JPH0467001B2 - - Google Patents

Info

Publication number
JPH0467001B2
JPH0467001B2 JP8534184A JP8534184A JPH0467001B2 JP H0467001 B2 JPH0467001 B2 JP H0467001B2 JP 8534184 A JP8534184 A JP 8534184A JP 8534184 A JP8534184 A JP 8534184A JP H0467001 B2 JPH0467001 B2 JP H0467001B2
Authority
JP
Japan
Prior art keywords
pressure
bypass valve
load
valve
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8534184A
Other languages
Japanese (ja)
Other versions
JPS60228710A (en
Inventor
Hirofumi Mesaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP8534184A priority Critical patent/JPS60228710A/en
Publication of JPS60228710A publication Critical patent/JPS60228710A/en
Publication of JPH0467001B2 publication Critical patent/JPH0467001B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • F01K7/24Control or safety means specially adapted therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は蒸気タービンの制御装置に係り、特に
バイパス装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a control device for a steam turbine, and particularly to an improvement in a bypass device.

〔発明の技術的背景〕[Technical background of the invention]

一般的な再熱蒸気タービンプラントは第6図に
示すように、ボイラ過熱器1で発生した高温高圧
の蒸気は主蒸気管2を通り、主蒸気止め弁3およ
び蒸気加減弁4を経て高圧タービン6に送り込ま
れる。この高圧タービン6で仕事をした蒸気は逆
止弁8および低温再熱管9を通して再熱器10に
導かれ、ここで再過熱された後、高温再熱管1
1、再熱蒸気止め弁12およびインターセプト弁
13を経て中圧タービン14に入る。また、この
中圧タービン14で仕事を終えた蒸気はクロスオ
ーバ管15を経て低圧タービン16,17に供給
され、ここで仕事をした後、復水器18に送給さ
れて復水となる。
In a typical reheat steam turbine plant, as shown in Fig. 6, high-temperature, high-pressure steam generated in a boiler superheater 1 passes through a main steam pipe 2, passes through a main steam stop valve 3 and a steam control valve 4, and then passes through a high-pressure turbine. sent to 6. The steam that has done work in this high-pressure turbine 6 is led to a reheater 10 through a check valve 8 and a low-temperature reheat pipe 9, where it is resuperheated, and then the high-temperature reheat pipe 1
1. Enters the intermediate pressure turbine 14 via the reheat steam stop valve 12 and the intercept valve 13. Further, the steam that has finished its work in the intermediate pressure turbine 14 is supplied to the low pressure turbines 16 and 17 via the crossover pipe 15, and after doing work there, it is sent to the condenser 18 and becomes condensed water.

また、起動時または極低負荷時にはタービン本
体の極端な過熱あるいは再熱器10の空焚き等を
防止する見地からバイパスシステムを備えてい
る。すなわち、主蒸気管2を通る蒸気の一部は高
圧バイパス管7、高圧バイパス弁19、減温器2
0および低温再熱管9を経て再熱器10に導か
れ、次いで、再熱器10を通過した蒸気は高温再
熱管11、低圧バイパス管5、低圧バイパス弁2
1および減温器22を経て復水器18で回収され
る。
Furthermore, a bypass system is provided to prevent extreme overheating of the turbine body or dry firing of the reheater 10 during startup or at extremely low load. That is, a part of the steam passing through the main steam pipe 2 is transferred to the high pressure bypass pipe 7, the high pressure bypass valve 19, and the desuperheater 2.
The steam that has passed through the reheater 10 is then passed through the high temperature reheat pipe 11, the low pressure bypass pipe 5, and the low pressure bypass valve 2.
1 and a desuperheater 22, and then collected in a condenser 18.

一般に、主蒸気管2の圧力を主蒸気圧力または
高圧バイパス弁前圧力と呼び、高温再熱管11の
圧力を高温再熱圧力または低圧バイパス弁前圧力
と呼んでいるが、高圧バイパス弁19は余剰蒸気
を下流側に流すことにより高圧バイパス弁前圧力
を制御し、低圧バイパス弁21もまた余剰蒸気を
下流側に流すことにより低圧バイパス弁前圧力を
制御している。
Generally, the pressure in the main steam pipe 2 is called the main steam pressure or the pressure before the high-pressure bypass valve, and the pressure in the high-temperature reheat pipe 11 is called the high-temperature reheat pressure or the pressure before the low-pressure bypass valve. The pressure in front of the high-pressure bypass valve is controlled by flowing steam downstream, and the low-pressure bypass valve 21 also controls the pressure in front of the low-pressure bypass valve by flowing excess steam downstream.

この場合、負荷条件に対する主蒸気圧力および
高温再熱圧力は第7図aおよびbの一点鎖線で示
す関係にあり、高圧バイパス弁19は第7図aの
実線のように負荷がある程度大きくなるまで主蒸
気圧力を最低制御圧力と呼ばれる一定圧力に保持
し、その後負荷の増大に応じて一点鎖線で示した
圧力よりも僅かに高い圧力、すなわち、一定の圧
力バイアスが与えられるように主蒸気圧力を制御
し、これと同様に、低圧バイパス弁21もまた第
7図bの実線で示すように、負荷がある程度大き
くなるまで高温再熱圧力を最低制御圧力Aに保持
し、負荷の増大に応じて一点鎖線で示した圧力よ
りも僅かに高い圧力、すなわち、負荷相当圧力に
対して一定の圧力バイアスが与えられるように高
温再熱圧力を制御する。
In this case, the main steam pressure and high-temperature reheat pressure with respect to the load conditions are in the relationship shown by the dashed-dotted lines in FIG. The main steam pressure is maintained at a constant pressure called the minimum control pressure, and then as the load increases, the main steam pressure is increased so that a pressure slightly higher than the pressure indicated by the dashed line, that is, a constant pressure bias is applied. Similarly, the low pressure bypass valve 21 also maintains the high temperature reheat pressure at the minimum control pressure A until the load increases to a certain extent, as shown by the solid line in FIG. The high-temperature reheat pressure is controlled so that a constant pressure bias is applied to the pressure slightly higher than the pressure indicated by the dashed line, that is, the pressure equivalent to the load.

一方、タービン起動前には高圧バイパス弁19
を通る蒸気の全量が低圧バイパス弁21を通して
復水器へ流されるため、起動時の高温再熱圧力は
低圧バイパス弁21の最低制御圧力Aになつてい
る。
On the other hand, before starting the turbine, the high pressure bypass valve 19
Since the entire amount of steam passing through is flowed to the condenser through the low pressure bypass valve 21, the high temperature reheat pressure at startup is the lowest control pressure A of the low pressure bypass valve 21.

しかして、タービン起動時には既に低温再熱管
9および再熱器10が所定の圧力を持つことから
低温再熱管9と高圧タービン6とは逆止弁8で仕
切られた状態にあり、高圧タービン6の内圧が低
温再熱管9の圧力と同じになるまで逆止弁8は開
かれないで運転される、いわゆる、締切り運転と
なる。このため、タービン内部の温度が上昇する
他、逆止弁8の前段の排気室の温度も上昇する。
When the turbine is started, the low-temperature reheat pipe 9 and the reheater 10 already have a predetermined pressure, so the low-temperature reheat pipe 9 and the high-pressure turbine 6 are separated by the check valve 8, and the high-pressure turbine 6 The check valve 8 is operated without being opened until the internal pressure becomes equal to the pressure of the low temperature reheat pipe 9, which is a so-called shut-off operation. Therefore, in addition to the temperature inside the turbine rising, the temperature in the exhaust chamber upstream of the check valve 8 also rises.

かかる締切り運転による温度上昇を低く抑える
ために、高圧タービン6および中圧タービン14
に同時に蒸気を供給して起動させると共に、蒸気
加減弁4によつて制御される高圧タービン6の蒸
気量を、インターセプト弁13によつて制御され
る中圧タービン14の蒸気量より多くして蒸気に
よる冷却効果を高めている。
In order to suppress the temperature rise due to such shut-off operation, the high-pressure turbine 6 and the intermediate-pressure turbine 14
At the same time, the amount of steam in the high pressure turbine 6 controlled by the steam control valve 4 is made larger than the amount of steam in the intermediate pressure turbine 14 controlled by the intercept valve 13. This increases the cooling effect.

第8図はタービン起動時の負荷と、中圧タービ
ン14へ流入する蒸気量に対する高圧タービン6
へ流入する蒸気量の比との関係を示したもので、
負荷がある程度大きくなる迄高圧タービン6側を
多くし、逆止弁8が開き出すと冷却効果が増すの
で高圧タービン6側の蒸気量は少なくても済むこ
とから、逆止弁8の開により高圧タービン6側の
蒸気量を徐々に少なくして定格負荷状態と同様に
1対1の関係に戻している。
FIG. 8 shows the load at startup of the turbine and the amount of steam flowing into the intermediate pressure turbine 14 versus the high pressure turbine 6.
This shows the relationship between the ratio of the amount of steam flowing into the
Increase the amount of steam on the high-pressure turbine 6 side until the load increases to a certain extent, and when the check valve 8 starts to open, the cooling effect increases, so the amount of steam on the high-pressure turbine 6 side can be small. The amount of steam on the turbine 6 side is gradually reduced to return to a one-to-one relationship similar to the rated load state.

第9図はかかる流量比を持たせるために、蒸気
加減弁4およびインターセプト弁13の流量と負
荷との関係を示したもので、a点で起動し、負荷
状態がbのときインターセプト弁13の流量は蒸
気加減弁4の流量の略1/2倍となり、負荷状態が
cのとき両者の流量が同じくなるように、インタ
ーセプト弁13を前半はゆつくりと、後半は速く
開くことによつて上述した流量比を持たせてい
る。また、負荷状態がcになつてからインターセ
プト弁13は全開操作に入り、第7図bに示した
圧力曲線の折点Bの状態で全開する。
Fig. 9 shows the relationship between the flow rate of the steam control valve 4 and the intercept valve 13 and the load in order to provide such a flow rate ratio. The flow rate is approximately 1/2 times that of the steam control valve 4, and the intercept valve 13 is opened slowly in the first half and quickly in the second half so that the flow rate of both is the same when the load condition is c. It has a certain flow rate ratio. Further, after the load condition reaches c, the intercept valve 13 enters a fully open operation, and is fully opened at the corner point B of the pressure curve shown in FIG. 7b.

このように、折点Bでインターセプト弁13を
全開させるが、この折点Bで全開していなくとも
B点以上の負荷では負荷と共に高温再熱圧力が上
昇して必要な流量を確保し得るため、実際にはイ
ンターセプト弁13の全開操作が遅れることにな
る。
In this way, the intercept valve 13 is fully opened at the corner point B, but even if it is not fully opened at the corner point B, the high temperature reheat pressure increases with the load at a load higher than the point B, and the necessary flow rate can be secured. In reality, the full opening operation of the intercept valve 13 will be delayed.

この全開操作の遅れは蒸気通路部の絞り損失を
大きくし、その分だけタービン側の効率低下を招
いている。
This delay in the full opening operation increases the throttling loss in the steam passage, leading to a corresponding decrease in efficiency on the turbine side.

ところで、この種のタービンプラントにあつて
は、第10図に示すように、高圧タービン6の本
体壁部および低温再熱管9または高温再熱管11
より高圧給水加熱器23a,23bへ蒸気を抽気
する構成になつているが、タービン起動時には暖
気運転中であるため高圧給水加熱器23a,23
bは本来の動作を行なわない。したがつて、この
抽気分が再熱器10を経て余分に高温再熱管11
に流入し、この流量増加分だけ高温再熱圧力を上
昇させる。この結果、第11図に示すように、正
規の状態でi1になるインターセプト弁13の開度
がi2(<i1)に留められる。
By the way, in this type of turbine plant, as shown in FIG.
The structure is such that steam is extracted to the higher pressure feed water heaters 23a and 23b, but since the turbine is in warm-up operation when the turbine is started, the high pressure feed water heaters 23a and 23
b does not perform the original operation. Therefore, this extracted portion passes through the reheater 10 and is added to the high temperature reheat pipe 11.
The high temperature reheat pressure is increased by the increased flow rate. As a result, as shown in FIG. 11, the opening degree of the intercept valve 13, which is i 1 in the normal state, is kept at i 2 (<i 1 ).

このことは、インターセプト弁13の開度と、
蒸気加減弁4の開度とを同じ関係に維持したとす
れば、インターセプト弁13側の流量が増し、上
述した流量比の関係がくずれる。そこで、高温再
熱圧力の上昇分だけインターセプト弁13の開度
を小さくし、これに応じて蒸気加減弁4の開度も
小さくする。第12図はこの関係を示したもの
で、インターセプト弁13の流量増加分に対して
このインターセプト弁13の開度がi1からi2に、
蒸気加減4の開度もまたC1からC2に減少し、実
際にはL1からL2に移つて同じ負荷になつている。
This means that the opening degree of the intercept valve 13 and
If the opening degree of the steam control valve 4 is maintained in the same relationship, the flow rate on the intercept valve 13 side will increase, and the above-mentioned relationship in flow rate ratio will collapse. Therefore, the opening degree of the intercept valve 13 is decreased by the increase in the high temperature reheating pressure, and the opening degree of the steam control valve 4 is also decreased accordingly. FIG. 12 shows this relationship, where the opening degree of the intercept valve 13 changes from i 1 to i 2 with respect to the increase in the flow rate of the intercept valve 13.
The opening degree of the steam control 4 also decreases from C 1 to C 2 , and actually moves from L 1 to L 2 with the same load.

また、図示はしないが高温再熱圧力が低下する
と、インターセプト弁の開度が同じでも流量は少
なく、このとき蒸気加減弁4は同じ流量であり、
したがつて同じ負荷をとるためには蒸気加減弁4
とインターセプト弁13の開度は若干増加する。
Although not shown, when the high temperature reheating pressure decreases, the flow rate is small even if the opening degree of the intercept valve is the same, and at this time, the steam control valve 4 has the same flow rate.
Therefore, in order to take the same load, the steam control valve 4
The opening degree of the intercept valve 13 increases slightly.

一方、蒸気加減弁4の開度は最大負荷まで全開
することはないが、インターセプト弁13は蒸気
加減弁4の下流にあり、高圧バイパス弁19と低
圧バイパス弁21とが全閉する負荷で、すなわ
ち、第7図bに示す折点Bの負荷で全開操作を行
なう。これらの関係を第13図に示す。
On the other hand, the opening degree of the steam control valve 4 does not fully open to the maximum load, but the intercept valve 13 is located downstream of the steam control valve 4, and at a load where the high pressure bypass valve 19 and the low pressure bypass valve 21 are fully closed, That is, a full-open operation is performed with the load at the turning point B shown in FIG. 7b. These relationships are shown in FIG.

〔背景技術の問題点〕[Problems with background technology]

かくして、従来のタービンの制御装置にあつて
は、高圧バイパス弁19および低圧バイパス弁2
1は、共に定格負荷時の前圧条件で同じ容量のも
のが用いられること、また、起動時には低圧バイ
パス弁21から見た上流の低温再熱管9または高
温再熱管11の抽気ラインが通常の動作を行なわ
ないことにより、高温再熱管11を流れる蒸気量
が通常運転時に比べて多いため高温再熱圧力が上
昇する。
Thus, in the conventional turbine control device, the high pressure bypass valve 19 and the low pressure bypass valve 2
1 is that the same capacity is used under the pre-pressure condition at rated load, and that the bleed line of the low-temperature reheat pipe 9 or the high-temperature reheat pipe 11 upstream from the low-pressure bypass valve 21 is in normal operation at startup. By not performing this, the amount of steam flowing through the high-temperature reheat pipe 11 is larger than that during normal operation, and the high-temperature reheat pressure increases.

この結果、インターセプト弁13は開度を変え
ないと蒸気流量が増して蒸気加減弁4との流量比
がずれることから、低い開度に整定する。
As a result, if the opening degree of the intercept valve 13 is not changed, the steam flow rate will increase and the flow rate ratio with the steam control valve 4 will deviate, so the intercept valve 13 is set to a low opening degree.

すなわち、正常運転時には第7図bの折れ点B
でインターセプト弁21を全開することができる
が、起動時には高温再熱圧力が高いため低い開度
でも多くの蒸気が流れて全開させることができ
ず、高圧タービン6の蒸気量の減少によつて排気
室温度の上昇を招くという欠点があつた。
In other words, during normal operation, the bending point B in Fig. 7b
The intercept valve 21 can be fully opened at startup, but since the high temperature and reheat pressure is high at startup, a large amount of steam flows even at a low opening, making it impossible to fully open the intercept valve 21. The drawback was that it caused an increase in room temperature.

〔発明の目的〕[Purpose of the invention]

本発明は上記の欠点を除去するためになされた
もので、起動時にインターセプト弁を確実に全開
させ得、これによつて高圧タービンの排気室温度
の上昇を防ぎ得る蒸気タービンの制御装置の提供
を目的とする。
The present invention has been made in order to eliminate the above-mentioned drawbacks, and it is an object of the present invention to provide a steam turbine control device that can reliably fully open an intercept valve at startup, thereby preventing a rise in the temperature of the exhaust chamber of a high-pressure turbine. purpose.

〔発明の概要〕[Summary of the invention]

この目的を達成するために本発明は、タービン
バイパスシステムによる蒸気タービンのタービン
バイパス運転時に、高温再熱圧力の検出信号と設
定信号との偏差が零になるように低圧バイパス弁
の開度を制御する蒸気タービンの制御装置におい
て、所定の負荷未満で高温再熱圧力の最低圧力に
等しく、所定の負荷以上で負荷相当圧力に等しい
第1の圧力関数、および、この第1の圧力関数に
対して一定の圧力バイアス若しくは負荷に比例し
て変化する圧力バイアスを付加した第2の圧力関
数にそれぞれ従う信号を出力し得る圧力設定部
と、高圧バイパス弁および低圧バイパス弁の少な
くとも一方が開いているとき前記第1の圧力関数
に従う信号が出力される側に、高圧バイパス弁お
よび低圧バイパス弁の両方が全閉したとき前記第
2の圧力関数に従う信号が出力される側に前記圧
力設定部の出力状態を切換える設定圧力切換部と
を備え、前記圧力設定部より出力される信号を前
記高温再熱圧力の設定信号とすることを特徴とす
るものである。
To achieve this objective, the present invention controls the opening degree of the low pressure bypass valve so that the deviation between the high temperature reheat pressure detection signal and the setting signal becomes zero during turbine bypass operation of the steam turbine by the turbine bypass system. a first pressure function that is equal to the lowest pressure of the high temperature reheat pressure below a predetermined load and equal to the load equivalent pressure above the predetermined load; a pressure setting section capable of outputting signals each according to a second pressure function to which a constant pressure bias or a pressure bias that changes in proportion to the load is added; and when at least one of the high pressure bypass valve and the low pressure bypass valve is open. The output state of the pressure setting unit is on the side where the signal according to the first pressure function is output, and on the side where the signal according to the second pressure function is output when both the high pressure bypass valve and the low pressure bypass valve are fully closed. and a set pressure switching section for switching the pressure, and a signal output from the pressure setting section is used as a setting signal for the high temperature reheat pressure.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を、低圧バイパス弁の
圧力制御系の構成および特性を併せて図面を参照
して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings, together with the configuration and characteristics of a pressure control system of a low-pressure bypass valve.

先ず、高温再熱圧力は低圧バイパス弁によつて
制御されるもので、第14図に示す圧力制御系を
備えている。すなわち、負荷信号S24を加えたと
き第15図aに示すように負荷がb点より小さい
間は高温再熱圧力の最低圧力に等しく、負荷がb
点を超える間は一点鎖線で示した負荷相当圧力に
対して一定の圧力バイアスを付加した高温再熱圧
力設定信号S25を出力する関数発生器25と、こ
の高温再熱圧力設定信号S25および高温再熱圧力
検出信号S27を比較して両者の偏差を求める加算
器26と、この加算器26で得られた偏差分に応
じて第15図bに示す低圧バイパス弁21の開度
指令信号S29を出力する圧力ゲインとも呼ばれる
信号変換器28とで構成されている。
First, the high temperature reheat pressure is controlled by a low pressure bypass valve, which is equipped with a pressure control system shown in FIG. That is, when the load signal S24 is applied, as shown in Figure 15a, while the load is lower than point b, it is equal to the lowest pressure of the high temperature reheat pressure,
The function generator 25 outputs the high temperature reheat pressure setting signal S25 with a constant pressure bias added to the load equivalent pressure shown by the dashed line while the high temperature reheat pressure setting signal S25 and the high temperature reheat pressure are exceeded. An adder 26 that compares the thermal pressure detection signal S27 to find the deviation between the two, and outputs an opening command signal S29 for the low pressure bypass valve 21 shown in FIG. 15b in accordance with the deviation obtained by the adder 26. A signal converter 28, also called a pressure gain, is used.

なお、ここで言う負荷相当圧力とは、タービン
負荷運転時に高温再熱管の流量によつて発生する
圧力を言い、一点鎖線のように負荷に比例して変
化する。
Note that the load-equivalent pressure referred to herein refers to the pressure generated by the flow rate of the high-temperature reheat pipe during turbine load operation, and changes in proportion to the load as shown by the dashed line.

第15図aの実線のように圧力設定すると正常
運転ではインターセプト弁21を全開させること
ができるが、起動時には高温再熱圧力が高いので
インターセプト弁21は全開されずに絞られて了
う。
If the pressure is set as shown by the solid line in FIG. 15a, the intercept valve 21 can be fully opened during normal operation, but since the high temperature reheat pressure is high at startup, the intercept valve 21 is not fully opened but is throttled.

ここで、関数発生器25の出力特性を例えば第
16図aに示すように、負荷がb1点に到達するま
で高温再熱圧力の最低力に等しく、b1点以上で負
荷相当圧力に対応した高温再熱圧力設定信号を出
力するものを用いることによつて第16図bに示
す開度指令信号を出力させるならば、インターセ
プト弁13を全開させる負荷が負荷差(b1−b)
の分だけ高くなり、この結果、インターセプト弁
のリフト特性をゆるくし得、全開操作中の負荷変
動に対して弁リフトの振れを小さくでき安定した
制御を行ない得ると言える。
Here, the output characteristic of the function generator 25 is, for example, as shown in FIG . If the opening command signal shown in FIG. 16b is output by using a device that outputs the high temperature reheat pressure setting signal, the load to fully open the intercept valve 13 will be the load difference (b 1 - b).
As a result, it can be said that the lift characteristics of the intercept valve can be made gentler, and that fluctuations in the valve lift can be reduced against load fluctuations during full-open operation, and stable control can be performed.

しかしながら、この場合には起動時の高圧給水
加熱器23a,23bによる暖気運転中は何等問
題はないが、正常運転時に負荷が降下するときに
は負荷相当圧力線よりも下がり、B1点で折れて
最低圧力線を通りA点に達する。
However, in this case, there is no problem during the warm-up operation by the high-pressure feed water heaters 23a and 23b at startup, but when the load drops during normal operation, it falls below the load equivalent pressure line, breaks at point B, and reaches the lowest point. It passes through the pressure line and reaches point A.

かかる状況では、小きな圧力変動による圧力上
昇でも、高温再熱圧力検出信号S27が高温再熱圧
力設定信号S25より大きくなり、これによつて、
加算器26の出力が正に転じて低圧バイパス弁2
1を開くことから蒸気が復水器18に捨てられて
プラントの効率を低下させることになる。
In such a situation, even if the pressure increases due to small pressure fluctuations, the high temperature reheat pressure detection signal S27 becomes larger than the high temperature reheat pressure setting signal S25, and thereby,
The output of the adder 26 turns positive and the low pressure bypass valve 2
1, steam will be dumped into the condenser 18, reducing the efficiency of the plant.

そこで、本発明では第1図に示すように、一定
の圧力バイアス信号を出力する圧力バイアス設定
器30と、インターロツク回路32によつて励磁
されるリレー31と、関数発生器25aの出力
に、リレー31の接点を介して得られる圧力バイ
アス設定器30の圧力バイアス信号を加える加算
器33とを新たに付加している。
Therefore, in the present invention, as shown in FIG. 1, a pressure bias setting device 30 that outputs a constant pressure bias signal, a relay 31 excited by an interlock circuit 32, and an output of a function generator 25a, An adder 33 that adds the pressure bias signal of the pressure bias setting device 30 obtained through the contacts of the relay 31 is newly added.

この場合、関数発生器25aは第16図aに示
すように、所定の負荷b1より小さいとき高温再熱
圧力の最低圧力に等しく、所定の負荷b1より大き
いとき負荷相当圧力に対して圧力バイアスのない
特性のものを用いている。また、インターロツク
回路32は第2図に示すように、高圧バイパス弁
19が全閉したとき動作する図示しないリレーの
常開接点32aおよび低圧バイパス弁21が全閉
したとき動作する図示しないリレーの常開接点3
2bの直列回路でなり、高圧バイパス弁19およ
び低圧バイパス弁21が同時に全閉したときリレ
ー31を励磁する構成になつている。
In this case, the function generator 25a, as shown in FIG. A device with non-bias characteristics is used. In addition, as shown in FIG. 2, the interlock circuit 32 includes a normally open contact 32a of a relay (not shown) that operates when the high pressure bypass valve 19 is fully closed, and a normally open contact 32a of a relay (not shown) that operates when the low pressure bypass valve 21 is fully closed. Normally open contact 3
2b in series, and is configured to energize the relay 31 when the high pressure bypass valve 19 and the low pressure bypass valve 21 are fully closed at the same time.

上記の如く構成された本実施例の作用を第3図
および第4図をも参照して以下に説明する。
The operation of this embodiment configured as described above will be explained below with reference to FIGS. 3 and 4.

先ず、タービンバイパス運転時には高圧バイパ
ス弁19および低圧バイパス弁21が開かれる。
よつて、リレー31は動作せず関数発生器25a
の圧力設定信号S25と高温再熱圧力検出信号S27
との偏差に基いて低圧バイパス弁21の開度が制
御される。
First, during turbine bypass operation, the high pressure bypass valve 19 and the low pressure bypass valve 21 are opened.
Therefore, the relay 31 does not operate and the function generator 25a
Pressure setting signal S25 and high temperature reheat pressure detection signal S27
The opening degree of the low pressure bypass valve 21 is controlled based on the deviation from the above.

なお、高圧バイパス弁19および低圧バイパス
弁21の弁開度(または流量)は第3図に示すよ
うに、低圧バイパス弁21が高圧バイパス弁19
よりもスプレー水分だけ高い開度を保つたまま、
負荷の上昇に従つて次第に閉じられ、高圧バイパ
ス弁19は負荷L3で、低圧バイパス弁21は負
荷L4でそれぞれ全閉される。
Note that the valve opening degrees (or flow rates) of the high pressure bypass valve 19 and the low pressure bypass valve 21 are as shown in FIG.
While keeping the opening degree higher than that of the spray water,
They are gradually closed as the load increases, and the high pressure bypass valve 19 is fully closed at load L3 , and the low pressure bypass valve 21 is fully closed at load L4 .

このことは、余剰の蒸気が無くなつたために高
圧バイパス弁19を全閉して蒸気が低温再熱管9
に流れないようにし、低圧バイパス弁21を全閉
して蒸気が復水器18へ逃げないようにしたこと
に他ならない。
This means that the high-pressure bypass valve 19 is fully closed and the steam is transferred to the low-temperature reheat pipe 9 because there is no surplus steam left.
This is nothing more than to completely close the low-pressure bypass valve 21 to prevent steam from escaping to the condenser 18.

かくして、負荷がL4になるとインターロツク
回路32の作用によつてリレー31が励磁され、
圧力バイアス設定器30の圧力バイアス信号が関
数発生器25aの圧力設定信号S25とともに加算
器26に加えられる。この結果、第4図aに示す
圧力関数から、これに一定の圧力バイアスが加え
られた第4図bに示す圧力関数に切換えられたこ
とになる。
Thus, when the load reaches L4 , the relay 31 is energized by the action of the interlock circuit 32,
The pressure bias signal from the pressure bias setter 30 is applied to the adder 26 together with the pressure setting signal S25 from the function generator 25a. As a result, the pressure function shown in FIG. 4a is switched to the pressure function shown in FIG. 4b to which a constant pressure bias is added.

すなわち、負荷がL4未満では第4図aの圧力
関数に従つて高温再熱圧力が設定され、負荷が
L4以上のときおよび負荷の降下時には、高圧バ
イパス弁19および低圧バイパス弁21の少なく
とも一方が開き出す負荷まで第4図bの圧力関数
に従つて高温再熱圧力が設定される。
In other words, when the load is less than L 4 , the high temperature reheat pressure is set according to the pressure function in Figure 4a, and the load is
When L 4 or more and when the load decreases, the high temperature reheat pressure is set according to the pressure function of FIG. 4b until the load starts to open at least one of the high pressure bypass valve 19 and the low pressure bypass valve 21.

なお、第4図bの圧力直線A′−B′1間は最低圧
力Aよりも圧力バイアス分dだけ高くなつている
が、高圧バイパス弁19および低圧バイパス弁2
1の何れか一方が開き出すとインターロツク回路
32の作用により圧力バイアス設定器30が除外
されるのですぐに最低圧力Aに戻る。したがつ
て、タービンバイパス運転時には必ず最低圧力A
に設定される。
Note that the pressure line A'-B' 1 in FIG. 4b is higher than the lowest pressure A by a pressure bias amount d,
1 begins to open, the pressure bias setting device 30 is excluded by the action of the interlock circuit 32, and the pressure immediately returns to the lowest pressure A. Therefore, during turbine bypass operation, the minimum pressure A is always
is set to

一方、負荷しや断等により逆止弁8の全閉後、
これが再び開き始めたときには低温再熱管9の圧
力が低圧バイパス弁21によつて最低圧力Aに制
御されるため、高圧タービン6の排気室圧力は最
低圧力Aまでしか上昇せず、排気室温度が排気室
圧力高によつて過熱するという事態をも防ぎ得
る。
On the other hand, after the check valve 8 is fully closed due to load interruption, etc.
When this starts to open again, the pressure in the low-temperature reheat pipe 9 is controlled to the minimum pressure A by the low-pressure bypass valve 21, so the exhaust chamber pressure of the high-pressure turbine 6 increases only to the minimum pressure A, and the exhaust chamber temperature decreases. It is also possible to prevent overheating due to high pressure in the exhaust chamber.

なお、上記実施例では、圧力バイアス設定器3
0によつて一定の圧力バイアスを与えるものにつ
いて説明したが、例えば、第5図aに示す如く、
圧力バイアスが0〜100%負荷間で負荷に比例し、
且つ、100%負荷時に適切な大きさとなる圧力バ
イアス設定器を用いることによつて第5図bに示
す圧力関数を得、高圧バイパス弁19および低圧
バイパス弁21の両方が全閉したか否かにより第
4図aに示した圧力関数と、第5図bに示した圧
力関数とを切換えるようにすれば、低負荷で過度
の圧力バイアスが加わることもなく適切な圧力制
御が可能になる。
In addition, in the above embodiment, the pressure bias setting device 3
0 gives a constant pressure bias, but for example, as shown in FIG. 5a,
Pressure bias is proportional to load between 0 and 100% load,
In addition, by using a pressure bias setting device that has an appropriate size at 100% load, obtain the pressure function shown in FIG. 5b, and check whether both the high pressure bypass valve 19 and the low pressure bypass valve 21 are fully closed. By switching between the pressure function shown in FIG. 4a and the pressure function shown in FIG. 5b, appropriate pressure control can be achieved at low loads without applying excessive pressure bias.

なおまた、上記実施例では所定の負荷に上昇す
るまで高温再熱圧力の最低圧力に等しく、所定の
負荷以上で負荷相当圧力に対して圧力バイアスを
かけない圧力関数と、この圧力関数に所定の圧力
バイアスを与えてもう一つの圧力関数を作り、こ
れら両圧力関数を切換えているが、これと同様な
圧力設定信号をそれぞれ出力する2つの関数発生
器を切換え得る圧力設定部と、高圧バイパス弁お
よび低圧バイパス弁の両方が全閉したか否かによ
り圧力設定部の関数切換えを行なう設定圧力切換
部とを備えるならば上述したと同様な作用を行な
わせることができる。
Furthermore, in the above embodiment, there is a pressure function that is equal to the lowest pressure of high-temperature reheat pressure until the load rises to a predetermined load and does not apply a pressure bias to the load equivalent pressure above the predetermined load, and a predetermined pressure function for this pressure function. A pressure bias is applied to create another pressure function, and these two pressure functions are switched.A pressure setting section that can switch between two function generators each outputting a pressure setting signal similar to this, and a high pressure bypass valve are used. The same effect as described above can be achieved by providing a set pressure switching section that switches the function of the pressure setting section depending on whether both the low pressure bypass valve and the low pressure bypass valve are fully closed.

〔発明の効果〕〔Effect of the invention〕

以上の説明によつて明らかな如く、本発明によ
れば、所定の負荷未満で高温再熱圧力の最低圧力
に等しく、所定の負荷以上で負荷相当圧力に等し
い第1の圧力関数、および、この第1の圧力関数
に対して一定の圧力バイアス若しくは負荷に比例
して変化する圧力バイアスを負荷した第2の圧力
関数にそれぞれ従う圧力設定信号を切換えて出力
し得る圧力設定部と、高圧バイパス弁および低圧
バイパス弁の少なくとも一方が開いているとき前
記第1の圧力関数に従う圧力設定信号が出力され
る側に、高圧バイパス弁および低圧バイパス弁の
両方が全閉したとき前記第2の圧力関数に従う圧
力設定信号が出力される側にそれぞれ前記圧力設
定部を切換える設定圧力切換部とを備えているの
で、起動時に高温再熱圧力が高くなつたとしても
インターセプト弁を確実に全開させ得、且つ、タ
ービンの排気室温度の過度の上昇を防ぐことがで
きる。
As is clear from the above description, according to the present invention, a first pressure function that is equal to the lowest pressure of high temperature reheat pressure below a predetermined load and equal to the load equivalent pressure above a predetermined load; a pressure setting section capable of switching and outputting a pressure setting signal according to a second pressure function loaded with a constant pressure bias or a pressure bias that changes in proportion to the load with respect to the first pressure function; and a high pressure bypass valve. and a pressure setting signal according to the first pressure function is output when at least one of the low pressure bypass valves is open, and according to the second pressure function when both the high pressure bypass valve and the low pressure bypass valve are fully closed. Since a set pressure switching section for switching the pressure setting section is provided on the side where the pressure setting signal is output, the intercept valve can be reliably fully opened even if the high temperature reheat pressure increases at the time of startup, and Excessive rise in temperature in the exhaust chamber of the turbine can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成を示すブロツ
ク図、第2図は同実施例の主要な要素の詳細な構
成を示す回路図、第3図および第4図は同実施例
の作用を説明するための特性図、第5図は他の実
施例の作用を説明するための特性図、第6図およ
び第10図は本発明の適用対象である再熱蒸気タ
ービンプラントの系統図、第7図乃至第9図、お
よび、第11図乃至第13図はこの再熱蒸気ター
ビンプラントの動作を説明するための特性図、第
14図は従来の制御装置の要部の構成を示すブロ
ツク図、第15図および第16図はこの制御装置
の作用を説明するための特性図である。 6……高圧タービン、14……中圧タービン、
16,17……低圧タービン、13……インター
セプト弁、19……高圧バイパス弁、21……低
圧バイパス弁、25a……関数発生器、30……
圧力バイアス設定器、32……インターロツク回
路、31……リレー。
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention, FIG. 2 is a circuit diagram showing the detailed configuration of the main elements of the embodiment, and FIGS. 3 and 4 show the operation of the embodiment. FIG. 5 is a characteristic diagram for explaining the operation of another embodiment, FIGS. 6 and 10 are system diagrams of a reheat steam turbine plant to which the present invention is applied, 7 to 9 and 11 to 13 are characteristic diagrams for explaining the operation of this reheat steam turbine plant, and FIG. 14 is a block diagram showing the configuration of the main parts of a conventional control device. 15 and 16 are characteristic diagrams for explaining the operation of this control device. 6...High pressure turbine, 14...Intermediate pressure turbine,
16, 17...Low pressure turbine, 13...Intercept valve, 19...High pressure bypass valve, 21...Low pressure bypass valve, 25a...Function generator, 30...
Pressure bias setting device, 32...interlock circuit, 31...relay.

Claims (1)

【特許請求の範囲】[Claims] 1 タービンバイパスシステムによる蒸気タービ
ンのタービンバイパス運転時に、高温再熱圧力の
検出信号と設定信号との偏差が零になるように低
圧バイパス弁の開度を制御する蒸気タービンの制
御装置において、所定の負荷未満で高温再熱圧力
の最低圧力に等しく、所定の負荷以上で負荷相当
圧力に等しい第1の圧力関数、および、この第1
の圧力関数に対して一定の圧力バイアス若しくは
負荷に比例して変化する圧力バイアスを付加した
第2の圧力関数にそれぞれ従う信号を切換えて出
力し得る圧力設定部と、高圧バイパス弁および低
圧バイパス弁の少なくとも一方が開いているとき
前記第1の圧力関数に従う信号が出力される側
に、高圧バイパス弁および低圧バイパス弁の両方
が全閉したとき前記第2の圧力関数に従う信号が
出力される側に前記圧力設定部の出力状態を切換
える設定圧力切換部とを具備し、前記圧力設定部
より出力される信号を前記高温再熱圧力の設定信
号とすることを特徴とする蒸気タービンの制御装
置。
1. In a steam turbine control device that controls the opening degree of a low pressure bypass valve so that the deviation between the high temperature reheat pressure detection signal and the setting signal becomes zero during turbine bypass operation of the steam turbine by the turbine bypass system, a predetermined a first pressure function equal to the lowest pressure of the hot reheat pressure below the load and equal to the load equivalent pressure above a predetermined load;
a pressure setting section capable of switching and outputting signals according to a second pressure function in which a constant pressure bias or a pressure bias that changes in proportion to load is added to the pressure function; a high pressure bypass valve and a low pressure bypass valve; a side on which a signal according to the first pressure function is output when at least one of the high pressure bypass valve and the low pressure bypass valve is fully closed, and a side on which a signal according to the second pressure function is output when both the high pressure bypass valve and the low pressure bypass valve are fully closed. and a set pressure switching section that switches an output state of the pressure setting section, and a signal output from the pressure setting section is used as a setting signal for the high temperature reheat pressure.
JP8534184A 1984-04-27 1984-04-27 Control device for steam turbine Granted JPS60228710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8534184A JPS60228710A (en) 1984-04-27 1984-04-27 Control device for steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8534184A JPS60228710A (en) 1984-04-27 1984-04-27 Control device for steam turbine

Publications (2)

Publication Number Publication Date
JPS60228710A JPS60228710A (en) 1985-11-14
JPH0467001B2 true JPH0467001B2 (en) 1992-10-27

Family

ID=13855949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8534184A Granted JPS60228710A (en) 1984-04-27 1984-04-27 Control device for steam turbine

Country Status (1)

Country Link
JP (1) JPS60228710A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2809836B2 (en) * 1990-08-01 1998-10-15 株式会社東芝 Turbine control device
CN100439659C (en) * 2007-06-11 2008-12-03 上海外高桥第三发电有限责任公司 Electric generating set side road control method
CN100473805C (en) * 2007-06-11 2009-04-01 上海外高桥第三发电有限责任公司 Electric generating set small side road system and control method thereof
EP2213847A1 (en) * 2008-09-24 2010-08-04 Siemens Aktiengesellschaft Steam power assembly for creating electrical energy

Also Published As

Publication number Publication date
JPS60228710A (en) 1985-11-14

Similar Documents

Publication Publication Date Title
JPH0467001B2 (en)
JPS628603B2 (en)
CA1138657A (en) Control system for steam turbine plants including turbine bypass systems
JPS628605B2 (en)
US4338789A (en) Method of varying turbine output of a supercritical-pressure steam generator-turbine installation
JP4560481B2 (en) Steam turbine plant
JPH0953414A (en) Turbine steam extraction control device
JPS6239655B2 (en)
JPH03267509A (en) Control method of reheating steam turbine
JPH0232442B2 (en) JOKITAABINNOKIDOHOHO
CA1057065A (en) Control systems for steam turbine plants including turbine bypass systems
JP2523493B2 (en) Turbin bypass system
JPH03282102A (en) Exhaust heat recovery boiler and controller of temperature reducing device used for it
JP3567296B2 (en) Turbine control unit
JP2620124B2 (en) Bleed turbine control method and apparatus
JPH0719007A (en) Turbine control device
JPH0330687B2 (en)
JPS61164004A (en) Control method of steam turbine
JPH0399101A (en) Controller of exhaust heat recovering heat exchanger
JPH04342806A (en) Steam turbine control device for combined power plant
JPS6155303A (en) Controlling device of steam turbine
JPS60216005A (en) Turbine high speed valve control device
CA1163814A (en) Method of varying turbine output of a supercritical- pressure steam generator-turbine installation
JPH07103808B2 (en) Load back-up method when the system frequency drops sharply
JPS63162906A (en) Steam turbine plant

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees