JPS59134307A - Steam turbine plant - Google Patents
Steam turbine plantInfo
- Publication number
- JPS59134307A JPS59134307A JP731183A JP731183A JPS59134307A JP S59134307 A JPS59134307 A JP S59134307A JP 731183 A JP731183 A JP 731183A JP 731183 A JP731183 A JP 731183A JP S59134307 A JPS59134307 A JP S59134307A
- Authority
- JP
- Japan
- Prior art keywords
- steam
- steam turbine
- turbine
- low
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K13/00—General layout or general methods of operation of complete plants
- F01K13/006—Auxiliaries or details not otherwise provided for
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は蒸気タービンの冷却に関するもので、特に超高
温高圧蒸気により駆動される蒸気タービンプラントの冷
却技術に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to cooling of steam turbines, and more particularly to cooling technology for steam turbine plants driven by ultra-high temperature and high pressure steam.
石油価格の高騰に伴い新設の火力発電所は石炭火力が主
流となυつつある。しかし、石炭火力プラントでは、石
炭燃料の前処理や脱塵等によって補機動力の割合が比較
的大きく、プラント効率は石油火力よシも低くなるとい
う欠点がある。このような状況から石炭火力プラントの
発電効率の向上策が各方面から検討されている。As oil prices soar, coal-fired power is becoming the mainstream for newly built thermal power plants. However, coal-fired power plants have the drawback that the proportion of auxiliary power is relatively large due to coal fuel pretreatment, dust removal, etc., and the plant efficiency is lower than that of oil-fired power plants. Under these circumstances, measures to improve the power generation efficiency of coal-fired power plants are being considered from various angles.
その一つとして、入口蒸気条件をさらに高温高圧にする
ことによシ発電効率の向上を計る方法が提案されている
。ランキンサイクルの効率は圧力の上昇とともに向上す
るが、高温になるとそれが一層顕著になることが知られ
ている。この場合、通常第1図に示すようなプラント構
成例をとることが多い。すなわち、第1図に示すように
、ボイラ1、高圧タービン3、中圧タービン4、低圧タ
ービン5および発電機6、復水器7などから構成される
タービンプラントにおいて、ボイラ1および高圧タービ
ン3の間に超高圧タービン2を設け、ボイラ1からの主
蒸気14を超高圧タービン2に導くとともに、その排気
15をボイラ1に戻し、再熱したのち従来の高圧タービ
ン3に再熱蒸気16を導くシステムになっている。なお
、高圧タービン3以降のプラント構成は、従来の火力発
電プラントと同様になっておシ、高圧タービン3からボ
イラ1の再熱器に導く高圧排気蒸気系17、再熱器から
中圧タービン4への第2段再熱蒸気系l8、中圧タービ
ン4の排気を低圧タービン5に導く連絡管19、さらに
は復水ポンプ8、低圧給水加熱器9,10、脱気器11
、給水ポンプ12、高圧給水加熱器13、ボイラ給水系
統20などからなっている。As one of these methods, a method has been proposed in which the inlet steam conditions are further increased in temperature and pressure to improve power generation efficiency. It is known that the efficiency of the Rankine cycle improves as the pressure increases, but this becomes more noticeable at higher temperatures. In this case, a plant configuration example as shown in FIG. 1 is usually used. That is, as shown in FIG. 1, in a turbine plant consisting of a boiler 1, a high-pressure turbine 3, an intermediate-pressure turbine 4, a low-pressure turbine 5, a generator 6, a condenser 7, etc., the boiler 1 and the high-pressure turbine 3 are An ultra-high pressure turbine 2 is provided in between, and main steam 14 from the boiler 1 is guided to the ultra-high pressure turbine 2, and the exhaust gas 15 is returned to the boiler 1 and reheated, and then reheated steam 16 is introduced to a conventional high-pressure turbine 3. It's a system. The plant configuration after the high-pressure turbine 3 is the same as that of a conventional thermal power plant. a second stage reheat steam system 18 to the intermediate pressure turbine 4, a connecting pipe 19 that leads the exhaust gas of the intermediate pressure turbine 4 to the low pressure turbine 5, a condensate pump 8, low pressure feed water heaters 9, 10, and a deaerator 11.
, a water supply pump 12, a high-pressure water supply heater 13, a boiler water supply system 20, etc.
このような所謂超高圧高温蒸気タービンプラントにおい
ては、主蒸気の圧力が246 Kg f / crAか
ら352訪f/crtxXiK度が538cから649
cと高圧高温となるために超高圧タービン2においてタ
ービンケーシングやロータシャフトおよびブレード等が
高温高圧蒸気の雰囲気中にあシ、材料に耐熱耐圧強度が
強く要請される。しかし、これらの耐熱材料は一般に高
温強度が大きくなればなる程、加工性や溶接性が悪くな
るという欠点があシ、蒸気プラントのコスト上昇の一因
となっている。さらに、超高温高圧発電プラントでは、
蒸気条件が高温化されるとともに高圧となるため、ター
ビンケーシングや配管等の構造物に対して熱応力の緩和
や伸び差の吸収などでも制限が設けられ大きな問題とな
る。特に、第1図に示した超高圧段2においては、通常
使用されている内外ケーシングやロータシャフトの冷却
保護が是非必要となってくる。In such a so-called ultra-high-pressure high-temperature steam turbine plant, the main steam pressure ranges from 246 Kg f/crA to 352 Kg f/crtxXiK degrees from 538 Kg to 649 Kg f/crA.
Since the turbine casing, rotor shaft, blades, etc. of the ultra-high pressure turbine 2 are exposed to an atmosphere of high-temperature and high-pressure steam due to the high pressure and high temperature of the ultra-high-pressure turbine 2, there is a strong demand for materials with high heat and pressure resistance. However, these heat-resistant materials generally have the disadvantage that the greater their high-temperature strength, the worse their workability and weldability become, which is one of the causes of increased costs for steam plants. Furthermore, in ultra-high temperature and high pressure power generation plants,
As the steam conditions become high in temperature and pressure, restrictions are placed on structures such as turbine casings and piping to alleviate thermal stress and absorb differences in elongation, which poses a major problem. In particular, in the ultra-high pressure stage 2 shown in FIG. 1, it is absolutely necessary to provide cooling protection for the normally used inner and outer casings and rotor shaft.
この冷却法としては主蒸気の1部を分岐して高圧低温の
水を混入して温度を低くして水分を除去した蒸気を用い
ている例かめる。この場合、蒸気と冷却水を一様に混合
するのに膨大な混合スペースを必要とし、また、この場
合蒸気中に微量の水分が残p1 これが被冷却体にあた
ると水の冷却効果が過大のために急激に温度が低下し熱
応力によシひび割れ等を生じる欠点を有する。An example of this cooling method is to branch off a part of the main steam and mix it with high-pressure, low-temperature water to lower the temperature and remove moisture. In this case, a huge amount of mixing space is required to uniformly mix the steam and cooling water, and in this case, a small amount of moisture remains in the steam (p1) If this hits the object to be cooled, the cooling effect of the water will be excessive. It has the disadvantage that the temperature suddenly drops and cracks occur due to thermal stress.
本発明の目的は、蒸気タービンに対して最適な冷却蒸気
を得るようにして機器に過大な熱応力の発生を防止する
と共に、冷却に供する蒸気から熱回収を図るようにした
蒸気タービンプラントを提供することにある。An object of the present invention is to provide a steam turbine plant in which the optimum cooling steam is obtained for the steam turbine, thereby preventing excessive thermal stress from occurring in equipment, and in which heat is recovered from the steam used for cooling. It's about doing.
本発明の特徴とするところは、ボイラから供給される高
圧蒸気或は蒸気タービンの高圧段から分岐した高圧蒸気
をポルテックスチューブ装置に導入して低温蒸気と高温
蒸気とに分離し、この低温蒸気を蒸気タービンの冷却必
要個所に導いて該タービンを効果的に冷却し、分離した
高温蒸気は蒸気タービンの駆動蒸気或は復水系統に備え
られた給水加熱装置の加熱蒸気に利用して熱回収ケ図っ
た蒸気タービンプラントにある。A feature of the present invention is that high-pressure steam supplied from a boiler or high-pressure steam branched from a high-pressure stage of a steam turbine is introduced into a portex tube device and separated into low-temperature steam and high-temperature steam. The separated high-temperature steam is used as the drive steam of the steam turbine or the heating steam of the feed water heating device installed in the condensing system for heat recovery. It is located in a planned steam turbine plant.
以下、本発明の具体的な一実施νりを第2図から第10
図を用いて詳細に説明する。Hereinafter, a specific implementation of the present invention will be explained with reference to FIGS. 2 to 10.
This will be explained in detail using figures.
第2図乃至第6図は本発明による超高温高圧蒸中圧ター
ビン4、低圧タービン5、発電機6および復水器7など
からなる蒸気タービンプラントにおいて、主蒸気14か
らポルテックスチューブ22に連通ずる冷却蒸気系統2
1を設け、さらにポルテックスチューブ22内で分離さ
れ超高圧タービン2の構造物の冷却系統に連通ずる高圧
低温蒸気系統23を設ける。また、構造物を冷却し、昇
温しん冷却蒸気を戻す高温冷却蒸気系統24を配設し、
これを熱回収するために、高圧タービン排気蒸気系統1
7に連通ずるとともに、ポルテックスチューブ22内で
分離された高圧高温蒸気25を熱回収するため、超高圧
タービン排気系統15に連通する両正高温蒸気系統25
を設けて構成する。2 to 6 show a steam turbine plant including an ultra-high temperature, high pressure steam and pressure turbine 4, a low pressure turbine 5, a generator 6, a condenser 7, etc. according to the present invention, in which the main steam 14 is connected to the portex tube 22. Cooling steam system 2
1, and a high-pressure low-temperature steam system 23 that is separated within the portex tube 22 and communicates with the cooling system of the structure of the ultra-high pressure turbine 2. In addition, a high-temperature cooling steam system 24 is installed to cool the structure and return heated and cooled steam,
In order to recover this heat, the high pressure turbine exhaust steam system 1
7, and also communicates with the ultra-high pressure turbine exhaust system 15 in order to recover heat from the high pressure high temperature steam 25 separated within the portex tube 22.
and configure it.
なお、上記第2図の実施例において、冷却蒸気のもとに
なる高圧蒸気の取出し口をボイラ1の直後の主蒸気から
とっていること、また冷却蒸気およびポルテックスチュ
ーブ22内で分離された高圧高温蒸気の戻り先をそれぞ
れ高圧タービン排気蒸気系統17および超高圧タービン
排気蒸気系統15に導いている例を示しているが、これ
は限定された意味を有するものでない。超高温タービン
2の、構造物の温度および冷却負荷によっては、例えば
第3図に示すごとく、冷却蒸気のもとになる高圧蒸気の
取出し口を超高温タービン2の段落間からの抽気口とす
ることもできる。また、第4図に示すごとく、タービン
の起動時には切換弁46゜47の操作によシボルテツク
スチューブ22で分離した高圧高温蒸気25を超高圧タ
ービン2に導いて迅速起動するとともに高圧低温蒸気系
23を熱回収のために系統51を通じて低圧給水加熱器
10に戻すこともできる。また第5図に示すごとく高圧
高温蒸気系統25全再熱蒸気系16に戻すこともできる
。また、第6図に示すごとく、高圧高温蒸気系統25を
系統52を通じてボイラ給水系20に設置されたドライ
ヒータ48に導いて給水を加熱した後、低圧給水加熱器
10に戻すこともできる。これらのことはプラント熱サ
イクルの最適条件から決定されるものである。In the embodiment shown in FIG. Although an example is shown in which the return destinations of high-pressure, high-temperature steam are guided to the high-pressure turbine exhaust steam system 17 and the ultra-high-pressure turbine exhaust steam system 15, respectively, this does not have a limited meaning. Depending on the temperature and cooling load of the structure of the ultra-high-temperature turbine 2, for example, as shown in FIG. You can also do that. In addition, as shown in FIG. 4, when starting up the turbine, the high-pressure, high-temperature steam 25 separated by the sivoltex tube 22 is guided to the ultra-high-pressure turbine 2 by operating the switching valves 46 and 47 to quickly start up the ultra-high-pressure turbine 2, and the high-pressure, low-temperature steam system 23 can also be returned to the low pressure feed water heater 10 via line 51 for heat recovery. Further, as shown in FIG. 5, the high pressure and high temperature steam system 25 can be returned to the total reheat steam system 16. Alternatively, as shown in FIG. 6, the high-pressure, high-temperature steam system 25 can be guided through the system 52 to a dry heater 48 installed in the boiler feed water system 20 to heat the feed water, and then returned to the low-pressure feed water heater 10. These matters are determined from the optimum conditions of the plant thermal cycle.
また、前述の実施例では簡単のためにポルテックスチュ
ーブ22を1段として記したが、天川に際しては多段に
連結して、所定の低温蒸気が得られるように使用される
。Further, in the above-mentioned embodiment, the portex tube 22 was described as one stage for simplicity, but in the case of Tenkawa, it is connected in multiple stages and used so that a predetermined low-temperature steam can be obtained.
以上のような冷却蒸気発生システムを構成することによ
って超高圧タービン2の内部構造物の耐熱保護を可能と
する冷却蒸気を発生することが可能となる。By configuring the cooling steam generation system as described above, it becomes possible to generate cooling steam that enables heat-resistant protection of the internal structure of the ultra-high pressure turbine 2.
さて、このような冷却蒸気発生システムを利用し、超高
圧タービン2の内部構造物を冷却する方法の実施例とし
て第4図から第6図を用いそ説明する。Now, an embodiment of a method of cooling the internal structure of the ultra-high pressure turbine 2 using such a cooling steam generation system will be described using FIGS. 4 to 6.
第7図は、超高圧タービン2の典型的な例を示す断面図
である。すなわち、ボイラ1からの超高温高圧の蒸気を
タービン内部に導入する主蒸気管26、さらにこの主蒸
気をタービン段落に導く所謂ノズルボックス27、ター
ビン段落を構成する複数個のダイヤフラム28、タービ
ン動翼を支持するロータディスク34、さらにダイヤフ
ラム28を固定する内部ケーシング33、およびこれら
各種の構成装置を1体に包含する外部ケーシング30か
ら構成されている。このような超高圧タービン2でid
、主蒸気管26を通じノズルボックス27を介して流
入する超高温高圧蒸気はダイヤフラム28に保持される
静翼で加速され、ロータディスク34に回転力を与える
ことによってエネルギーを失ない、次第に圧力、温度を
減することになる。このようにタービン段落を通過した
主蒸気流15の大部分は、排気管29を通じて排出され
、ボイラ1の再熱器へ導かれるが、一部の蒸気流は分岐
され、内部ケー、シンク33を冷却する冷却蒸気32と
なり、冷却蒸気排気管31から排出される。しかし、こ
の冷却蒸気32はタービン段落内を通過するうちに圧力
、温度を減するが、まだ比較的高温状態となっておシ、
外部ケーシング30などの耐熱保護が十分性われない可
能性がある。特に、主蒸気管26の内部は超高温の蒸気
が流れておシ、外部ケーシング30へ熱伝導で高温の熱
が移動するため、外部ケーシング30の耐熱性が重要と
なる。しかし、外部ケーシング30を耐熱強度の大きな
材料によって構成すると、大幅なコスト上昇となるため
、外部ケーシング30の材料として耐熱性の比較的低い
従来材を使用することが望ましい。第7図はこのような
目的から外部ケーシング30の冷却法の具体的一実施例
を示したものである。すなわち、第2図に示したポルテ
ックスチューブ22で発生した低温蒸気23を外部ケー
シング30の内壁面側に配設した仕切壁36と外部ケー
シング30とで囲まれる冷却流路35に導入し、一種の
熱遮断層を構成して外部ケーシング30を冷却する方法
である。この冷却流路35の詳細な構成を示したのが第
8図である。FIG. 7 is a sectional view showing a typical example of the ultra-high pressure turbine 2. That is, a main steam pipe 26 that introduces ultra-high temperature and high pressure steam from the boiler 1 into the turbine, a so-called nozzle box 27 that guides this main steam to the turbine stage, a plurality of diaphragms 28 that make up the turbine stage, and turbine rotor blades. The rotor disk 34 supports the diaphragm 28, an inner casing 33 that fixes the diaphragm 28, and an outer casing 30 that incorporates these various components into one body. In such an ultra-high pressure turbine 2, id
The ultra-high-temperature, high-pressure steam flowing through the main steam pipe 26 and the nozzle box 27 is accelerated by the stationary vanes held by the diaphragm 28, and by applying rotational force to the rotor disk 34, the pressure and temperature gradually increase without losing energy. This will reduce the Most of the main steam flow 15 that has passed through the turbine stage is discharged through the exhaust pipe 29 and guided to the reheater of the boiler 1, but some steam flow is branched and passes through the internal case and sink 33. It becomes cooling steam 32 to be cooled and is discharged from the cooling steam exhaust pipe 31. However, although this cooling steam 32 reduces its pressure and temperature as it passes through the turbine stage, it is still relatively high temperature.
There is a possibility that the heat-resistant protection of the external casing 30 etc. will not be sufficient. In particular, the heat resistance of the outer casing 30 is important because ultra-high temperature steam flows inside the main steam pipe 26 and high-temperature heat is transferred to the outer casing 30 by heat conduction. However, if the outer casing 30 is made of a material with high heat resistance, the cost will increase significantly, so it is desirable to use a conventional material with relatively low heat resistance as the material for the outer casing 30. FIG. 7 shows a specific example of a cooling method for the outer casing 30 for this purpose. That is, the low-temperature steam 23 generated in the portex tube 22 shown in FIG. This is a method of cooling the outer casing 30 by forming a heat shielding layer. FIG. 8 shows a detailed configuration of this cooling channel 35.
本図では第2図に示した低温蒸気23と入口バイブ37
、また高温蒸気24と出口バイブ38とを連通させ、し
かも外部ケーシング30の内部流体と隔離するように外
部ケーシング30の内壁側に仕切壁36を設けて冷却流
路35を、また高温蒸気24と出口バイブ39を連通さ
せ、主蒸気管26と外部ケーシング30の間に熱遮断板
40を介して冷却流路41を構成しである。このような
冷却法を採用することにより、外部ケーシング30の内
壁面や主蒸気管26と外部ケーシング30の継ぎ目等が
冷却され、外部ケーシング材として耐熱性の比較的低い
材料を使用することが可能となる。In this figure, the low temperature steam 23 and inlet vibrator 37 shown in Figure 2 are shown.
In addition, a partition wall 36 is provided on the inner wall side of the outer casing 30 so as to communicate the high temperature steam 24 and the outlet vibe 38 and isolate it from the internal fluid of the outer casing 30, thereby forming a cooling flow path 35 and a cooling passage 35 between the high temperature steam 24 and the outlet vibe 38. The outlet vibe 39 is communicated with the main steam pipe 26 and the outer casing 30 to form a cooling passage 41 via a heat shield plate 40 . By adopting such a cooling method, the inner wall surface of the outer casing 30, the joint between the main steam pipe 26 and the outer casing 30, etc. are cooled, and it is possible to use a material with relatively low heat resistance as the outer casing material. becomes.
一方、第9図は第8図に示すような熱遮断層を設けず主
蒸気管26と外部ケーシング30との跡ぎ目の冷却法の
一実施例を示したものである。On the other hand, FIG. 9 shows an embodiment of a method of cooling the joint between the main steam pipe 26 and the outer casing 30 without providing a heat insulating layer as shown in FIG.
本図では冷却蒸気21を入口制御弁43を通してポルテ
ックスチューブ22に導ひき、分離した高温蒸気25を
出口制御弁44により流量制御し、低温蒸気23を入口
バイブ42と、1だ高温蒸気24と出口バイブ39を連
通させ、主蒸気管26と外部ケーシング30の間に熱遮
断板40を介して冷却流路41を’+4成しである。入
口制御弁43と出口制御弁44は主蒸気の温度等を感知
して最適な冷却を行なうように制御器45により制御さ
れる。ポルテックスチューブ22の特性は第10図に示
すごとく高圧の蒸気を供給すると高温蒸気Hと低温蒸気
りとが分離して得られるから、出口制御弁44により低
温蒸気量とともに低温蒸気りおよび高温蒸気Hの温度を
変えることができ、さらに高圧の供給蒸気を制御する入
口制御弁43によシ全体の温度レベルを変えることがで
きるので、上記制御を容易に達成できる。In this figure, the cooling steam 21 is introduced into the portex tube 22 through the inlet control valve 43, the flow rate of the separated high temperature steam 25 is controlled by the outlet control valve 44, and the low temperature steam 23 is introduced into the inlet vibrator 42 and the high temperature steam 24. The outlet vibe 39 is communicated with the main steam pipe 26 and the outer casing 30, and a cooling flow path 41 is formed between the main steam pipe 26 and the external casing 30 via a heat shield plate 40. The inlet control valve 43 and the outlet control valve 44 are controlled by a controller 45 to sense the temperature of the main steam and perform optimal cooling. As shown in FIG. 10, the characteristics of the portex tube 22 are that when high-pressure steam is supplied, high-temperature steam H and low-temperature steam are obtained by separating them. The above control can be easily achieved since the temperature of H can be changed and the temperature level of the entire tank can also be changed by means of the inlet control valve 43 which controls the high pressure steam supply.
このような冷却法を採用すると、最も高温となる主蒸気
管26と外部ケーシング30の跡ぎ目を効果的に冷却す
ることができる。なお、入口制御弁43、出口制御弁4
4および制御器45により構成される制御機構は図を省
略したが、第8図の実施例についても同様に適用できる
。By employing such a cooling method, it is possible to effectively cool the joint between the main steam pipe 26 and the outer casing 30, which are at the highest temperature. Note that the inlet control valve 43 and the outlet control valve 4
Although the control mechanism constituted by 4 and the controller 45 is not shown in the figure, it can be similarly applied to the embodiment shown in FIG.
また、本芙循例ではポルテックスチューブ22を超高圧
タービン2の外部に置いたが、外部ケーシング30と内
部ケーシング33の間に内蔵することもできる。Further, in this example, the portex tube 22 is placed outside the ultra-high pressure turbine 2, but it can also be placed between the outer casing 30 and the inner casing 33.
以上述べた本発明の実施例による超高温高圧蒸気タービ
ンの冷却技術を採用すれば、超高圧タービンの内部構造
物において、超高温蒸気に直接接触する部分を除く構這
物として、比較的低級な耐熱鋼を採用しても強度的に十
分信頼性のある蒸気タービンプラントを提共することが
できる。しかも、本発明による冷却技術では、部分負荷
や変圧運転のように主蒸気の条件が変わる場合、主蒸気
の温度等を感知してポルテックスチューブの出入口制御
弁を制御することにより構造物の冷却条件を最適にでき
、従来の最終段蒸発の一部を用いる場合のようにタービ
ン流動に左右されることがなく、蒸気タービンの信頼性
を著しく向上できる。If the ultra-high-temperature, high-pressure steam turbine cooling technology according to the embodiments of the present invention described above is adopted, the internal structure of the ultra-high-pressure turbine can be used as a relatively low-grade structure excluding the parts that come into direct contact with ultra-high-temperature steam. Even if heat-resistant steel is used, a steam turbine plant with sufficient strength and reliability can be provided. Moreover, with the cooling technology of the present invention, when the main steam conditions change such as during partial load or variable pressure operation, the structure can be cooled by sensing the temperature of the main steam and controlling the portex tube inlet and outlet control valves. The conditions can be optimized, and the reliability of the steam turbine can be significantly improved because it is not affected by turbine flow as in the case of using a portion of the conventional final stage evaporation.
また、ポルテックスチューブは構造が簡単で可動部分が
ないので、信頼性も高く価格も安い。さらに、ポルテッ
クスチューブで分離された高温蒸気は超高圧タービンの
排気系統又は給水系統に、内部イ違遺物を冷却して加熱
された低温蒸気は筒圧タービンの排気系統にそれぞれ・
戻して蒸気全加熱するのに利用しているため、プラント
効率の劣化を最小限にしている。これらの蒸気系統は旨
圧タービンまわりにあるために、配管系も短かくて済み
、また内部構造物の冷却のだめのボングー等の付加動力
を−さい必要としないので、きわめて経済的で実用性が
高い。Additionally, Portex tubes have a simple structure and no moving parts, making them highly reliable and inexpensive. Furthermore, the high-temperature steam separated by the portex tube is sent to the exhaust system or water supply system of the ultra-high pressure turbine, and the low-temperature steam heated by cooling the internal components is sent to the exhaust system of the cylinder pressure turbine.
Since the steam is returned and used for complete heating, deterioration in plant efficiency is minimized. Since these steam systems are located around high-pressure turbines, the piping system can be short, and additional power such as bongos for cooling internal structures is not required, making them extremely economical and practical. expensive.
また、ボルテソクステユープで分離された低温蒸気は完
全に気相であるから、冷却水の混合によシ得られた低温
蒸気に比べて水滴による局所的“な急激な冷却がなく、
熱応力によるひび割れ等の心配がない。In addition, since the low-temperature steam separated by the vortex valve is completely in the gas phase, there is no local rapid cooling caused by water droplets compared to low-temperature steam obtained by mixing cooling water.
There is no need to worry about cracks caused by thermal stress.
本発明によれば、蒸気タービンに対して最適な冷却蒸気
が得られるので過大な熱応力の発生を防止出来、しかも
冷却に供する蒸気の有する熱量を回収してプラント効率
の低下を防止出来るとvlう効果が得られる。According to the present invention, it is possible to obtain the optimum cooling steam for the steam turbine, thereby preventing the generation of excessive thermal stress, and furthermore, by recovering the heat contained in the steam used for cooling, it is possible to prevent a decrease in plant efficiency. The effect is obtained.
第1図は従来の超高温高圧蒸気タービンプラント−の系
統図、第2図は本発明の一実施例である超高温高圧蒸気
タービンプラントの系統図、第3図乃至第6図はそれぞ
れ本発明の他の実施例である超高温高圧蒸気タービンプ
ラントの系統図、第7図は第2図の超旨圧タービン2の
内部冷却4造を示す断面図、第8図は第7図の部分拡大
図、第9図は第8図の他の実施例を示す断面図、第10
図はポルテックスチューブの特性図である。FIG. 1 is a system diagram of a conventional ultra-high-temperature, high-pressure steam turbine plant, FIG. 2 is a system diagram of an ultra-high-temperature, high-pressure steam turbine plant that is an embodiment of the present invention, and FIGS. A system diagram of an ultra-high-temperature, high-pressure steam turbine plant that is another embodiment of the system, Fig. 7 is a sectional view showing the internal cooling structure of the ultra-high pressure turbine 2 in Fig. 2, and Fig. 8 is a partially enlarged view of Fig. 7. 9 is a sectional view showing another embodiment of FIG. 8, and FIG.
The figure shows the characteristics of the portex tube.
Claims (1)
る蒸気タービンと、該蒸気タービンを経た蒸気を復水す
る復水器と、該復水器から復水をボイラに供給する給水
系統とを備えた蒸気タービンプラントにおいて、前記ボ
イラで発生して蒸気タービンを駆動する蒸気の一部をポ
ルテックスチューブ装置に導入して高温蒸気と低温蒸気
とに分離し、このうち前記低温蒸気を蒸気タービンの冷
却必要個所に導き、前記筒温蒸気を蒸気タービンの駆動
蒸気として利用するようにしたことを特徴とする蒸気タ
ービンプラント。 2、特許請求の範囲第1項において、前記蒸気タービン
の冷却必要個所を冷却した後の低温蒸気を、蒸気タービ
ンを構成する複数のタービンのうち、駆動蒸気圧力の低
いタービンの駆動蒸気として利用することを特徴とする
蒸気タービンプラント。 3゜特許請求の範囲第1項において、前記蒸気タービン
の状態に応じて該蒸気ターピ/の冷却必要個所に導かれ
る低温蒸気の蒸気条件を調節する制御装置を設けたこと
を特徴とする蒸気タービンプラント。 4、特許請求の範囲第1項において、前記蒸気タービン
の外ケーシング内壁側に仕切壁を設けて該ケーシングと
仕切壁との間に空間部を形成し、前記ポルテックスチュ
ーブ装置からの低温蒸気をこの空間部に導入するように
したことを特徴とする蒸気タービンプラント。 5、特許請求の範囲第1項において、前記ポルテックス
チューブ装置に導入される蒸気は、前記ボイラから蒸気
タービンに至る蒸気系統から分岐された蒸気であること
を特徴とする蒸気タービンプラント。 6、特許請求の範囲第1項において、前記ポルテックス
チューブ装置に導入される蒸気は、前記蒸気タービン内
に流入した駆動蒸気の一部であることを特徴とする蒸気
タービンプラント。 7、特許請求の範囲第4項において、前記空間部に導入
された低温蒸気は主蒸気管が連結された近傍位置の外ケ
ーシング部分から流下して前記蒸気タービンを構成する
複数のタービンのうち、駆動蒸気圧力の低いタービンに
導入されるようになっていることを特徴とする蒸気ター
ビンプラント。 8゜ボイラと、該ボイラからの発生蒸気により駆動され
る蒸気タービンと、該蒸気タービンを経た蒸気を復水す
る復水器と、該復水器から復水をボイラに供給し、その
途中に給水を加熱する加熱装置を備えた給水系統とを備
えた蒸気タービンプラントにおいて、前記ボイラで、発
生して蒸気タービンを駆動する蒸気の一部をポルテック
スチューブ装置に導入して高温蒸気と低温蒸気とに分離
し、このうち前記低温蒸気を蒸気タービンの冷却必要個
所に導き、前記高温蒸気を給水系統の給水を加熱する加
熱装置に導いて熱回収するようにしたことを特徴とする
蒸気タービンプラント。 9、特許請求の範囲第8項において、前記蒸気タービン
の冷却必要個所を冷却した後の低温蒸気を、前記給水系
統に備えられた複数の加熱装置のうち、蒸気圧力の低い
加熱装置の熱源として導くことを特徴とする蒸気タービ
ンプラント。 10、特許請求の範囲第8項において、前記蒸気タービ
ンの状態に応じて該蒸気タービンの冷却必要個所に導か
れる低温蒸気の蒸気条件を調節するようにした制御装置
を設けたことを特徴とする蒸気タービンプラント。 11、特許請求の範囲第8項において、前記蒸気タービ
ンの外ケーシング内壁側に仕切壁を設けて該ケーシング
と仕切壁との間に空間部を形成し、前記ポルテックスチ
ューブ装置からの低温蒸気をこの空間部に導入するよう
にしたことを特徴とする蒸気タービンプラント。 12、特許請求の範囲第8項に2いて、前記ボルテツク
ステユープ装置に導入される蒸気は、前記ボイラから蒸
気タービンに至る蒸気系統から分岐された蒸気であるこ
とを特徴とする蒸気タービンプラント。 13、特許請求の範囲第8項において、前記ポルテック
スチューブ装置に導入される蒸気は、前記蒸気タービン
内に流入した駆動蒸気の一部であることを特徴とする蒸
気タービンプラント。 14、特許請求の範囲第11項において、前記空間部に
導入された低温蒸気は主蒸気管が連結された近傍位置の
外ケーシング部分から流下して前記加熱装置を構成する
複数の加熱装置のうち、蒸気圧力の低い加熱装置に導入
されるようになっていることを特徴とする蒸気タービン
プラント。[Claims] 1. A boiler, a steam turbine driven by steam generated from the boiler, a condenser for condensing the steam that has passed through the steam turbine, and a condenser for collecting condensate from the condenser. In a steam turbine plant equipped with a water supply system that supplies water to a boiler, a part of the steam generated in the boiler and driving the steam turbine is introduced into a portex tube device and separated into high-temperature steam and low-temperature steam. A steam turbine plant characterized in that the low-temperature steam is guided to a portion of the steam turbine that requires cooling, and the cylinder-temperature steam is used as driving steam for the steam turbine. 2. In claim 1, the low-temperature steam after cooling the parts of the steam turbine that require cooling is used as driving steam for a turbine with a low driving steam pressure among a plurality of turbines constituting the steam turbine. A steam turbine plant characterized by: 3. The steam turbine according to claim 1, further comprising a control device that adjusts the steam conditions of the low-temperature steam that is guided to a cooling-required location of the steam turbine in accordance with the state of the steam turbine. plant. 4. In claim 1, a partition wall is provided on the inner wall side of the outer casing of the steam turbine to form a space between the casing and the partition wall, and the low-temperature steam from the portex tube device is A steam turbine plant characterized by being introduced into this space. 5. A steam turbine plant according to claim 1, wherein the steam introduced into the portex tube device is steam branched from a steam system extending from the boiler to the steam turbine. 6. A steam turbine plant according to claim 1, wherein the steam introduced into the portex tube device is a part of driving steam that has flowed into the steam turbine. 7. In claim 4, the low-temperature steam introduced into the space flows down from an outer casing portion in the vicinity to which the main steam pipe is connected, and the steam turbine comprises one of the plurality of turbines constituting the steam turbine. A steam turbine plant characterized in that it is installed in a turbine with low driving steam pressure. An 8° boiler, a steam turbine driven by the steam generated from the boiler, a condenser that condenses the steam that has passed through the steam turbine, and a condenser that supplies condensed water to the boiler from the condenser. In a steam turbine plant equipped with a water supply system equipped with a heating device for heating feed water, a part of the steam generated in the boiler to drive the steam turbine is introduced into a portex tube device to generate high-temperature steam and low-temperature steam. A steam turbine plant characterized in that the low-temperature steam is guided to a part of the steam turbine that requires cooling, and the high-temperature steam is guided to a heating device for heating feed water of a water supply system for heat recovery. . 9. In claim 8, the low-temperature steam after cooling the parts of the steam turbine that require cooling is used as a heat source for a heating device with low steam pressure among a plurality of heating devices provided in the water supply system. A steam turbine plant characterized by guiding. 10. Claim 8 is characterized in that a control device is provided that adjusts the steam conditions of the low-temperature steam guided to a portion of the steam turbine that requires cooling, depending on the state of the steam turbine. steam turbine plant. 11. In claim 8, a partition wall is provided on the inner wall side of the outer casing of the steam turbine to form a space between the casing and the partition wall, and the low-temperature steam from the portex tube device is A steam turbine plant characterized by being introduced into this space. 12. A steam turbine plant according to claim 8, wherein the steam introduced into the vortex stoop device is steam branched from a steam system extending from the boiler to the steam turbine. . 13. The steam turbine plant according to claim 8, wherein the steam introduced into the portex tube device is part of the driving steam that has flowed into the steam turbine. 14. In claim 11, the low-temperature steam introduced into the space flows down from the outer casing portion in the vicinity to which the main steam pipe is connected, and flows into one of the plurality of heating devices constituting the heating device. , a steam turbine plant characterized in that it is adapted to be introduced into a heating device with low steam pressure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP731183A JPS59134307A (en) | 1983-01-21 | 1983-01-21 | Steam turbine plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP731183A JPS59134307A (en) | 1983-01-21 | 1983-01-21 | Steam turbine plant |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59134307A true JPS59134307A (en) | 1984-08-02 |
Family
ID=11662453
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP731183A Pending JPS59134307A (en) | 1983-01-21 | 1983-01-21 | Steam turbine plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59134307A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1473442A3 (en) * | 2003-04-30 | 2004-11-17 | Kabushiki Kaisha Toshiba | Steam turbine, steam turbine plant and method of operating a steam turbine in a steam turbine plant |
JP2007294258A (en) * | 2006-04-25 | 2007-11-08 | Matsushita Electric Works Ltd | Reflecting mirror and lighting fixture |
US7665955B2 (en) | 2006-08-17 | 2010-02-23 | Siemens Energy, Inc. | Vortex cooled turbine blade outer air seal for a turbine engine |
CN110318834A (en) * | 2018-03-28 | 2019-10-11 | 国家电投集团科学技术研究院有限公司 | The exhaust steam residual heat circulatory system |
-
1983
- 1983-01-21 JP JP731183A patent/JPS59134307A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1473442A3 (en) * | 2003-04-30 | 2004-11-17 | Kabushiki Kaisha Toshiba | Steam turbine, steam turbine plant and method of operating a steam turbine in a steam turbine plant |
JP2007294258A (en) * | 2006-04-25 | 2007-11-08 | Matsushita Electric Works Ltd | Reflecting mirror and lighting fixture |
US7665955B2 (en) | 2006-08-17 | 2010-02-23 | Siemens Energy, Inc. | Vortex cooled turbine blade outer air seal for a turbine engine |
CN110318834A (en) * | 2018-03-28 | 2019-10-11 | 国家电投集团科学技术研究院有限公司 | The exhaust steam residual heat circulatory system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3780884B2 (en) | Steam turbine power plant | |
US20070017207A1 (en) | Combined Cycle Power Plant | |
KR100284392B1 (en) | Method of effecting start-up of a cold steam turbine system in a combined cycle plant. | |
US6263662B1 (en) | Combined cycle power generation plant and cooling steam supply method thereof | |
US6530208B1 (en) | Steam cooled gas turbine system with regenerative heat exchange | |
JP5860597B2 (en) | System and method for preheating exhaust heat recovery boiler piping | |
RU2516068C2 (en) | Gas turbine plant, heat recovery steam generator and method to operate heat recovery steam generator | |
JP2002147205A (en) | Combined cycle gas turbine | |
JP4818353B2 (en) | Start-up method of gas / steam combined turbine equipment | |
US6244039B1 (en) | Combined cycle plant having a heat exchanger for compressed air | |
JP2001514353A (en) | Operating method of combined gas and steam turbine facility and combined gas and steam turbine facility for implementing the method | |
CN102840575A (en) | Composite cycle power generation system improved in efficiency | |
JPS58140408A (en) | Cooler for steam turbine | |
MX2013007023A (en) | A supercritical heat recovery steam generator reheater and supercritical evaporator arrangement. | |
RU2062332C1 (en) | Combined-cycle plant | |
CN101305163B (en) | Method for starting a steam turbine installation | |
JPH10501315A (en) | Method of operating a steam turbine power plant and steam turbine power plant for implementing the method | |
JP2001082109A (en) | Ultra-high temperature power generation system | |
KR100584649B1 (en) | Gas and steam turbine system, and refrigeration of the coolant intended for the gas turbine in such a system | |
JPS59134307A (en) | Steam turbine plant | |
JP2022161839A (en) | Combined cycle power plant having serial heat exchangers | |
JPH11200889A (en) | Gas turbine combined power generation system | |
JPS6035104A (en) | Super high-temperatue, high-pressure steam turbine plant | |
JP4090668B2 (en) | Combined cycle power generation facility | |
JP3880746B2 (en) | Waste heat recovery device and operation method thereof |