示す概略系統図。
【符号の説明】
1 タービン系
2 復水系
3 給水系
4 ボイラ
5 高圧タービン
6 中圧タービン
7 低圧タービン
8 発電機
9 主蒸気管
10 低温再熱管
11 再熱器
12 高温再熱管
13 連絡管
14 復水器
15 復水ポンプ
16 第1低圧給水加熱器
17 第2低圧給水加熱器
18 第3低圧給水加熱器
19 第4低圧給水加熱器
20 脱気器
21 第1給水ポンプ
22 第2給水ポンプ
23 第1高圧給水加熱器
24 第2高圧給水加熱器
25 第3高圧給水加熱器
26 第4高圧給水加熱器
27 冷却水供給系
28 スプレイノズル
29 調整弁
30 演算制御部
31a,31b 検出器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a steam turbine, and more particularly to a steam turbine in which the components of a low-pressure turbine maintain high strength even when the temperature of steam supplied to a high-pressure turbine or an intermediate-pressure turbine is increased.
[0002]
[Prior art]
In recent steam turbines, raising the temperature of main steam or reheated steam is being studied as part of a strengthening review of improvements in plant thermal efficiency.
[0003]
Increasing the temperature of the main steam or reheated steam takes advantage of the characteristics of the Rankine cycle, and it is said that the higher the steam temperature, the more the output and thermal efficiency of the plant can be further improved. I have.
[0004]
For this reason, the steam turbine is almost establishing the respective temperatures of the main steam and the reheated steam at 538 ° C./566° C. or 538 ° C./538° C. due to the relatively low temperature and low pressure steam conditions. .
[0005]
However, recently, global warming phenomena and environmental destruction due to polluting compounds such as CO 2 and NOx have been highlighted on a global scale. Research and development to increase the plant thermal efficiency with the increase in capacity are being promoted. One of them is to increase the temperature of the main steam supplied to the high-pressure turbine to 700 ° C or higher, or the temperature of the reheated steam supplied to the medium-pressure turbine. Is set to 700 ° C. or higher.
[0006]
In the technology of supplying reheat steam at a temperature of 700 ° C. or higher to the intermediate pressure turbine, the intermediate pressure turbine is divided into a first intermediate pressure turbine and a second intermediate pressure turbine, and the divided first intermediate pressure turbine is arranged as a top turbine. Then, the second intermediate-pressure turbine is incorporated in a conventional conventional steam turbine in which the second intermediate-pressure turbine is disposed as a bottom turbine (see Patent Document 1).
[0007]
When the first intermediate-pressure turbine is arranged as the top turbine, according to trial calculations, the plant thermal efficiency is 50% or more, and the production cost is relatively low in proportion to the supply of ultra-high-temperature reheat steam. The results are expected.
[0008]
[Patent Document 1]
Japanese Patent Application No. 2003-125672
[Problems to be solved by the invention]
Conventionally, thermal power plants use improved heat-resistant materials for turbine components, especially high-temperature components such as turbine rotors, turbine nozzles, and turbine blades, while the main steam temperature or reheat steam temperature is 538 ° C. to 566 ° C. To maintain high strength.
[0010]
However, when the temperature of the main steam or the reheat steam exceeds 700 ° C., it is becoming difficult to maintain high strength guarantee with the improved heat-resistant material.
[0011]
In addition, if the temperature of the main steam or the reheat steam alone is raised to an ultra-high temperature without changing the pressure ratio between the inlet pressure and the outlet pressure in both the high-pressure turbine and the medium-pressure turbine, load (output) fluctuations Depending on the operation, there is a problem that the outlet side of the low-pressure turbine fluctuates between a wet steam area and a dry steam area, and changes in steam state adversely affect the strength of turbine high-temperature parts.
[0012]
For this reason, a steam turbine is required to realize a new technology capable of maintaining a high strength assurance of a turbine component, and adoption of cooling by steam is being promoted as a solution thereto.
[0013]
However, the use of steam cooling is an undeveloped field for steam turbines, and has been repeated through trial and error.
[0014]
The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a steam turbine that copes with ultra-high-temperature main steam or reheat steam and maintains a high strength guarantee for turbine components of a low-pressure turbine. Aim.
[0015]
[Means for Solving the Problems]
The steam turbine according to the present invention, in order to achieve the above-described object, as described in claim 1, in a steam turbine in which a condensing system and a water supply system are combined with a turbine system, wherein the turbine system is a medium-pressure turbine. A cooling medium supply system for supplying a cooling medium from the water supply system is provided at a connection portion with the low pressure turbine, and the medium pressure turbine exhaust supplied from the medium pressure turbine to the low pressure turbine is dried in the cooling medium supply system. In the case of a steam region, the device has a control means for controlling the cooling medium supplied to the connection portion.
[0016]
In order to achieve the above object, a steam turbine according to the present invention is a steam turbine in which a condensing system and a water supply system are combined with a turbine system. A cooling medium supply system for supplying a cooling medium from the condensing system is provided at a connection portion between the turbine and the low-pressure turbine, and a medium-pressure turbine exhaust system for supplying the medium from the medium-pressure turbine to the low-pressure turbine is provided in the cooling medium supply system. A control means for controlling the cooling medium supplied to the connection portion when the temperature is in a dry steam region.
[0017]
Further, in the steam turbine according to the present invention, in order to achieve the above object, as described in claim 3, the cooling medium supply system connects the cooling medium outlet to the deaerator outlet side of the water supply system. This is a configuration in which
[0018]
Further, in the steam turbine according to the present invention, in order to achieve the above-described object, as described in claim 4, the cooling medium supply system is configured such that the outlet of the cooling medium is provided on the outlet side of the first water supply pump of the water supply system. It is configured to be connected.
[0019]
Further, in the steam turbine according to the present invention, in order to achieve the above-described object, as described in claim 5, the cooling medium supply system is configured such that the outlet of the cooling medium is provided on the outlet side of the second water supply pump of the water supply system. It is configured to be connected.
[0020]
In the steam turbine according to the present invention, in order to achieve the above object, as described in claim 6, the cooling medium supply system is configured such that an outlet of the cooling medium is provided on the outlet side of the fourth high-pressure water pump of the water supply system. It is configured to be connected to.
[0021]
Further, in the steam turbine according to the present invention, in order to achieve the above object, as described in claim 7, the cooling medium supply system connects an outlet of the cooling medium to a condensate pump outlet side of the condensate system. This is a configuration in which
[0022]
Further, in the steam turbine according to the present invention, in order to achieve the above-described object, as described in claim 8, the cooling medium supply system includes a spray nozzle.
[0023]
Further, in the steam turbine according to the present invention, in order to achieve the above object, as described in claim 9, a connecting portion between the intermediate pressure turbine and the low pressure turbine is a connecting pipe. It is.
[0024]
Further, in the steam turbine according to the present invention, in order to achieve the above object, as described in claim 10, a connection portion between the intermediate pressure turbine and the low pressure turbine is an outlet of the intermediate pressure turbine. It is a feature.
[0025]
Further, in the steam turbine according to the present invention, in order to achieve the above object, as described in claim 11, a connection portion between the intermediate pressure turbine and the low pressure turbine is provided at an outlet of a final stage of the intermediate pressure turbine. It is characterized by having.
[0026]
Further, in the steam turbine according to the present invention, in order to achieve the above object, as set forth in claim 12, the control means includes detection means provided on each of the inlet side and the outlet side of the low pressure turbine of the turbine system. When the signal from the heater exceeds a predetermined set value, the valve opening / closing operation signal is supplied to the regulating valve provided in the cooling medium supply system based on the deviation, and the operation to supply a cooling medium supply command to the communication pipe is performed. It has a control unit.
[0027]
Further, in the steam turbine according to the present invention, in order to achieve the above object, as described in claim 13, the detector includes a medium-pressure turbine exhaust flowing into a low-pressure turbine of a turbine system and exiting from the low-pressure turbine. It detects any one of the pressure, temperature, and wetness of the low-pressure turbine exhaust.
[0028]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a steam turbine according to the present invention will be described with reference to the drawings and reference numerals attached to the drawings.
[0029]
The steam turbine according to the present embodiment has a configuration in which a condensing system 2 and a water supply system 3 are combined with a turbine system 1.
[0030]
The turbine system 1 includes a boiler 4, a high-pressure turbine 5, an intermediate-pressure turbine 6, a low-pressure turbine 7, and a generator 8 which are axially connected to each other, and supplies main steam (drive steam) generated from the boiler 4 to a main steam pipe 9. To the high-pressure turbine 5, where the expansion work is performed to generate power, and the high-pressure turbine exhaust that has completed the expansion work is supplied to the reheater 11 in the boiler 4 via the low-temperature reheat pipe 10. The reheater 11 reheats the main steam that has lost the heat energy, and supplies the reheated steam to the intermediate-pressure turbine 6 through the high-temperature reheat pipe 12.
[0031]
Further, the turbine system 1 causes the reheated steam supplied to the intermediate pressure turbine 6 to perform expansion work to generate power, and the intermediate pressure turbine exhaust having completed the expansion work is connected to a communication pipe 13 such as a crossover pipe. The power is supplied to the low-pressure turbine 7 through the expansion work to generate power, and the power is used to drive the generator 8. During this time, the low-pressure turbine exhaust that has completed the expansion work is supplied to the condensing system 2. .
[0032]
On the other hand, the condensing system 2 includes a condenser 14, a condensing pump 15, a first low-pressure feed water heater 16, a second low-pressure feed water heater 17, a third low-pressure feed water heater 18, A fourth low-pressure feed water heater 19 is provided, and the low-pressure turbine exhaust from the low-pressure turbine 7 is condensed by the condenser 14 to be condensed, and the condensed water is pumped by the condensate pump 15, and the first to fourth low-pressure feed water The heaters 16, 17, 18, and 19 sequentially preheat (regenerate) the low-pressure turbine bleed air from the low-pressure turbine 7 as a heat source.
[0033]
The water supply system 3 includes a deaerator 20, a first water supply pump 21, a second water supply pump 22, a first high-pressure water heater 23, a second high-pressure water heater 24, and a third A high-pressure feed water heater 25 and a fourth high-pressure feed water heater 26 are provided. The deaerator 20 supplies condensate supplied from the fourth low-pressure feed water heater 19 of the condensing system 2 to a medium-pressure turbine bleed from the medium-pressure turbine 6. Is heated and degassed as a heat source to supply water, the pressure of the supplied water is increased by a first water supply pump 21 and a second water supply pump 22, and the intermediate-pressure turbine 6 is heated by first to fourth high-pressure water heaters 23, 24, 25, 26. After being preheated (regenerated) as a heat source, the medium pressure turbine bleed air from the high pressure turbine 5 and the low temperature reheat pipe 10 are sequentially preheated (regenerated), and then returned to the boiler 4.
[0034]
Further, the water supply system 3 includes a cooling water supply system 27 that branches from the outlet side of the deaerator 20 and connects the medium-pressure turbine 6 and the low-pressure turbine 7 to each other, for example, to a communication pipe 13 such as a crossover pipe. The deaerator 20 is configured to spray the supply water obtained by heating and degassing the condensate from the condensate system 2 to the medium-pressure turbine exhaust flowing through the communication pipe 13 from the cooling water supply system 27 via the spray nozzle 28. ing. The cooling water supply system 27 is not limited to the connecting pipe 13 and may be connected to the outlet of the intermediate-pressure turbine 6 or the outlet of the final stage of the intermediate-pressure turbine 6.
[0035]
The cooling water supply system 27 includes a regulating valve 29, an arithmetic and control unit 30, and detectors 31a and 31b provided on the inlet side and the outlet side of the low-pressure turbine 7, respectively, and the medium-pressure turbine detected by the detectors 31a and 31b. Any one of the pressure, temperature, and wetness of the exhaust gas and the low-pressure turbine exhaust that has completed the expansion work in the low-pressure turbine 7 is sent to the arithmetic and control unit 30 to exceed the predetermined value. (Dry steam range), the valve opening / closing signal is calculated based on the deviation, and the calculated signal is given to the regulating valve 29 to open and close the valve. When the intermediate-pressure turbine exhaust is in the dry steam range, the spraying is performed. The structure is such that water is sprayed from the nozzle 28 and changed to a wet steam region.
[0036]
FIG. 3 is a cooling medium supply diagram showing the flow rate of supplying supply water as cooling water to the connecting pipe 13 on the vertical axis and the outlet temperature of the low-pressure turbine 7 on the horizontal axis. In this cooling medium supply diagram, when the temperature of the low-pressure turbine exhaust of the low-pressure turbine 7 exceeds the predetermined temperature T and the low-pressure turbine exhaust enters the dry steam region, the temperature of the low-pressure turbine exhaust from the spray nozzle 28 of the cooling water supply system 27 increases. Water is supplied to the connecting pipe 13, and the medium pressure turbine exhaust flowing through the connecting pipe 13 is changed from a dry steam area to a wet steam area.
[0037]
In the present embodiment, when changing the intermediate-pressure turbine exhaust from a dry steam area to a wet steam area, water supply or condensate is used as cooling water, but steam may be used instead of water supply or condensate. When steam is used, as shown in FIG. 3, the flow rate is increased, but it is advantageous in that the particle size of bubbles contained in the steam is not controlled.
[0038]
When the feed water or the condensate is used as the cooling water, the feed water or the condensate may contain a gas having a relatively large particle size such as a bubble. When the water is supplied to the connecting pipe 13 through the spray nozzle 28, the spray nozzle 28 is provided with a mechanism for finely crushing the particle diameter of the bubble to the size of the bubble particle indicated by oblique lines as shown in FIG. There is no need to worry about erosion or the like that occurs with the burst of bubbles.
[0039]
As described above, in the present embodiment, the cooling water supply system 27 branches from the outlet side of the deaerator 20 of the water supply system 2 and is connected to the communication pipe 13 that connects the medium-pressure turbine 6 and the low-pressure turbine 7 to each other. In addition, when the intermediate-pressure turbine exhaust of the intermediate-pressure turbine 6 is in a dry steam region, the control valve 29 of the cooling-water supply system 27 is controlled to open and close to supply cooling water to the intermediate-pressure turbine exhaust flowing through the communication pipe 13. The operation control section 30 for changing the main steam supplied to the high-pressure turbine 5 or the reheated steam supplied to the intermediate-pressure turbine 6 to an ultra-high temperature is used as the low-pressure turbine while maintaining the dry steam area. 7, the strength of the components of the low-pressure turbine 7 can be kept high.
[0040]
In this embodiment, when the intermediate-pressure turbine exhaust of the intermediate-pressure turbine 6 is in the dry steam region, the cooling water to be changed to the wet steam region is taken out from the outlet side of the deaerator 20 of the water supply system 3. Not limited to the example, for example, as shown in FIG. 4, a cooling water supply system 27 may be provided by branching from the outlet side of the condensate pump 15 of the condensate system 2. As shown, a cooling water supply system 27 may be provided by branching from the outlet side of the first water supply pump 21 of the water supply system 3 or from the outlet side of the second water supply pump 22. Further, as shown in FIG. A cooling water supply system 27 may be provided branching from the outlet side of the fourth high pressure feed water heater 26 of the water supply system 30.
[0041]
【The invention's effect】
As described above, in the steam turbine according to the present invention, the cooling medium from any one of the water supply system and the condensing system is supplied to the final stage outlet of the intermediate pressure turbine, the outlet of the intermediate pressure turbine and the intermediate pressure turbine and the low pressure. A cooling medium supply system for supplying a cooling medium to one of the communication pipes for connecting the turbine and the turbine, and when the medium-pressure turbine exhaust of the medium-pressure turbine is in a dry steam region, the cooling medium supply system is provided. Control means for opening and closing the control valve of the system to supply cooling medium to the medium-pressure turbine exhaust flowing through the connecting pipe to change to a wet steam area. Even if the reheated steam is heated to an extremely high temperature, it is not supplied to the low-pressure turbine as a dry steam region, and the strength guarantee of the components of the low-pressure turbine can be maintained high. .
[Brief description of the drawings]
FIG. 1 is a schematic system diagram showing a first embodiment of a steam turbine according to the present invention.
FIG. 2 is a diagram showing the relationship between the particle size of bubbles contained in the cooling medium and the flow velocity when the cooling medium is supplied to the intermediate-pressure turbine exhaust in the steam turbine according to the present invention.
FIG. 3 is a cooling medium supply diagram for supplying a cooling medium to medium-pressure turbine exhaust gas in the steam turbine according to the present invention.
FIG. 4 is a schematic system diagram showing a second embodiment of the steam turbine according to the present invention.
FIG. 5 is a schematic system diagram showing a third embodiment of the steam turbine according to the present invention.
FIG. 6 is a schematic system diagram showing a fourth embodiment of the steam turbine according to the present invention.
FIG. 7 is a schematic system diagram showing a fifth embodiment of the steam turbine according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Turbine system 2 Condenser system 3 Water supply system 4 Boiler 5 High pressure turbine 6 Medium pressure turbine 7 Low pressure turbine 8 Generator 9 Main steam pipe 10 Low temperature reheat pipe 11 Reheater 12 High temperature reheat pipe 13 Communication pipe 14 Condenser 15 Condensate Pump 16 First low-pressure feedwater heater 17 Second low-pressure feedwater heater 18 Third low-pressure feedwater heater 19 Fourth low-pressure feedwater heater 20 Deaerator 21 First feedwater pump 22 Second feedwater pump 23 First high-pressure feedwater heater 24 Second high pressure feed water heater 25 Third high pressure feed water heater 26 Fourth high pressure feed water heater 27 Cooling water supply system 28 Spray nozzle 29 Adjusting valve 30 Operation control units 31a, 31b Detector

Claims (13)

タービン系に、復水系および給水系を組み合せた蒸気タービンにおいて、前記タービン系の中圧タービンと低圧タービンとの接続部分に、前記給水系からの冷却媒体を供給する冷却媒体供給系を設けるとともに、この冷却媒体供給系に、前記中圧タービンから前記低圧タービンに供給する中圧タービン排気が乾き蒸気域のとき、前記接続部分に供給される前記冷却媒体を制御する制御手段を備えたことを特徴とする蒸気タービン。In a turbine system, a steam turbine combining a condensing system and a water supply system, a cooling medium supply system for supplying a cooling medium from the water supply system is provided at a connection portion between the intermediate pressure turbine and the low pressure turbine of the turbine system, The cooling medium supply system further includes control means for controlling the cooling medium supplied to the connection portion when the intermediate-pressure turbine exhaust supplied from the intermediate-pressure turbine to the low-pressure turbine is in a dry steam region. And steam turbine. タービン系に、復水系および給水系を組み合せた蒸気タービンにおいて、前記タービン系の中圧タービンと低圧タービンとの接続部分に、前記復水系からの冷却媒体を供給する冷却媒体供給系を設けるとともに、この冷却媒体供給系に、前記中圧タービンから前記低圧タービンに供給する中圧タービン排気が乾き蒸気域のとき、前記接続部分に供給される前記冷却媒体を制御する制御手段を備えたことを特徴とする蒸気タービン。In the turbine system, in a steam turbine combining a condensing system and a water supply system, a connecting portion between the intermediate pressure turbine and the low pressure turbine of the turbine system is provided with a cooling medium supply system for supplying a cooling medium from the condensing system, The cooling medium supply system further includes control means for controlling the cooling medium supplied to the connection portion when the intermediate-pressure turbine exhaust supplied from the intermediate-pressure turbine to the low-pressure turbine is in a dry steam region. And steam turbine. 冷却媒体供給系は、冷却媒体の取出し口を給水系の脱気器出口側に接続させる構成にしたことを特徴とする請求項1記載の蒸気タービン。The steam turbine according to claim 1, wherein the cooling medium supply system is configured to connect an outlet of the cooling medium to a deaerator outlet side of the water supply system. 冷却媒体供給系は、冷却媒体の取出し口を給水系の第1給水ポンプ出口側に接続させる構成にしたことを特徴とする請求項1記載の蒸気タービン。2. The steam turbine according to claim 1, wherein the cooling medium supply system is configured to connect an outlet of the cooling medium to a first water supply pump outlet side of the water supply system. 3. 冷却媒体供給系は、冷却媒体の取出し口を給水系の第2給水ポンプ出口側に接続させる構成にしたことを特徴とする請求項1記載の蒸気タービン。2. The steam turbine according to claim 1, wherein the cooling medium supply system is configured to connect an outlet of the cooling medium to a second water supply pump outlet side of the water supply system. 3. 冷却媒体供給系は、冷却媒体の取出し口を給水系の第4高圧給水ポンプ出口側に接続させる構成にしたことを特徴とする請求項1記載の蒸気タービン。2. The steam turbine according to claim 1, wherein the cooling medium supply system is configured to connect an outlet of the cooling medium to a fourth high-pressure water supply pump outlet side of the water supply system. 3. 冷却媒体供給系は、冷却媒体の取出し口を復水系の復水ポンプ出口側に接続させる構成にしたことを特徴とする請求項2記載の蒸気タービン。3. The steam turbine according to claim 2, wherein the cooling medium supply system is configured to connect an outlet of the cooling medium to a condensate pump outlet side of the condensate system. 冷却媒体供給系は、スプレイノズルを備えたことを特徴とする請求項1〜7記載の蒸気タービン。The steam turbine according to claim 1, wherein the cooling medium supply system includes a spray nozzle. 中圧タービンと低圧タービンとの接続部分は、連絡管であることを特徴とする請求項1または2記載の蒸気タービン。The steam turbine according to claim 1, wherein a connecting portion between the intermediate pressure turbine and the low pressure turbine is a connecting pipe. 中圧タービンと低圧タービンとの接続部分は、前記中圧タービンの出口であることを特徴とする請求項1または2記載の蒸気タービン。The steam turbine according to claim 1, wherein a connection portion between the intermediate pressure turbine and the low pressure turbine is an outlet of the intermediate pressure turbine. 中圧タービンと低圧タービンとの接続部分は、前記中圧タービンの最終段落の出口であることを特徴とする請求項1または2記載の蒸気タービン。The steam turbine according to claim 1, wherein a connecting portion between the intermediate pressure turbine and the low pressure turbine is an outlet of a final stage of the intermediate pressure turbine. 制御手段は、タービン系の低圧タービンの入口側と出口側とのそれぞれに設けた検出器からの信号が予め定められた設定値を超えたとき、その偏差に基づいて、冷却媒体供給系に設けた調整弁に弁開閉演算信号を与え、連絡管に冷却媒体の供給指令を出す演算制御部を備えたことを特徴とする請求項1または2記載の蒸気タービン。When a signal from a detector provided on each of the inlet side and the outlet side of the low pressure turbine of the turbine system exceeds a predetermined set value, the control means is provided in the cooling medium supply system based on the deviation. The steam turbine according to claim 1, further comprising a calculation control unit that supplies a valve opening / closing calculation signal to the adjustment valve and issues a cooling medium supply command to the communication pipe. 検出器は、タービン系の低圧タービンに流入する中圧タービン排気および前記低圧タービンから出る低圧タービン排気の圧力、温度、湿り度のうち、いずれか一種を検出することを特徴とする請求項12記載の蒸気タービン。13. The detector according to claim 12, wherein the detector detects any one of pressure, temperature, and wetness of the intermediate-pressure turbine exhaust flowing into the low-pressure turbine of the turbine system and the low-pressure turbine exhaust flowing out of the low-pressure turbine. Steam turbine.
JP2003154362A 2003-05-30 2003-05-30 Steam turbine Expired - Fee Related JP4220309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003154362A JP4220309B2 (en) 2003-05-30 2003-05-30 Steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003154362A JP4220309B2 (en) 2003-05-30 2003-05-30 Steam turbine

Publications (2)

Publication Number Publication Date
JP2004353604A true JP2004353604A (en) 2004-12-16
JP4220309B2 JP4220309B2 (en) 2009-02-04

Family

ID=34049041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003154362A Expired - Fee Related JP4220309B2 (en) 2003-05-30 2003-05-30 Steam turbine

Country Status (1)

Country Link
JP (1) JP4220309B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8338816B2 (en) 2007-10-15 2012-12-25 Panasonic Corporation Nonvolatile memory element, and nonvolatile semiconductor device using the nonvolatile memory element
CN108661726A (en) * 2018-07-24 2018-10-16 华能国际电力股份有限公司 A kind of low pressure cylinder cooling system that thermal power plant unit low pressure (LP) cylinder zero is contributed

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101827463B1 (en) 2014-06-27 2018-02-08 사빅 글로벌 테크놀러지스 비.브이. Induction heated mold apparatus with multimaterial core and method of using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8338816B2 (en) 2007-10-15 2012-12-25 Panasonic Corporation Nonvolatile memory element, and nonvolatile semiconductor device using the nonvolatile memory element
CN108661726A (en) * 2018-07-24 2018-10-16 华能国际电力股份有限公司 A kind of low pressure cylinder cooling system that thermal power plant unit low pressure (LP) cylinder zero is contributed
CN108661726B (en) * 2018-07-24 2023-09-01 华能国际电力股份有限公司 Low-pressure cylinder cooling system with zero output of low-pressure cylinder of heat supply unit

Also Published As

Publication number Publication date
JP4220309B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
JP3780884B2 (en) Steam turbine power plant
US6530208B1 (en) Steam cooled gas turbine system with regenerative heat exchange
US6263662B1 (en) Combined cycle power generation plant and cooling steam supply method thereof
KR101103549B1 (en) Steam turbine system and method for increasing the efficiency of steam turbine system
JP5227352B2 (en) System and method for pre-warming a heat recovery steam generator and associated steam line
US20110259010A1 (en) Organic motive fluid based waste heat recovery system
JP5860597B2 (en) System and method for preheating exhaust heat recovery boiler piping
JP6550659B2 (en) Water supply method, water supply system for carrying out this method, steam generating equipment provided with water supply system
JP2001271612A (en) Apparatus and method for reheating gas turbine cooling steam and high-pressure steam turbine exhaust steam in combined cycle power generating apparatus
EP2698507B1 (en) System and method for temperature control of reheated steam
WO1998046872A1 (en) Combined cycle power generating plant and method of supplying cooling steam for gas turbine in same
TW202035853A (en) Heat storage device, power generation plant, and operation control method during fast cut back
JPH10501315A (en) Method of operating a steam turbine power plant and steam turbine power plant for implementing the method
JP2005163628A (en) Reheat steam turbine plant and method for operating the same
JP4220309B2 (en) Steam turbine
JPH06323162A (en) Steam-cooled gas turbine power plant
US20150121871A1 (en) Forced cooling in steam turbine plants
JP2004245184A (en) Reheat steam turbine plant and starting method for the plant
JP2000303803A (en) Power generation system
JPH11200889A (en) Gas turbine combined power generation system
JP2006063886A (en) Thermal power plant
JP3782609B2 (en) High-pressure steam condensate system for heat recovery equipment attached to waste treatment equipment
JP2002213208A (en) Combined cycle power generating equipment and operating method thereof
JP3880746B2 (en) Waste heat recovery device and operation method thereof
JP3790146B2 (en) Combined cycle power plant and operation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20081104

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees