JPS5823207A - Thermoelectric power plant equipped with stored steam power generation system - Google Patents

Thermoelectric power plant equipped with stored steam power generation system

Info

Publication number
JPS5823207A
JPS5823207A JP12048481A JP12048481A JPS5823207A JP S5823207 A JPS5823207 A JP S5823207A JP 12048481 A JP12048481 A JP 12048481A JP 12048481 A JP12048481 A JP 12048481A JP S5823207 A JPS5823207 A JP S5823207A
Authority
JP
Japan
Prior art keywords
steam
heat
power generation
turbine
generation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12048481A
Other languages
Japanese (ja)
Other versions
JPS6160242B2 (en
Inventor
Teruhide Hamamatsu
浜松 照秀
Hiroshi Ishikawa
浩 石川
Hiroshi Hamano
浜野 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Central Research Institute of Electric Power Industry
JFE Engineering Corp
Original Assignee
Toshiba Corp
Central Research Institute of Electric Power Industry
Tokyo Shibaura Electric Co Ltd
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Central Research Institute of Electric Power Industry, Tokyo Shibaura Electric Co Ltd, NKK Corp, Nippon Kokan Ltd filed Critical Toshiba Corp
Priority to JP12048481A priority Critical patent/JPS5823207A/en
Publication of JPS5823207A publication Critical patent/JPS5823207A/en
Publication of JPS6160242B2 publication Critical patent/JPS6160242B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/12Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having two or more accumulators

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To reduce the loss of the heat quantity of steam and obtain a highly-effective turbine by installing a regenerative heat exchanger between a boiler and a heat accumulator and storing the heat of the steam fed into the heat accumulator and heating the steam supplied into a turbine for peak load with the regenerated heat. CONSTITUTION:When the load for a main power generation system A is low at night, a regenerative heat-steam bleeding valve 14 and a gate valve 19 are opened, and a gate valve 22 and a steam regulating valve 24 are closed. The steam which is reheated to high temperature in a reheater 3 passes through the bleed valve 14 and a regenerative heat exchanger 31, and performs heat-exchange with a regenerative heat medium, and passes through the gate valve 19 and is stored as hot water in a heat accumulator 16. When the load in the main power generation system A is exceeded, owing to the increase of the demand of electric power, the bleed valve 14 and the gate valve 19 are closed, and the gate valve 22 and the regulating valve 24 are controlled, to the open side then the hot-water in the heat accumulator 16 is converted to steam, which receives heat from the regenerative heat medium, during passing through the regenerative heat exchanger 31, and is converted to the excessively heated steam, which flows into a turbine 17 for peak load. Then, a power generator 25 for peak load is driven to generate electric power.

Description

【発明の詳細な説明】 本発明は蓄熱器とピーク用発電ユニットを組合わせた蒸
気貯蔵発電系統を有する火力発電プラントに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thermal power plant having a steam storage power generation system that combines a heat storage device and a peak power generation unit.

近年電力需要はますます増加の方向にあり、その需要形
態は昼間需要が多く夜間の需要は比較的少ない。そこで
、この昼と夜との需要アンノ々ランスに対応する一つの
方法として、蓄熱器とピーク用発電ユニットとを組合わ
せた蒸気貯蔵発電が提案されている。すなわち、上記蒸
気貯蔵発電とは電力需要が少ない夜間に火力発電ユニッ
トから蒸気を抽気して七〇熱エネルギを蓄熱器に蓄え、
電力需要の多い昼間にその蓄えた熱エネルギを使って蒸
気を発生させ、その蒸気でピーク用タービンを駆動して
電気を発生させる発電方式であり、昼夜の電力需要のア
ン・9ランスに対応する一つの有力な手段である。
In recent years, the demand for electricity has been on the rise, with much demand occurring during the day and relatively little demand at night. Therefore, as a method to deal with this uneven demand between day and night, steam storage power generation that combines a heat storage device and a peak power generation unit has been proposed. In other words, the above-mentioned steam storage power generation involves extracting steam from a thermal power generation unit at night when electricity demand is low and storing 70 thermal energy in a heat storage device.
This is a power generation method that uses the stored thermal energy to generate steam during the daytime, when electricity demand is high, and uses that steam to drive a peak-use turbine to generate electricity, meeting the day and night electricity demand. This is one powerful method.

すなわち、第1図は上記蒸気貯蔵発電系統を有する火力
発電プラントの系統図であって、図中符号1はメイラで
あり、そのゼイン1で発生した蒸(2) 気が高圧タービン2に供給されさらにディジ1の再熱器
3を経て中・低圧タービン4に供給され、高圧タービン
2および中・低圧タービン4で仕事を行ない、上記高圧
タービン2および中・低圧タービン4に連結された発電
機5を駆動する。中・低圧タービン4で仕事を行なった
蒸気は復水器6に入りそこでり水せしめられ、その復水
が復水ポンプ7、低圧給水加熱器8、脱気器9、給水2
ンゾ10および高圧給水加熱器11を経て再びゼイン1
に還流される。
That is, FIG. 1 is a system diagram of a thermal power plant having the above-mentioned steam storage power generation system, in which reference numeral 1 is a mailer, and steam (2) generated in the zein 1 is supplied to the high-pressure turbine 2. Furthermore, it is supplied to the medium/low pressure turbine 4 via the reheater 3 of the Digi 1, and work is performed by the high pressure turbine 2 and the medium/low pressure turbine 4, and the generator 5 is connected to the high pressure turbine 2 and the medium/low pressure turbine 4. to drive. The steam that has worked in the medium/low pressure turbine 4 enters the condenser 6 where it is made into water.
Zane 1 again after passing through Nzo 10 and high pressure feed water heater 11
is refluxed to.

一方、高圧タービン2からゼイン1の再熱器3の端部は
蓄熱蒸気抽気弁14および逆止弁15を経て、蓄熱器1
6とピーク用タービン17とを結ぶ蒸気供給ライン18
に接続されている。上記蒸気供給ライン18の蓄熱器1
6接続側端部は2又に分かれており、その一方には仕切
弁19および蒸□気を蓄熱器16の方にのみ流通せしめ
得る逆止弁側が設けられ、他方には蓄熱器16からの蒸
気を流通せしめ得る逆止弁21および仕切弁22が設け
られている。また、蒸気供給ライン18の前記分岐導管
13の接続部よりピーク用タービン17寄りには、逆止
弁23および蒸気加減弁別が設けられている。
On the other hand, the end of the reheater 3 of the zein 1 from the high pressure turbine 2 passes through the heat storage steam extraction valve 14 and the check valve 15, and then passes through the heat storage steam 1
Steam supply line 18 connecting 6 and the peaking turbine 17
It is connected to the. Regenerator 1 of the steam supply line 18
The end of the connection side 6 is divided into two parts, one of which is provided with a gate valve 19 and a check valve that allows steam to flow only toward the heat storage device 16, and the other end is provided with a gate valve 19 and a check valve that allows steam to flow only toward the heat storage device 16. A check valve 21 and a gate valve 22 are provided to allow steam to flow. Further, a check valve 23 and a steam control valve are provided in the steam supply line 18 closer to the peak turbine 17 than the connection portion of the branch conduit 13 .

しかして、蓄熱蒸気抽気弁14および仕切弁19を開き
仕切弁nおよび蒸気加減弁2Aを閉状態にしておくと、
高圧タービン2から排出された蒸気の一部が分岐導管1
3および蒸気供給ライン18を通って蓄熱器]6に供給
されそこで熱水として貯蔵される。
Therefore, when the thermal storage steam extraction valve 14 and the gate valve 19 are opened and the gate valve n and the steam control valve 2A are closed,
A portion of the steam discharged from the high pressure turbine 2 is transferred to the branch pipe 1
3 and a steam supply line 18 to a heat storage [6] where it is stored as hot water.

一方、高圧タービン2および中・低圧タービン4の負荷
仕方以上の高負荷要求時には、蓄熱蒸気抽気弁14およ
び仕切弁19を閉じ、仕切弁nおよび蒸気加減弁24を
開くと、蓄熱器16内に貯蔵された熱水が減圧によって
自己蒸発し、その蒸気がピーク用ターーン17に入り仕
事を行ない、そのピーク用タービン17に連結された−
一り用発電機5を駆動して電力を発生させる。ピーク用
タービン17で仕事を行なった蒸気は復水器26で復水
されポンプ27で復水貯蔵タンク公に送られそこで貯蔵
され、その後蓄熱器16に蒸気が供給されている際に、
ポンプ29によって前記復水器6或はその下流側の復水
ラインに返流される。
On the other hand, when the high-pressure turbine 2 and the medium/low-pressure turbine 4 are required to have a high load, the heat storage steam extraction valve 14 and the gate valve 19 are closed, and the gate valve n and the steam control valve 24 are opened. The stored hot water self-evaporates due to reduced pressure, and the steam enters the peaking turn 17 to perform work and is connected to the peaking turbine 17.
The single power generator 5 is driven to generate electric power. The steam that has worked in the peaking turbine 17 is condensed in the condenser 26, sent to the condensate storage tank by the pump 27 and stored there, and then while the steam is being supplied to the heat storage device 16,
The pump 29 returns the water to the condenser 6 or the condensate line downstream thereof.

このように、この種火力発電プラントは、ゼイン1およ
び高圧タービン2、中・低圧タービン4等からなる主発
電系統Aと、蓄熱器16およびピーク用タービン17等
からなる蒸気貯蔵発電系統Bとにより構成され、昼間の
電力需要が大きい場合には、上記主発電系統Aにより発
電を行なうとともに、蓄熱器16に貯蔵された熱エネル
ギを利用する蒸気貯蔵発電系統Bによっても発電を行な
うことができる。
In this way, this type of thermal power generation plant consists of a main power generation system A consisting of a zein 1, a high pressure turbine 2, a medium/low pressure turbine 4, etc., and a steam storage power generation system B consisting of a heat storage 16, a peak turbine 17, etc. When the daytime power demand is large, the main power generation system A generates power, and the steam storage power generation system B, which utilizes the thermal energy stored in the heat storage device 16, can also generate power.

ところが、このような発電プラントにおいては、貯蔵用
の蒸気を低温再熱蒸気ラインから抽気しているため、貯
蔵用の蒸気を直接蓄熱器16に入れることが可能である
が、次のような問題がある。すなわち、ゼイン負荷は極
力低下させずにタービン負荷としては低負荷が要求され
、一方蒸気貯蔵発電系統Bの負荷は高いことが要求され
ることがある。したがって、この要求を満すためには多
量の貯蔵用蒸気を主発電系統Aから抽気する必要がある
。ところが、多量の蒸気を低温再熱蒸気から抽気すると
、再熱器3を通過する蒸気が必要以上に減少して過負荷
になる場合があり、との再熱器3の過負荷防止のために
再熱器に過負荷防止対策を施こす必要がある。また、再
熱器3に低温再熱蒸気の多量の抽気による過負荷防止対
策を施こさない場合には、多量の蒸気を低温再熱蒸気か
ら抽気できないから、ディ2負荷をタービン負荷に応じ
て再熱器3が過負荷にならない程度に低くする必要があ
り、したがって多量の貯蔵用蒸気が得られないために蒸
気貯蔵発電系統Bの負荷容量は大きくならない等の問題
がある。一方、蒸気貯蔵発電系統Bで発電に使用される
蒸気は、蓄熱器内の減圧による自己蒸発から得られるか
ら略飽和蒸気である。このため、ピーク用タービン内で
の蒸気の有効熱落差は小さく、蒸気貯蔵発電系統Bの負
荷容量な犬ぎくするためには、多量の貯蔵用蒸気を得る
ことが必要である。
However, in such power plants, the steam for storage is extracted from the low-temperature reheat steam line, so it is possible to directly input the steam for storage into the heat storage device 16, but the following problems arise. There is. That is, a low turbine load is required without reducing the zein load as much as possible, while a high load on the steam storage power generation system B may be required. Therefore, in order to meet this requirement, it is necessary to extract a large amount of storage steam from the main power generation system A. However, when a large amount of steam is extracted from low-temperature reheated steam, the amount of steam passing through the reheater 3 may decrease more than necessary, resulting in an overload. It is necessary to take measures to prevent overload on the reheater. In addition, if measures are not taken to prevent overload by extracting a large amount of low-temperature reheated steam from the reheater 3, a large amount of steam cannot be extracted from the low-temperature reheated steam, so the Day 2 load is adjusted according to the turbine load. It is necessary to lower the load to such an extent that the reheater 3 does not become overloaded, and therefore, a large amount of storage steam cannot be obtained, resulting in problems such as the load capacity of the steam storage power generation system B not being increased. On the other hand, the steam used for power generation in the steam storage power generation system B is substantially saturated steam because it is obtained from self-evaporation due to reduced pressure within the heat storage device. Therefore, the effective heat drop of the steam in the peak turbine is small, and in order to increase the load capacity of the steam storage power generation system B, it is necessary to obtain a large amount of storage steam.

本発明はこのような点に鑑み、高熱量・大容量の蒸気源
を貯蔵用蒸気として利用することができ、ぎ−ク用ター
ビンの大容量化を画ることがセぎ、しかも再熱器の設計
変更を行なうことなく、容易に既存の火力発電プラント
に蒸気貯蔵発電系統を設けることができるようにした火
力発電プラントを提供することを目的とするものであっ
て、特に高温再熱蒸気を抽気して蓄熱器に供給するよう
にするとともに、高温再熱蒸気を蓄熱器に供給し或はそ
の蓄熱器からの蒸気をピーク用タービンに供給する蒸気
供給ラインに、上記蓄熱器に供給される蒸気の熱によっ
て蓄熱され、その蓄熱熱量によってピーク用タービンへ
の蒸気の加熱を行なう蓄熱熱交換器を配設したことを特
徴とするものである。
In view of these points, the present invention makes it possible to use a high-calorie, large-capacity steam source as storage steam, making it possible to increase the capacity of a hydraulic turbine, and furthermore, it is possible to use a steam source with a high calorific value and a large capacity as storage steam. The purpose of the present invention is to provide a thermal power plant in which a steam storage power generation system can be easily installed in an existing thermal power plant without making any design changes. The heat storage is supplied to a steam supply line that bleeds air and supplies it to the heat storage, and also supplies high-temperature reheated steam to the heat storage or supplies steam from the heat storage to the peaking turbine. This system is characterized by being equipped with a heat storage heat exchanger that stores heat from the steam and uses the stored heat amount to heat the steam to the peak turbine.

以下、第2図を参照して本発明の一実施例について説明
する。なお、紀1図と同一部分には同一符号を付しその
詳細な説明は省略する。
An embodiment of the present invention will be described below with reference to FIG. Note that the same parts as in Figure 1 are given the same reference numerals, and detailed explanation thereof will be omitted.

第2図において、蓄熱器16に貯蔵用蒸気を供給するた
めの分岐導管13は、高温再熱蒸気ライン加から分岐導
出せしめられており、その分岐導管13の他端は蓄熱蒸
気抽気弁14、逆止弁15を介して、蓄熱器16とピー
ク用タービン17とを結ぶ蒸気供給ライン18の途中に
接続されている。
In FIG. 2, a branch conduit 13 for supplying storage steam to the heat storage device 16 is branched out from the high temperature reheat steam line, and the other end of the branch conduit 13 is connected to a heat storage steam bleed valve 14, It is connected to the middle of a steam supply line 18 that connects a heat storage device 16 and a peak turbine 17 via a check valve 15 .

ところで、上記蒸気供給ライン18には、上記分岐導管
13の接続点より蓄熱器16側に、蓄熱媒体として顕熱
あるいは潜熱を利用し得る溶融塩或は金属を使用した高
温用蓄熱熱交換器31が配設されている。上記高温用蓄
熱熱交換器31は高温槽32と低温槽33とを有し、そ
の高温用蓄熱熱交換器31に高温蒸気が蓄熱器16の方
向に流通されると、蓄熱媒体は上記高温蒸気と熱交換し
て低温槽33から高温槽32へと移動し、貯蔵用の高温
蒸気の持つ過熱熱量分を受は取り高温槽32に蓄熱され
、逆に蓄熱槽16からピーク用タービン17方向に蒸気
が流れる場合には、高温槽32に貯蔵された蓄熱媒体が
高温槽32から低温槽33に移動する際に、高温用蓄熱
熱交換器31を通過する蒸気に熱を与えて過熱蒸気とす
る。
By the way, in the steam supply line 18, on the side of the heat storage device 16 from the connection point of the branch conduit 13, there is a high temperature heat storage heat exchanger 31 using molten salt or metal that can utilize sensible heat or latent heat as a heat storage medium. is installed. The high-temperature storage heat exchanger 31 has a high-temperature tank 32 and a low-temperature tank 33. When high-temperature steam is passed through the high-temperature storage heat exchanger 31 in the direction of the heat storage device 16, the heat storage medium becomes the high-temperature steam. The steam transfers heat from the low-temperature tank 33 to the high-temperature tank 32, receives the superheated heat of the storage high-temperature steam, and is stored in the high-temperature tank 32, and conversely moves from the heat storage tank 16 toward the peak turbine 17. When steam flows, when the heat storage medium stored in the high temperature tank 32 moves from the high temperature tank 32 to the low temperature tank 33, heat is given to the steam passing through the high temperature storage heat exchanger 31 to turn it into superheated steam. .

しかして、主発電系□統Aに対する負荷が低い場合には
、蓄熱蒸気抽気弁14および仕切弁19が開かれ、一方
仕切弁22および蒸気加減弁Uが閉じられている。した
がって、再熱器3から出た高温再熱蒸気が分岐導管13
VCよって抽気され、蓄熱蒸気抽気弁14、逆止弁15
を通り高温用蓄熱熱交換器31を通過した後、仕切弁1
9および逆止伸側を経て蓄熱器16に導入され熱水とし
て貯蔵される。そしてこの際、高温用蓄熱熱交換器31
において、抽気された高温再熱蒸気が蓄熱媒体と熱交換
してその蓄熱媒体に熱を与え、蒸気自身は過熱熱量分が
除去されて蒸気から熱水への変換時における放出熱量が
少なくなり、蓄熱器に熱水として容易に貯蔵される。
Thus, when the load on the main power generation system A is low, the thermal storage steam extraction valve 14 and the gate valve 19 are opened, while the gate valve 22 and the steam control valve U are closed. Therefore, the high temperature reheated steam coming out of the reheater 3 is transferred to the branch conduit 13.
The heat storage steam is extracted by VC, the heat storage steam extraction valve 14, and the check valve 15.
After passing through the high temperature storage heat exchanger 31, the gate valve 1
9 and the reverse expansion side, it is introduced into the heat storage device 16 and stored as hot water. At this time, the high temperature storage heat exchanger 31
In the process, the extracted high-temperature reheated steam exchanges heat with the heat storage medium and gives heat to the heat storage medium, and the amount of superheated heat is removed from the steam itself, reducing the amount of heat released during conversion from steam to hot water. Easily stored as hot water in heat storage.

一方、電力需要が増大してプラントに対する負荷要求が
高くなり、主発電系統Aが負荷を負担できない状態にな
ると、蓄熱蒸気抽気弁14および仕切弁19が閉じられ
、仕切弁汐および蒸気加減弁Uが開方向に制御される。
On the other hand, when the power demand increases and the load request to the plant becomes high, and the main power generation system A becomes unable to bear the load, the thermal storage steam extraction valve 14 and the gate valve 19 are closed, and the gate valve 14 and the steam control valve U are closed. is controlled in the opening direction.

したがって、蓄熱器16に貯蔵されていた熱水が蒸気加
減弁冴の開動作により減圧して自己蒸発して蒸気となり
、高温用蓄熱熱交換器31を通過する際に蓄熱媒体から
熱を受は取り過熱蒸気となった後−一り用タービン17
に流入し、そこで仕事を行ないピーク用発電機5を駆動
して電力を発生させる。そして上記ピーク用タービン1
7から排出された蒸気は復水器26で復水せしめられ、
ポンプ27によって彼水貯蔵タンク公に貯蔵され、その
後主発電系統Aから蒸気貯蔵発電系統Bに蒸気が供給さ
れているときに、復水貯蔵タンク28内の復水は復水器
6或は主発電系絞入の復水・給水装置のラインに返流さ
れる。
Therefore, the hot water stored in the heat storage device 16 is depressurized by the opening operation of the steam control valve, self-evaporates into steam, and receives heat from the heat storage medium when passing through the high temperature heat storage heat exchanger 31. After it becomes superheated steam - single turbine 17
The electricity flows into the engine, performs work there, drives the peak generator 5, and generates electric power. And the peak turbine 1
The steam discharged from 7 is condensed in a condenser 26,
The condensate in the condensate storage tank 28 is stored in the water storage tank by the pump 27, and then when steam is supplied from the main power generation system A to the steam storage power generation system B, the condensate in the condensate storage tank 28 is stored in the condenser 6 or the main power generation system. The water is returned to the power generation system throttle condensate/water supply line.

以上説明したように、本発明においては蓄熱器に貯蔵す
る蒸気を高温再熱蒸気ラインから抽気するようにしたの
で、再熱器な通過する蒸気を余り変化させることなく多
量の貯蔵用蒸気を主発電系統から抽気することができる
。しかも再熱器通過蒸気量が貯蔵用蒸気の抽気によって
変化しないから、再熱器の過角荷防止対策を施こす必要
も生ぜずに、多量の貯蔵用蒸気抽気分だけゼイラの負荷
の低下幅を小さくしてタービン負荷を小さくすることが
でき、さらに貯蔵用蒸気としては高熱量・大容量の蒸気
を得ることができる。さらに本発明においては、高温用
蓄熱熱交換器を設けたので、貯蔵用蒸気の有する過熱分
の熱量を一旦蓄熱しておくことができて、貯蔵用蒸気の
もつ熱量の損失を極力小さくして大容量の蓄熱をするこ
とができ、一方上記蓄熱によってピーク用タービンに使
用する蒸気を過熱蒸気とすることができて、2−り用タ
ービン内の蒸気の有効熱落差を大きくでき、タービンの
高効率化を画ることかできる。このようにピーク用ター
ビンの負荷能力を増大し貯蔵された熱量を有効に利用で
きるため、?イラ負荷能力を変えずに、火力発電プラン
ト全体の負荷能力を大きくすることもできる。しかも、
既存の発電プラントの設計技術を格別変更することなく
、既存の火力発電プラントの負荷能力を増加させ、電力
需要の変動に容易に対応せしめることができる等の効果
を奏する。
As explained above, in the present invention, the steam to be stored in the heat storage device is extracted from the high-temperature reheating steam line, so a large amount of storage steam can be stored without much change in the steam passing through the reheater. Air can be extracted from the power generation system. Moreover, since the amount of steam passing through the reheater does not change due to the extraction of storage steam, there is no need to take measures to prevent excessive loading of the reheater, and the load on the zeiler is reduced only by the amount of storage steam extracted. It is possible to reduce the turbine load by reducing the amount of water, and furthermore, it is possible to obtain steam with a high calorific value and large capacity as storage steam. Furthermore, in the present invention, since a high-temperature storage heat exchanger is provided, it is possible to temporarily store the heat amount of the superheated amount of the storage steam, thereby minimizing the loss of the heat amount of the storage steam. A large amount of heat can be stored, and on the other hand, the heat storage allows the steam used in the peak turbine to be superheated, increasing the effective heat drop of the steam in the two-way turbine, and increasing the turbine height. It is possible to improve efficiency. In this way, the load capacity of the peak turbine can be increased and the stored heat can be used effectively. It is also possible to increase the load capacity of the entire thermal power plant without changing the load capacity. Moreover,
This has the effect of increasing the load capacity of an existing thermal power plant and making it possible to easily respond to fluctuations in power demand without making any particular changes to the design technology of the existing power plant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の蒸気貯蔵発電系統を有する発電プラント
の系統図、第2図は本発明における蒸気貯蔵発電系統を
有する発電プラントの系統図である。 1・・・ディジ、2・・・高圧タービン、3・・・再熱
器、4・・・中・低圧タービン、13・・・分岐導管、
14・・・蓄熱蒸気抽気弁、19 、22・・・仕切弁
、U・・・蒸気加減弁、16・・・蓄熱器、17・・・
ピーク用タービン、30・・・高温再熱蒸気ライン、3
1・・・高温用蓄熱熱交換器、32・・・高温槽、33
・・・低温槽。 出願人代理人   猪 股    清
FIG. 1 is a system diagram of a power generation plant having a conventional steam storage power generation system, and FIG. 2 is a system diagram of a power generation plant having a steam storage power generation system according to the present invention. 1... Digi, 2... High pressure turbine, 3... Reheater, 4... Medium/low pressure turbine, 13... Branch conduit,
14... Heat storage steam bleed valve, 19, 22... Gate valve, U... Steam control valve, 16... Heat storage device, 17...
Peak turbine, 30... High temperature reheat steam line, 3
1... High temperature storage heat exchanger, 32... High temperature tank, 33
...low temperature chamber. Applicant's agent Kiyoshi Inomata

Claims (1)

【特許請求の範囲】 ゼインにより発生した蒸気の一部を蓄熱器に貯蔵し、高
負荷要求時に上記蓄熱器に貯蔵された蒸気によってピー
ク用タービンを駆動するようにした、蒸気貯蔵発電系統
を有する火力発電プラントにおいて、高温再熱蒸気を抽
気して上記蓄熱器に供給するようにするとともに、高温
再熱蒸気を蓄熱器に供給し或はその蓄熱器からの蒸気を
ピーク用ターーンに供給する蒸気供給ラインに、上記蓄
熱器に供給される蒸気の熱によって蓄熱されその蓄熱熱
量によってピーク用タービンへの蒸気の加熱を行なう蓄
熱熱交換器を配設したことを特徴とする、蒸気貯蔵発電
系統を有する火力発電プラント。 (1)             っっ
[Claims] A steam storage power generation system is provided, in which a part of the steam generated by the zein is stored in a heat storage device, and a peak turbine is driven by the steam stored in the heat storage device when a high load is required. In a thermal power plant, high-temperature reheated steam is extracted and supplied to the heat storage device, and steam is supplied to the heat storage device or steam from the heat storage device is supplied to the peak turn. A steam storage power generation system characterized in that a heat storage heat exchanger is disposed in the supply line to store heat from the steam supplied to the heat storage device and heat the steam to the peak turbine using the stored heat amount. Thermal power plant. (1) Oh!
JP12048481A 1981-07-31 1981-07-31 Thermoelectric power plant equipped with stored steam power generation system Granted JPS5823207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12048481A JPS5823207A (en) 1981-07-31 1981-07-31 Thermoelectric power plant equipped with stored steam power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12048481A JPS5823207A (en) 1981-07-31 1981-07-31 Thermoelectric power plant equipped with stored steam power generation system

Publications (2)

Publication Number Publication Date
JPS5823207A true JPS5823207A (en) 1983-02-10
JPS6160242B2 JPS6160242B2 (en) 1986-12-19

Family

ID=14787316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12048481A Granted JPS5823207A (en) 1981-07-31 1981-07-31 Thermoelectric power plant equipped with stored steam power generation system

Country Status (1)

Country Link
JP (1) JPS5823207A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58107803A (en) * 1981-12-21 1983-06-27 Toshiba Corp Power generation plant
JPS6026107A (en) * 1981-08-07 1985-02-09 オルマツト・タ−ビンズ(1965)リミテツド Power generation plant with multistage turbine
US4814187A (en) * 1987-01-13 1989-03-21 Ngk Insulators, Ltd. Honeycomb structural body-extruding die apparatus
JP2002106307A (en) * 2000-10-02 2002-04-10 Mitsui Eng & Shipbuild Co Ltd Hybrid-type power generator
MD4322C1 (en) * 2011-05-17 2015-07-31 Иван ГОНЧАРЮК Device and process for converting steam energy into electrical energy
JP2021014839A (en) * 2019-07-16 2021-02-12 三菱パワー株式会社 Steam power generation plant, modification method for steam power generation plant, and operation method for steam power generation plant

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019049884A (en) 2017-09-11 2019-03-28 株式会社東芝 Image processing device and failure diagnosis control method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026107A (en) * 1981-08-07 1985-02-09 オルマツト・タ−ビンズ(1965)リミテツド Power generation plant with multistage turbine
JPH0436244B2 (en) * 1981-08-07 1992-06-15 Orumatsuto Taabinzu 1965 Ltd
JPS58107803A (en) * 1981-12-21 1983-06-27 Toshiba Corp Power generation plant
US4814187A (en) * 1987-01-13 1989-03-21 Ngk Insulators, Ltd. Honeycomb structural body-extruding die apparatus
JP2002106307A (en) * 2000-10-02 2002-04-10 Mitsui Eng & Shipbuild Co Ltd Hybrid-type power generator
MD4322C1 (en) * 2011-05-17 2015-07-31 Иван ГОНЧАРЮК Device and process for converting steam energy into electrical energy
JP2021014839A (en) * 2019-07-16 2021-02-12 三菱パワー株式会社 Steam power generation plant, modification method for steam power generation plant, and operation method for steam power generation plant

Also Published As

Publication number Publication date
JPS6160242B2 (en) 1986-12-19

Similar Documents

Publication Publication Date Title
US4164848A (en) Method and apparatus for peak-load coverage and stop-gap reserve in steam power plants
US5375410A (en) Combined combustion and steam turbine power plant
CN108548168A (en) A kind of thermal power plant's fused salt accumulation of heat peak regulation system heated using main steam
JPH08260912A (en) Combined cycle power plant
JPS5823207A (en) Thermoelectric power plant equipped with stored steam power generation system
JPS62325B2 (en)
JPH1061413A (en) Exhaust reburning type compound power plant
CN113623032B (en) Coal-fired boiler flue gas heat storage and power generation integrated system and operation method
JPH05248604A (en) Waste heat recovery boiler
CN105042666A (en) Wide-load heat supply energy saving system of back pressure type small turbine driving induced draft fan
WO2020255692A1 (en) Power generation plant and method for storing excess energy in power generation plant
CN110005487B (en) Starting method of steam turbine
CN210153753U (en) Water side system of solar photo-thermal power generation fused salt steam generation system
CN204757075U (en) Wide load of little steam turbine of backpressure formula drive draught fan supplies heat energy -saving system
CN204786684U (en) Wide load of little steam turbine of backpressure formula drive water -feeding pump supplies heat energy -saving system
CN110220177B (en) Water side system of solar photo-thermal power generation molten salt steam generation system and operation method
JPS58107803A (en) Power generation plant
SU1125393A1 (en) Method of starting cold and non-cooled electric power station power unit
JPS5823206A (en) Thermal power plant equipped with stored steam power generation system
CN218380617U (en) Thermal power generating unit steam extraction heat accumulation formula system of adjusting peak based on fused salt heat-retaining
CN219571892U (en) Coal-fired unit starting and thermoelectric decoupling system based on chemical chain energy storage
CN219081668U (en) Thermal power plant deep peak regulating device based on molten salt energy storage technology
CN219570167U (en) Thermal power plant unit degree of depth peak shaving system
JPS5939122Y2 (en) combined plant
JP2994109B2 (en) Exhaust heat recovery method of pressurized fluidized bed combined cycle system