EP2213847A1 - Steam power assembly for creating electrical energy - Google Patents

Steam power assembly for creating electrical energy Download PDF

Info

Publication number
EP2213847A1
EP2213847A1 EP08016801A EP08016801A EP2213847A1 EP 2213847 A1 EP2213847 A1 EP 2213847A1 EP 08016801 A EP08016801 A EP 08016801A EP 08016801 A EP08016801 A EP 08016801A EP 2213847 A1 EP2213847 A1 EP 2213847A1
Authority
EP
European Patent Office
Prior art keywords
steam
pressure
medium
pipe
power plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08016801A
Other languages
German (de)
French (fr)
Inventor
Bernd Leu
Andreas Logar
Heinz Lötters
Stephan Minuth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP08016801A priority Critical patent/EP2213847A1/en
Priority to EP09783070.7A priority patent/EP2326800B1/en
Priority to PL09783070T priority patent/PL2326800T3/en
Priority to US13/119,438 priority patent/US8925321B2/en
Priority to JP2011528292A priority patent/JP2012503737A/en
Priority to KR1020117006679A priority patent/KR101322148B1/en
Priority to PCT/EP2009/061993 priority patent/WO2010034659A2/en
Priority to CN200980137447.0A priority patent/CN102165145B/en
Priority to RU2011116163/06A priority patent/RU2481477C2/en
Publication of EP2213847A1 publication Critical patent/EP2213847A1/en
Priority to JP2012173690A priority patent/JP5314178B2/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/165Controlling means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • F01K13/025Cooling the interior by injection during idling or stand-by

Definitions

  • the invention relates to a steam power plant for generating electrical energy comprising a steam turbine, a steam generator and a condenser and a live steam pipe, which fluidly connects the steam turbine with the steam generator, a Abdampfrohr admir which fluidly connects the steam turbine to the condenser and a Umleitrohr admir, the Fresh steam pipe with the exhaust steam pipe fluidly connects together.
  • the steam flowing out of the steam generator flows into the steam turbine and cools down, the vapor pressure decreasing.
  • the effluent steam from the steam turbine is fed to the condenser.
  • a live steam valve arranged in front of the steam turbine is closed and the live steam is conducted via a bypass pipe, the bypass pipe leading into an exhaust steam pipe of the steam turbine.
  • the Abdampfrohr ein is usually referred to as a cold reheater line, if it opens into a reheater in which the steam is heated to a higher temperature. The higher the steam temperatures are, the higher the cost of the piping, bypass stations and the Umleitdampfeinspritzung to the condenser.
  • Efforts are being made to achieve steam temperatures of about 720 ° C. Such high temperatures require the use of special materials, such as nickel-based materials.
  • Materials made of nickel are materials with a nickel content of about 40 to 50 wt .-%. However, such nickel base materials are comparatively expensive.
  • a material made of nickel-based is particularly resilient thermally.
  • the invention begins, whose task is to provide a steam power plant, which is suitable for high temperatures and can be formed comparatively low.
  • a steam power plant for generating electrical energy comprising a steam turbine, a steam generator and a condenser and a live steam pipe, which fluidly connects the steam turbine to the steam generator, a Abdampfrohr ein which fluidly connects the steam turbine to the condenser, a Umleitrohr ein, which fluidly connects the live steam pipe to the exhaust steam pipe, wherein a bypass steam cooler is provided in the bypass pipe, which is formed to cool a steam that is flowable or standing in the bypass pipe.
  • cooling of the steam takes place in the bypass steam cooler by injecting cooling medium such as condensate, steam or a mixture of water and steam.
  • cooling medium such as condensate, steam or a mixture of water and steam.
  • the diverting steam cooler is arranged immediately after a first branch from the live steam pipe to the bypass pipe.
  • the bypass steam cooler should be placed as close to the first branch as possible. This has the advantage that the costs for the production of the steam power plant can be further reduced because the use of expensive nickel base material is avoided. The closer the bypass steam cooler is mounted to the first branch from the live steam piping to the bypass piping, the less nickel base material is needed between the first branch to the bypass steam cooler.
  • the distance between the bypass steam cooler and the high-pressure bypass valve is selected such that the cooling medium is completely mixed with the steam.
  • the FIG. 1 shows a steam power plant 1 according to the prior art.
  • the steam power plant 1 comprises a steam generator 2, a steam turbine 3, wherein the steam turbine 3 comprises a high-pressure turbine section 3a, medium-pressure turbine section 3b and low-pressure turbine section 3c and a condenser 4. Furthermore, a live steam pipe 5 is provided, which the steam turbine 3 with the steam generator 2 fluidly connects to each other. After the steam turbine 3, a Abdampfrohr Arthur 6 is arranged, which connects the steam turbine 3 with the condenser 4 fluidly. Between the high-pressure turbine part 3a and the condenser 4, a reheater 7 is provided.
  • the steam flowing into the reheater 7 is heated to a higher temperature and conducted via a hot reheater line 8 to the medium-pressure turbine section 3b.
  • the Abdampfrohr Arthur 6 can also be referred to as a cold reheater line 9.
  • a quick-closing and control valve 10 is arranged in front of the steam turbine 3.
  • a quick-closing and control valve 11 is also arranged in front of the steam turbine 3.
  • the live steam pipe 5 is fluidly connected to the exhaust steam pipe 6 and the cold reheater pipe 9 via a Umleitrohrtechnisch 12.
  • a high-pressure diverter valve 13 is arranged.
  • the hot reheater line 8 is fluidically connected to the condenser 4 via a medium-pressure Umleitrohrtechnisch 14.
  • a medium-pressure diverter valve 17 is arranged in the medium-pressure Umleitrohr admir 14.
  • the steam is conducted from the live steam pipe 5 via the bypass pipe 12 into the cold reheater pipe 9.
  • the quick-closing and control valve 10 is closed and the high-pressure diverter valve 13 is opened. Since the temperature of the live steam flowing into the bypass pipe 12 is comparatively high, the steam is sprayed with a cooling medium 15 in a cooling unit 16 before entering the cold reheater pipe 9.
  • the steam is then passed through the reheater 7, the hot reheater line 8 to the medium-pressure Umleitrohrtechnisch 14 in the condenser 4.
  • the quick-closing and control valve 11 is closed and the medium-pressure diverter valve 17 is opened.
  • the steam is in turn injected with a cooling medium 18 in a cooling unit 19, so that the capacitor can absorb the amounts of energy. Since the temperatures and the pressure of the steam are comparatively high, the live steam pipe 5, the bypass pipe 12, the hot reheater pipe 9 and the medium pressure bypass pipe 14 must be designed for the pressure and the temperature of the reheater 7. The higher the steam temperatures are, the higher are the costs for the pipelines 5, 12, 9, 8, 1, for the valves 17, 13 and the cooling units 16 and 19.
  • FIG. 2 a steam power plant 1 according to the invention is shown.
  • the difference to the in FIG. 1 illustrated steam power plant 1 is that in the Umleitrohr admir 12 and in the medium-pressure Umleitrohr admir 14 a Umleitdampfkühler 20 and a medium-pressure Umleitdampfkühler 21 are arranged.
  • the bypass steam cooler 20 and the medium pressure bypass steam cooler 21 are for cooling one in the bypass pipe 12 and the medium-pressure Umleitrohrtechnisch 14 located flowable or stationary steam formed.
  • condensate, steam or a mixture of water and steam is injected into the flowing or standing steam.
  • the temperature of the flowing or standing steam is reduced.
  • the supplied into the steam cooling medium 22 thus cools the steam.
  • the injection of the cooling medium 22 into the Umleitrohrtechnisch 12, and in the medium-pressure Umleitrohr admir 14 should be as close to a first branch 23 and after a second branch 24 are arranged.
  • the distance between the bypass steam cooler 20 and the high-pressure bypass valve 13 is selected such that the steam is completely mixed with the cooling medium 22.
  • the distance between the medium-pressure Umleitdampfkühler 21 and the medium-pressure diverter valve 17 is selected such that the steam with the cooling medium 22 can be completely mixed.
  • the cooling unit 16 and 19 can be dispensed with the cooling unit 16 and 19, if the live steam parameters have corresponding values. For this, the live steam mass flow, pressure and temperature, water injection quantity and temperature must have permissible values.
  • the bypass steam cooler 20 and the medium-pressure bypass steam cooler 21 are switched on as soon as the bypass valve 13 and the medium-pressure bypass valve 17 are opened. As a result, an inadmissible temperature exceeded in the cooled Umleitrohrön 25 and 26 effectively avoided.
  • the bypass steam cooler 20 is operated until the temperatures before the bypass steam cooler 20 fall below the permissible temperature in the pipelines 25. If drainages or Anürmtechnischen are arranged in the cooled Umleitrohr Oberen 25 and 26, they must remain closed until the temperature before Umleitdampfkühler 20 and medium-pressure Umleitdampfkühler 21 below the allowable temperature in the cooled pipes 25 and 26 respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

The power plant (1) has a fresh steam line (5) for connecting a steam turbine (3) e.g. high pressure turbine, medium pressure turbine and low pressure turbine, with a steam generator (2) in a flow-technical manner, and an exhaust steam line (6) for connecting the steam turbine with a condenser (4) in a flow-technical manner. A bypass pipeline (12) connects the fresh steam line with the exhaust steam line in a flow-technical manner, and a bypass steam desuperheater (20) is arranged in the bypass pipeline for cooling steam flowing into the bypass pipeline.

Description

Die Erfindung betrifft eine Dampfkraftanlage zur Erzeugung elektrischer Energie umfassend eine Dampfturbine, einen Dampferzeuger und einen Kondensator sowie eine Frischdampfrohrleitung, die die Dampfturbine mit dem Dampferzeuger strömungstechnisch miteinander verbindet, einer Abdampfrohrleitung, die die Dampfturbine mit dem Kondensator strömungstechnisch miteinander verbindet und einer Umleitrohrleitung, die die Frischdampfrohrleitung mit der Abdampfrohrleitung strömungstechnisch miteinander verbindet.The invention relates to a steam power plant for generating electrical energy comprising a steam turbine, a steam generator and a condenser and a live steam pipe, which fluidly connects the steam turbine with the steam generator, a Abdampfrohrleitung which fluidly connects the steam turbine to the condenser and a Umleitrohrleitung, the Fresh steam pipe with the exhaust steam pipe fluidly connects together.

In einer Dampfkraftanlage wird Wärmeenergie in mechanische Energie und schließlich in elektrische Energie umgewandelt, wobei Wasserdampf vom Dampferzeuger in eine Expansionsmaschine wie z.B. einer Dampfturbine strömt, wobei sich der Dampf in der Dampfturbine unter Arbeitsabgabe entspannt. Der aus der Dampfturbine ausströmende Dampf wird in einem nachgeschalteten Kondensator durch Wärmeentzug wieder verflüssigt. Das im Kondensator entstehende Wasser wird von einer Speisewasserpumpe wieder zum Dampferzeuger gefördert, wodurch ein geschlossener Kreislauf entsteht.In a steam power plant, heat energy is converted into mechanical energy and finally into electrical energy, whereby steam from the steam generator is fed into an expansion machine, such as a steam generator. a steam turbine flows, whereby the steam in the steam turbine relaxes under work output. The effluent from the steam turbine steam is liquefied in a downstream condenser by removing heat. The resulting water in the condenser is fed by a feedwater pump back to the steam generator, creating a closed circuit.

Im Betriebszustand strömt der aus dem Dampferzeuger strömende Dampf in die Dampfturbine und kühlt sich hierbei ab, wobei der Dampfdruck abnimmt. Der aus der Dampfturbine ausströmende Dampf wird dem Kondensator zugeleitet. Beim Anfahren, Abfahren oder bei einem Dampfturbinenschnellschluss wird ein vor der Dampfturbine angeordnetes Frischdampfventil geschlossen und der Frischdampf über eine Umleitrohrleitung geleitet, wobei die Umleitrohrleitung in eine Abdampfrohrleitung der Dampfturbine mündet. Die Abdampfrohrleitung wird in der Regel als kalte Zwischenüberhitzerleitung bezeichnet, sofern diese in einen Zwischenüberhitzer mündet, in dem der Dampf auf eine höhere Temperatur erhitzt wird. Je höher die Dampftemperaturen sind, desto höher sind die Kosten für die Rohrleitungen, Umleitstationen und der Umleitdampfeinspritzung zum Kondensator. Es werden Bestrebungen unternommen, Dampftemperaturen von ca. 720°C zu erreichen. Solch hohe Temperaturen erfordern den Einsatz von besonderen Werkstoffen, wie z.B. Werkstoffe aus Nickelbasis. Werkstoffe aus Nickelbasis sind Werkstoffe mit einem Nickelgehalt von ca. 40 bis 50 Gew.-%. Allerdings sind solche Werkstoffe aus Nickelbasis vergleichweise teuer. Auf der anderen Seite ist ein Werkstoff aus Nickelbasis thermisch besonders belastbar.In the operating state, the steam flowing out of the steam generator flows into the steam turbine and cools down, the vapor pressure decreasing. The effluent steam from the steam turbine is fed to the condenser. During startup, shutdown or during a steam turbine fast closing, a live steam valve arranged in front of the steam turbine is closed and the live steam is conducted via a bypass pipe, the bypass pipe leading into an exhaust steam pipe of the steam turbine. The Abdampfrohrleitung is usually referred to as a cold reheater line, if it opens into a reheater in which the steam is heated to a higher temperature. The higher the steam temperatures are, the higher the cost of the piping, bypass stations and the Umleitdampfeinspritzung to the condenser. Efforts are being made to achieve steam temperatures of about 720 ° C. Such high temperatures require the use of special materials, such as nickel-based materials. Materials made of nickel are materials with a nickel content of about 40 to 50 wt .-%. However, such nickel base materials are comparatively expensive. On the other hand, a material made of nickel-based is particularly resilient thermally.

Wünschenswert wäre es, Werkstoffe einsetzen zu können, die günstiger sind als Werkstoffe aus Nickelbasis. An dieser Stelle setzt die Erfindung an, deren Aufgabe es ist, eine Dampfkraftanlage anzugeben, die für hohe Temperaturen geeignet ist und vergleichsweise günstig ausgebildet werden kann.It would be desirable to be able to use materials that are cheaper than nickel-based materials. At this point, the invention begins, whose task is to provide a steam power plant, which is suitable for high temperatures and can be formed comparatively low.

Gelöst wird diese Aufgabe durch eine Dampfkraftanlage zur Erzeugung elektrischer Energie umfassend eine Dampfturbine, einen Dampferzeuger und einen Kondensator sowie eine Frischdampfrohrleitung, die die Dampfturbine mit dem Dampferzeuger strömungstechnisch miteinander verbindet, einer Abdampfrohrleitung, die die Dampfturbine mit dem Kondensator strömungstechnisch miteinander verbindet, einer Umleitrohrleitung, die die Frischdampfrohrleitung mit der Abdampfrohrleitung strömungstechnisch miteinander verbindet, wobei ein Umleitdampfkühler in der Umleitrohrleitung vorgesehen ist, der zum Kühlen eines in der Umleitrohrleitung strömbaren oder stehenden Dampfes ausgebildet ist.This object is achieved by a steam power plant for generating electrical energy comprising a steam turbine, a steam generator and a condenser and a live steam pipe, which fluidly connects the steam turbine to the steam generator, a Abdampfrohrleitung which fluidly connects the steam turbine to the condenser, a Umleitrohrleitung, which fluidly connects the live steam pipe to the exhaust steam pipe, wherein a bypass steam cooler is provided in the bypass pipe, which is formed to cool a steam that is flowable or standing in the bypass pipe.

Durch die Kühlung des Dampfes mit dem Umleitdampfkühler können die Komponenten hinter der Kühlung ohne Nickelbasis-Werkstoffe ausgeführt werden. Die nach dem Umleitdampfkühler angeordnete Rohrleitung wird somit gekühlt, was dazu führt, dass die Umleitrohrleitung weniger thermisch beansprucht wird. Durch die geringere thermische Beanspruchung, ist es nun nicht mehr erforderlich, teure Werkstoffe aus Nickelbasis zu verwenden.By cooling the steam with the bypass steam cooler, the components behind the cooling can be carried out without nickel-based materials. The arranged after the bypass steam cooler pipe is thus cooled, which causes the Umleitrohrleitung is less thermally stressed. Due to the lower thermal stress, it is no longer necessary to use expensive nickel-based materials.

Sofern die Abdampfrohrleitung in einen Zwischenüberhitzer mündet, wird diese auch als kalte Zwischenüberhitzerleitung bezeichnet. Im Zwischenüberhitzer wird Dampf auf eine höhere Temperatur erhitzt.If the Abdampfrohrleitung opens into a reheater, this is also referred to as a cold reheater line. In the reheater, steam is heated to a higher temperature.

Vorteilhafte Weiterbildungen sind in den Unteransprüchen angegeben.Advantageous developments are specified in the subclaims.

So ist es vorteilhaft, wenn die Kühlung des Dampfes im Umleitdampfkühler durch Eindüsen von Kühlmedium wie Kondensat, Dampf oder einer Mischung aus Wasser und Dampf erfolgt. Die Verwendung von Kondensat, oder einer Mischung aus Wasser und Dampf ist in einer Dampfkraftanlage vergleichsweise einfach, da diese Kühlmedien in einer Dampfkraftanlage zur Verfügung stehen. Der Einsatz von zusätzlichen Rohrleitungen wird dadurch minimiert.Thus, it is advantageous if the cooling of the steam takes place in the bypass steam cooler by injecting cooling medium such as condensate, steam or a mixture of water and steam. The use of condensate, or a mixture of water and steam is comparatively easy in a steam power plant, since these cooling media are available in a steam power plant. The use of additional piping is thereby minimized.

Vorteilhafterweise wird der Umleitdampfkühler unmittelbar nach einem ersten Abzweig von der Frischdampfrohrleitung zur Umleitrohrleitung angeordnet. Idealerweise sollte der Umleitdampfkühler so nah wie möglich nach dem ersten Abzweig angeordnet werden. Dies hat den Vorteil, dass die Kosten für die Herstellung der Dampfkraftanlage weiter verringert werden können, denn die Verwendung von teurem Nickelbasiswerkstoff wird vermieden. Je näher der Umleitdampfkühler an dem ersten Abzweig von der Frischdampfrohrleitung zur Umleitrohrleitung angebracht wird, umso weniger Nickelbasiswerkstoff wird zwischen dem ersten Abzweig zum Umleitdampfkühler benötigt.Advantageously, the diverting steam cooler is arranged immediately after a first branch from the live steam pipe to the bypass pipe. Ideally, the bypass steam cooler should be placed as close to the first branch as possible. This has the advantage that the costs for the production of the steam power plant can be further reduced because the use of expensive nickel base material is avoided. The closer the bypass steam cooler is mounted to the first branch from the live steam piping to the bypass piping, the less nickel base material is needed between the first branch to the bypass steam cooler.

In einer weiteren vorteilhaften Weiterbildung ist der Abstand zwischen dem Umleitdampfkühler und dem Hochdruck-Umleitventil derart gewählt, dass sich das Kühlmedium mit dem Dampf vollständig vermischt.In a further advantageous development, the distance between the bypass steam cooler and the high-pressure bypass valve is selected such that the cooling medium is completely mixed with the steam.

Eine vollständige Vermischung des Kühlmediums mit dem Dampf führt zu einer effizienten Kühlung der Umleitrohrleitung und dadurch zu einer weiteren Verringerung der Kosten bei der Herstellung der Dampfkraftanlage, da weniger Nickelbasiswerkstoff für die Umleitrohrleitung verwendet werden kann. Die Erfindung wird beispielhaft anhand der Zeichnungen näher erläutert.
Es zeigen, teilweise schematisch und nicht maßstäblich:

Figur 1
eine Dampfkraftanlage gemäß dem Stand der Technik
Figur 2
eine erfindungsgemäße Dampfkraftanlage.
A complete mixing of the cooling medium with the steam leads to an efficient cooling of Umleitrohrleitung and thereby to a further reduction in costs Production of the steam power plant, as less nickel base material can be used for the diversion pipeline. The invention will be explained in more detail by way of example with reference to the drawings.
They show, partly schematic and not to scale:
FIG. 1
a steam power plant according to the prior art
FIG. 2
a steam power plant according to the invention.

Gleiche Bezugszeichen haben in den verschiedenen Figuren die gleiche Bedeutung.Like reference numerals have the same meaning in the various figures.

Die Figur 1 zeigt eine Dampfkraftanlage 1 gemäß dem Stand der Technik. Die Dampfkraftanlage 1 umfasst einen Dampferzeuger 2, eine Dampfturbine 3, wobei die Dampfturbine 3 eine Hochdruck-Teilturbine 3a, Mitteldruck-Teilturbine 3b und Niederdruck-Teilturbine 3c umfasst sowie einem Kondensator 4. Des Weiteren ist eine Frischdampfrohrleitung 5 vorgesehen, die die Dampfturbine 3 mit dem Dampferzeuger 2 strömungstechnisch miteinander verbindet. Nach der Dampfturbine 3 ist eine Abdampfrohrleitung 6 angeordnet, die die Dampfturbine 3 mit dem Kondensator 4 strömungstechnisch miteinander verbindet. Zwischen der Hochdruck-Teilturbine 3a und dem Kondensator 4 ist ein Zwischenüberhitzer 7 vorgesehen. Der in den Zwischenüberhitzer 7 einströmende Dampf wird auf eine höhere Temperatur erhitzt und über eine heiße Zwischenüberhitzerleitung 8 zu der Mitteldruck-Teilturbine 3b geführt. Die Abdampfrohrleitung 6 kann auch als kalte Zwischenüberhitzerleitung 9 bezeichnet werden. Vor der Dampfturbine 3 ist ein Schnellschluss- und Regelventil 10 angeordnet. Vor der Mitteldruck-Teilturbine 3b ist ebenso ein Schnellschluss- und Regelventil 11 angeordnet. Die Frischdampfrohrleitung 5 ist mit der Abdampfrohrleitung 6 bzw. der kalten Zwischenüberhitzerleitung 9 strömungstechnisch über eine Umleitrohrleitung 12 verbunden. In der Umleitrohrleitung 12 ist ein Hochdruck-Umleitventil 13 angeordnet.The FIG. 1 shows a steam power plant 1 according to the prior art. The steam power plant 1 comprises a steam generator 2, a steam turbine 3, wherein the steam turbine 3 comprises a high-pressure turbine section 3a, medium-pressure turbine section 3b and low-pressure turbine section 3c and a condenser 4. Furthermore, a live steam pipe 5 is provided, which the steam turbine 3 with the steam generator 2 fluidly connects to each other. After the steam turbine 3, a Abdampfrohrleitung 6 is arranged, which connects the steam turbine 3 with the condenser 4 fluidly. Between the high-pressure turbine part 3a and the condenser 4, a reheater 7 is provided. The steam flowing into the reheater 7 is heated to a higher temperature and conducted via a hot reheater line 8 to the medium-pressure turbine section 3b. The Abdampfrohrleitung 6 can also be referred to as a cold reheater line 9. In front of the steam turbine 3, a quick-closing and control valve 10 is arranged. Before the medium-pressure turbine section 3b, a quick-closing and control valve 11 is also arranged. The live steam pipe 5 is fluidly connected to the exhaust steam pipe 6 and the cold reheater pipe 9 via a Umleitrohrleitung 12. In the Umleitrohrleitung 12 a high-pressure diverter valve 13 is arranged.

Die heiße Zwischenüberhitzerleitung 8 ist mit dem Kondensator 4 über eine Mitteldruck-Umleitrohrleitung 14 strömungstechnisch miteinander verbunden. In der Mitteldruck-Umleitrohrleitung 14 ist ein Mitteldruck-Umleitventil 17 angeordnet. Beim Anfahren, Abfahren oder bei einem Turbinenschnellschluss der Dampfturbine 3 wird der Dampf von der Frischdampfrohrleitung 5 über die Umleitrohrleitung 12 in die kalte Zwischenüberhitzerrohrleitung 9 geleitet. Dazu wird das Schnellschluss- und Regelventil 10 geschlossen und das Hochdruck-Umleitventil 13 geöffnet. Da die Temperatur des in die Umleitrohrleitung 12 strömenden Frischdampfes vergleichsweise hoch ist, wird vor Eintritt in die kalte Zwischenüberhitzerrohrleitung 9 der Dampf mit einem Kühlmedium 15 in einer Kühleinheit 16 abgespritzt. Der Dampf wird anschließend über den Zwischenüberhitzer 7, der heißen Zwischenüberhitzerleitung 8 zur Mitteldruck-Umleitrohrleitung 14 in den Kondensator 4 geführt. Dazu wird das Schnellschluss- und Regelventil 11 geschlossen und das Mitteldruck-Umleitventil 17 geöffnet. Nach dem Mitteldruck-Umleitventil 17 wird der Dampf wiederum mit einem Kühlmedium 18 in einer Kühleinheit 19 abgespritzt, damit der Kondensator die Energiemengen aufnehmen kann. Da die Temperaturen und der Druck des Dampfes vergleichsweise hoch sind, müssen die Frischdampfrohrleitung 5, die Umleitrohrleitung 12, die heiße Zwischenüberhitzerleitung 9 und die Mitteldruck-Umleitrohrleitung 14 für den Druck und die Temperatur des Zwischenüberhitzers 7 ausgelegt werden. Je höher die Dampftemperaturen sind, desto höher sind die Kosten für die Rohrleitungen 5, 12, 9, 8, 1, für die Ventile 17, 13 und die Kühleinheiten 16 und 19.The hot reheater line 8 is fluidically connected to the condenser 4 via a medium-pressure Umleitrohrleitung 14. In the medium-pressure Umleitrohrleitung 14 a medium-pressure diverter valve 17 is arranged. During start-up, shut-down or during a turbine quick-closing of the steam turbine 3, the steam is conducted from the live steam pipe 5 via the bypass pipe 12 into the cold reheater pipe 9. For this purpose, the quick-closing and control valve 10 is closed and the high-pressure diverter valve 13 is opened. Since the temperature of the live steam flowing into the bypass pipe 12 is comparatively high, the steam is sprayed with a cooling medium 15 in a cooling unit 16 before entering the cold reheater pipe 9. The steam is then passed through the reheater 7, the hot reheater line 8 to the medium-pressure Umleitrohrleitung 14 in the condenser 4. For this purpose, the quick-closing and control valve 11 is closed and the medium-pressure diverter valve 17 is opened. After the medium-pressure diverter valve 17, the steam is in turn injected with a cooling medium 18 in a cooling unit 19, so that the capacitor can absorb the amounts of energy. Since the temperatures and the pressure of the steam are comparatively high, the live steam pipe 5, the bypass pipe 12, the hot reheater pipe 9 and the medium pressure bypass pipe 14 must be designed for the pressure and the temperature of the reheater 7. The higher the steam temperatures are, the higher are the costs for the pipelines 5, 12, 9, 8, 1, for the valves 17, 13 and the cooling units 16 and 19.

In der Figur 2 ist eine erfindungsgemäße Dampfkraftanlage 1 dargestellt. Der Unterschied zu der in Figur 1 dargestellten Dampfkraftanlage 1 besteht darin, dass in der Umleitrohrleitung 12 und in der Mitteldruck-Umleitrohrleitung 14 ein Umleitdampfkühler 20 bzw. ein Mitteldruck-Umleitdampfkühler 21 angeordnet sind. Der Umleitdampfkühler 20 und der Mitteldruck-Umleitdampfkühler 21 sind zum kühlen eines in der Umleitrohrleitung 12 und der Mitteldruck-Umleitrohrleitung 14 befindlichen strömbaren oder stehenden Dampfes ausgebildet. Mittels des Umleitdampfkühlers 20 und des Mitteldruck-Umleitdampfkühlers 21 wird Kondensat, Dampf oder ein Gemisch aus Wasser und Dampf in den strömenden oder stehenden Dampf eingespritzt. Somit wird die Temperatur des strömenden oder stehenden Dampfes verringert. Das in den Dampf zugeführte Kühlmedium 22 kühlt somit den Dampf ab. Die Eindüsung des Kühlmediums 22 in die Umleitrohrleitung 12, und in die Mitteldruck-Umleitrohrleitung 14 sollte möglichst nah an einem ersten Abzweig 23 bzw. nach einem zweiten Abzweig 24 angeordnet werden. Der Abstand zwischen dem Umleitdampfkühler 20 und dem Hochdruck-Umleitventil 13 wird derart gewählt, dass der Dampf mit dem Kühlmedium 22 vollständig vermischt wird. Ebenso wird der Abstand zwischen dem Mitteldruck-Umleitdampfkühler 21 und dem Mitteldruck-Umleitventil 17 derart gewählt, dass der Dampf mit dem Kühlmedium 22 vollständig vermischt werden kann.In the FIG. 2 a steam power plant 1 according to the invention is shown. The difference to the in FIG. 1 illustrated steam power plant 1 is that in the Umleitrohrleitung 12 and in the medium-pressure Umleitrohrleitung 14 a Umleitdampfkühler 20 and a medium-pressure Umleitdampfkühler 21 are arranged. The bypass steam cooler 20 and the medium pressure bypass steam cooler 21 are for cooling one in the bypass pipe 12 and the medium-pressure Umleitrohrleitung 14 located flowable or stationary steam formed. By means of the bypass steam cooler 20 and the medium-pressure bypass steam cooler 21, condensate, steam or a mixture of water and steam is injected into the flowing or standing steam. Thus, the temperature of the flowing or standing steam is reduced. The supplied into the steam cooling medium 22 thus cools the steam. The injection of the cooling medium 22 into the Umleitrohrleitung 12, and in the medium-pressure Umleitrohrleitung 14 should be as close to a first branch 23 and after a second branch 24 are arranged. The distance between the bypass steam cooler 20 and the high-pressure bypass valve 13 is selected such that the steam is completely mixed with the cooling medium 22. Likewise, the distance between the medium-pressure Umleitdampfkühler 21 and the medium-pressure diverter valve 17 is selected such that the steam with the cooling medium 22 can be completely mixed.

Evtl. kann auf die Kühleinheit 16 bzw. 19 verzichtet werden, wenn die Frischdampfparameter entsprechende Werte aufweisen. Dafür müssen der Frischdampfmassenstrom, -druck und -temperatur, Wassereinspritzmenge und Temperatur zulässige Werte aufweisen. Der Umleitdampfkühler 20 und der Mitteldruck-Umleitdampfkühler 21 werden sobald das Umleitventil 13 und das Mitteldruck-Umleitventil 17 geöffnet ist, eingeschaltet. Dadurch wird eine unzulässige Temperaturüberschreitung in der gekühlten Umleitrohrleitung 25 bzw. 26 wirksam vermieden.Possibly. can be dispensed with the cooling unit 16 and 19, if the live steam parameters have corresponding values. For this, the live steam mass flow, pressure and temperature, water injection quantity and temperature must have permissible values. The bypass steam cooler 20 and the medium-pressure bypass steam cooler 21 are switched on as soon as the bypass valve 13 and the medium-pressure bypass valve 17 are opened. As a result, an inadmissible temperature exceeded in the cooled Umleitrohrleitung 25 and 26 effectively avoided.

Sobald das Umleitventil 13 geschlossen wird, wird der Umleitdampfkühler 20 so lange betrieben, bis die Temperaturen vor dem Umleitdampfkühler 20 die zulässige Temperatur in den Rohrleitungen 25 unterschreitet. Sofern Entwässerungen oder Anwärmleitungen in den gekühlten Umleitrohrleitungen 25 und 26 angeordnet sind, müssen diese so lange geschlossen bleiben, bis die Temperatur vor dem Umleitdampfkühler 20 und Mitteldruck-Umleitdampfkühler 21 die zulässige Temperatur in den gekühlten Rohrleitungen 25 bzw. 26 unterschreitet.As soon as the bypass valve 13 is closed, the bypass steam cooler 20 is operated until the temperatures before the bypass steam cooler 20 fall below the permissible temperature in the pipelines 25. If drainages or Anwärmleitungen are arranged in the cooled Umleitrohrleitungen 25 and 26, they must remain closed until the temperature before Umleitdampfkühler 20 and medium-pressure Umleitdampfkühler 21 below the allowable temperature in the cooled pipes 25 and 26 respectively.

Claims (12)

Dampfkraftanlage (1) zur Erzeugung elektrischer Energie, umfassend eine Dampfturbine (3), einen Dampferzeuger (2) und einen Kondensator (4) sowie eine Frischdampfrohleitung (5), die die Dampfturbine (3) mit dem Dampferzeuger (2) strömungstechnisch miteinander verbindet,
einer Abdampfleitung (6), die die Dampfturbine (3) mit dem Kondensator (4) strömungstechnisch miteinander verbindet, einer Umleitrohrleitung (12), die die Frischdampfrohrleitung (5) mit der Abdampfrohrleitung (6) strömungstechnisch miteinander verbindet,
dadurch gekennzeichnet, dass
ein Umleitdampfkühler (20) in der Umleitrohrleitung (12) vorgesehen ist,
der zum Kühlen eines in der Umleitrohrleitung (12) strömbaren Dampfes ausgebildet ist.
Steam power plant (1) for generating electrical energy, comprising a steam turbine (3), a steam generator (2) and a condenser (4) and a live steam pipe (5), which fluidly connects the steam turbine (3) to the steam generator (2),
an exhaust steam line (6), which connects the steam turbine (3) to the condenser (4) in terms of flow, a bypass pipe (12) which fluidly connects the live steam pipe (5) to the exhaust steam pipe (6),
characterized in that
a bypass steam cooler (20) is provided in the bypass pipe (12),
which is designed to cool a vapor which can flow in the diversion pipe (12).
Dampfkraftanlage (1) nach Anspruch 1,
wobei die Dampfturbine (3) eine Hochdruck- (3a), eine Mitteldruck- (3b) sowie eine Niederdruck-Teilturbine (3c) umfasst.
Steam power plant (1) according to claim 1,
wherein the steam turbine (3) comprises a high pressure (3a), a medium pressure (3b) and a low pressure part turbine (3c).
Dampfkraftanlage (1) nach Anspruch 2,
mit einem Zwischenüberhitzer (7),
wobei eine kalte Zwischenüberhitzerrohrleitung (9) vorgesehen ist, die den Dampfaustritt der Hochdruck-Teilturbine (3a) mit dem Zwischenüberhitzer (7) strömungstechnisch verbindet,
wobei die Umleitrohrleitung (12) die Frischdampfrohrleitung (5) mit der kalten Zwischenüberhitzerrohrleitung (9) strömungstechnisch verbindet.
Steam power plant (1) according to claim 2,
with a reheater (7),
wherein a cold reheater pipe (9) is provided, which connects the steam outlet of the high-pressure turbine part (3a) with the reheater (7) fluidly,
wherein the Umleitrohrleitung (12) fluidly connects the live steam pipe (5) with the cold reheater pipe (9).
Dampfkraftanlage (1) nach einem der Ansprüche 2 oder 3, mit einer heißen Zwischenüberhitzerrohrleitung (8), die den Zwischenüberhitzer (7) mit der Mitteldruck-Teilturbine (3b) strömungstechnisch verbindet,
wobei eine Mitteldruck-Umleitrohrleitung (14) vorgesehen ist, die die heiße Zwischenüberhitzerleitung (8) mit dem Kondensator (4) strömungstechnisch verbindet,
wobei ein Mitteldruck-Umleitdampfkühler (21) in der Mitteldruck-Umleitrohrleitung (14) vorgesehen ist, der zum Kühlen eines in der Mitteldruck-Umleitrohrleitung (14) strömbaren Dampfes ausgebildet ist.
Steam power plant (1) according to one of Claims 2 or 3, with a hot reheater pipe (8) which fluidly connects the reheater (7) to the medium-pressure turbine section (3b),
wherein a medium-pressure Umleitrohrleitung (14) is provided, which connects the hot reheater line (8) with the capacitor (4) fluidly,
wherein a medium-pressure Umleitdampfkühler (21) in the medium-pressure Umleitrohrleitung (14) is provided, which is designed for cooling a in the medium-pressure Umleitrohrleitung (14) flowable steam.
Dampfkraftanlage (1) nach einem der Ansprüche 1 bis 3,
wobei ein Hochdruck-Umleitventil (13) in der Umleitrohrleitung (12) vorgesehen ist.
Steam power plant (1) according to one of claims 1 to 3,
wherein a high-pressure bypass valve (13) is provided in the bypass pipe (12).
Dampfkraftanlage (1) nach Anspruch 4,
wobei ein Mitteldruck-Umleitventil (17) in der Mitteldruck-Umleitrohrleitung (14) vorgesehen ist.
Steam power plant (1) according to claim 4,
wherein a medium-pressure bypass valve (17) in the medium-pressure Umleitrohrleitung (14) is provided.
Dampfkraftanlage (1) nach einem der Ansprüche 1, bis 6,
wobei die Kühlung des Dampfes im Umleitdampfkühler (20) durch Eindüsung von Kühlmedien (22) wie Kondensat, Dampf oder einer Mischung aus Wasser und Dampf erfolgt.
Steam power plant (1) according to one of claims 1, to 6,
wherein the cooling of the steam in the bypass steam cooler (20) is effected by injection of cooling media (22) such as condensate, steam or a mixture of water and steam.
Dampfkraftanlage (1) nach Anspruch 4,
wobei die Kühlung des Dampfes in der Mitteldruck-Umleitdampfkühlung (21) durch Eindüsung von Kühlmedien (22) wie Kondensat, Dampf oder einer Mischung aus Wasser und Dampf erfolgt.
Steam power plant (1) according to claim 4,
wherein the cooling of the vapor in the medium pressure Umleitdampfkühlung (21) by injection of cooling media (22) such as condensate, steam or a mixture of water and steam.
Dampfkraftanlage (1) nach einem der Ansprüche 1 bis 3,
wobei der Umleitdampfkühler (20) unmittelbar nach einem ersten Abzweig (23) von der Frischdampfrohrleitung (5) zur Umleitrohrleitung (12) angeordnet ist.
Steam power plant (1) according to one of claims 1 to 3,
wherein the diverting steam cooler (20) is arranged immediately after a first branch (23) of the live steam pipe (5) to Umleitrohrleitung (12).
Dampfkraftanlage (1) nach Anspruch 4,
wobei der Mitteldruck-Umleitdampfkühler (21) unmittelbar nach einem zweiten Abzweig (24) von der heißen Zwischenüberhitzerleitung (8) zur Mitteldruck-Umleitrohrleitung (14) angeordnet ist.
Steam power plant (1) according to claim 4,
wherein the medium-pressure Umleitdampfkühler (21) immediately after a second branch (24) from the hot reheater line (8) to the medium-pressure Umleitrohrleitung (14) is arranged.
Dampfkraftanlage (1) nach Anspruch 5 oder 6,
wobei der Abstand zwischen dem Umleitdampfkühler (20) und dem Hochdruck-Umleitventil (13) derart gewählt ist, dass sich das Kühlmedium (15) mit dem Dampf vollständig vermischen kann.
Steam power plant (1) according to claim 5 or 6,
wherein the distance between the bypass steam cooler (20) and the high-pressure bypass valve (13) is selected such that the cooling medium (15) can completely mix with the steam.
Dampfkraftanlage (1) nach Anspruch 5 oder 6,
wobei der Abstand zwischen dem Mitteldruck-Umleitdampfkühler (21) derart gewählt ist, dass sich das Kühlmedium (22) mit dem Dampf vollständig vermischen kann.
Steam power plant (1) according to claim 5 or 6,
wherein the distance between the medium-pressure Umleitdampfkühler (21) is selected such that the cooling medium (22) can mix completely with the steam.
EP08016801A 2008-09-24 2008-09-24 Steam power assembly for creating electrical energy Withdrawn EP2213847A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP08016801A EP2213847A1 (en) 2008-09-24 2008-09-24 Steam power assembly for creating electrical energy
KR1020117006679A KR101322148B1 (en) 2008-09-24 2009-09-16 Steam power plant for generating electrical energy
PL09783070T PL2326800T3 (en) 2008-09-24 2009-09-16 Steam power assembly for creating electrical energy
US13/119,438 US8925321B2 (en) 2008-09-24 2009-09-16 Steam power plant for generating electrical energy
JP2011528292A JP2012503737A (en) 2008-09-24 2009-09-16 Steam power generation facility for generating electrical energy
EP09783070.7A EP2326800B1 (en) 2008-09-24 2009-09-16 Steam power assembly for creating electrical energy
PCT/EP2009/061993 WO2010034659A2 (en) 2008-09-24 2009-09-16 Steam power plant for generating electrical energy
CN200980137447.0A CN102165145B (en) 2008-09-24 2009-09-16 Steam power plant for generating electrical energy
RU2011116163/06A RU2481477C2 (en) 2008-09-24 2009-09-16 Steam power plant for electric energy generation
JP2012173690A JP5314178B2 (en) 2008-09-24 2012-08-06 Steam power generation facility for generating electrical energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08016801A EP2213847A1 (en) 2008-09-24 2008-09-24 Steam power assembly for creating electrical energy

Publications (1)

Publication Number Publication Date
EP2213847A1 true EP2213847A1 (en) 2010-08-04

Family

ID=42060159

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08016801A Withdrawn EP2213847A1 (en) 2008-09-24 2008-09-24 Steam power assembly for creating electrical energy
EP09783070.7A Not-in-force EP2326800B1 (en) 2008-09-24 2009-09-16 Steam power assembly for creating electrical energy

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP09783070.7A Not-in-force EP2326800B1 (en) 2008-09-24 2009-09-16 Steam power assembly for creating electrical energy

Country Status (8)

Country Link
US (1) US8925321B2 (en)
EP (2) EP2213847A1 (en)
JP (2) JP2012503737A (en)
KR (1) KR101322148B1 (en)
CN (1) CN102165145B (en)
PL (1) PL2326800T3 (en)
RU (1) RU2481477C2 (en)
WO (1) WO2010034659A2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2428653A1 (en) * 2010-09-10 2012-03-14 Siemens Aktiengesellschaft Single intermediate pressure operation mode for solar driven steam turbine plants
GB2485836A (en) 2010-11-27 2012-05-30 Alstom Technology Ltd Turbine bypass system
EP2500549A1 (en) * 2011-03-14 2012-09-19 Siemens Aktiengesellschaft Injection aperture for a steam power plant
WO2016137620A1 (en) * 2015-02-24 2016-09-01 Siemens Aktiengesellschaft Combined cycle power plant having supercritical steam turbine
JP2015187448A (en) * 2015-07-27 2015-10-29 三菱重工業株式会社 Ship main engine steam turbine installation and ship equipped with the same
DE102016104538B3 (en) * 2016-03-11 2017-01-19 Mitsubishi Hitachi Power Systems Europe Gmbh Thermal steam power plant with improved waste heat recovery and method of operation thereof
JP6654497B2 (en) * 2016-04-05 2020-02-26 三菱日立パワーシステムズ株式会社 Steam turbine plant
EP3258074A1 (en) 2016-06-14 2017-12-20 Siemens Aktiengesellschaft Steam power plant for generating electrical energy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6457313B1 (en) * 2001-05-21 2002-10-01 Mitsubishi Heavy Industries, Ltd. Pressure and flow rate control apparatus and plant system using the same
DE10227709A1 (en) * 2001-06-25 2003-02-27 Alstom Switzerland Ltd Steam turbine power plant has overflow line bypassing intermediate overheater between high pressure steam turbine and medium or low pressure turbine
EP1862647A1 (en) * 2005-12-15 2007-12-05 Ansaldo Energia S.P.A. Device for controlling opening of an on-off valve of a steam turbine system with a bypass line
EP1881164A1 (en) * 2006-07-21 2008-01-23 Ansaldo Energia S.P.A. Device for regulating the intercept valves of a steam-turbine plant

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH406247A (en) * 1963-07-23 1966-01-31 Sulzer Ag Steam power plant with forced steam generator and reheater
SU642493A1 (en) 1977-01-19 1979-01-15 Предприятие П/Я А-3513 Power plant
US4435963A (en) 1980-05-05 1984-03-13 Tempo G Means for retaining jewelery for interlocking with precise preforms
US4352270A (en) * 1980-06-26 1982-10-05 Westinghouse Electric Corp. Method and apparatus for providing process steam of desired temperature and pressure
US4357803A (en) * 1980-09-05 1982-11-09 General Electric Company Control system for bypass steam turbines
JPS5812604U (en) * 1981-07-16 1983-01-26 株式会社東芝 Two-stage reheat turbine bypass device
US4471620A (en) 1981-11-13 1984-09-18 Westinghouse Electric Corp. Turbine low pressure bypass spray valve control system and method
US4576008A (en) * 1984-01-11 1986-03-18 Westinghouse Electric Corp. Turbine protection system for bypass operation
JPS60228710A (en) * 1984-04-27 1985-11-14 Toshiba Corp Control device for steam turbine
JPS6193208A (en) 1984-10-15 1986-05-12 Hitachi Ltd Turbine bypass system
US4598551A (en) * 1985-10-25 1986-07-08 General Electric Company Apparatus and method for controlling steam turbine operating conditions during starting and loading
US4873827A (en) * 1987-09-30 1989-10-17 Electric Power Research Institute Steam turbine plant
RU2099542C1 (en) * 1990-01-23 1997-12-20 Фостер Вилер Энержи Ой Steam power plant and method of control of same
SE469606B (en) * 1991-12-20 1993-08-02 Abb Carbon Ab PROCEDURE AT STARTING AND LOW-LOAD OPERATION OF THE FLOWING PAN AND DEVICE FOR IMPLEMENTATION OF THE PROCEDURE
JPH0577501U (en) * 1992-03-24 1993-10-22 株式会社東芝 Steam turbine plant
JPH06228710A (en) 1993-01-29 1994-08-16 Nippon Steel Corp Stainless steel for diesel exhaust system excellent in corrosion resistance
RU2090542C1 (en) 1994-04-12 1997-09-20 Красноярская государственная техническая академия Method of destruction of solid rocket fuel and method of preparation of nitrosobenzene solution for destruction of solid rocket fuel
JPH0814009A (en) 1994-06-30 1996-01-16 Toshiba Corp Operation control method for pressurized fluidized bed boiler type composite cycle power plant
EP1288761B1 (en) * 2001-07-31 2017-05-17 General Electric Technology GmbH Method for controlling a low pressure bypass system
JP4619958B2 (en) * 2006-01-20 2011-01-26 株式会社東芝 Steam turbine control valve and steam turbine power plant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6457313B1 (en) * 2001-05-21 2002-10-01 Mitsubishi Heavy Industries, Ltd. Pressure and flow rate control apparatus and plant system using the same
DE10227709A1 (en) * 2001-06-25 2003-02-27 Alstom Switzerland Ltd Steam turbine power plant has overflow line bypassing intermediate overheater between high pressure steam turbine and medium or low pressure turbine
EP1862647A1 (en) * 2005-12-15 2007-12-05 Ansaldo Energia S.P.A. Device for controlling opening of an on-off valve of a steam turbine system with a bypass line
EP1881164A1 (en) * 2006-07-21 2008-01-23 Ansaldo Energia S.P.A. Device for regulating the intercept valves of a steam-turbine plant

Also Published As

Publication number Publication date
RU2481477C2 (en) 2013-05-10
KR101322148B1 (en) 2013-10-28
US20110167827A1 (en) 2011-07-14
RU2011116163A (en) 2012-10-27
JP2012503737A (en) 2012-02-09
CN102165145A (en) 2011-08-24
JP5314178B2 (en) 2013-10-16
JP2012211595A (en) 2012-11-01
WO2010034659A2 (en) 2010-04-01
CN102165145B (en) 2014-05-14
EP2326800B1 (en) 2016-11-16
EP2326800A2 (en) 2011-06-01
WO2010034659A3 (en) 2010-08-26
PL2326800T3 (en) 2017-05-31
US8925321B2 (en) 2015-01-06
KR20110047245A (en) 2011-05-06

Similar Documents

Publication Publication Date Title
EP2326800B1 (en) Steam power assembly for creating electrical energy
DE102008037410B4 (en) Combined cycle and method using supercritical steam
EP1934434B1 (en) Method for warming-up a steam turbine
EP2067940B2 (en) Method for operating a combined cycle power plant, and also combined-cycle power plant for carrying out the method
EP2480762B1 (en) Power plant comprising overload control valve
DE102008029941B4 (en) Steam power plant and method for controlling the power of a steam power plant
DE102010037861A1 (en) Gas turbine with reheat
CH702740A2 (en) Systems and methods for preheating the pipe system of a heat recovery steam generator.
EP1953350A2 (en) Turbine blade
EP2907980A1 (en) Method for operating a gas and steam turbine facility for frequency support
EP1377730B1 (en) Steam power plant provided with a retrofit kit and method for retrofitting a steam power plant
DE102018123663A1 (en) Fuel preheating system for a combustion gas turbine
DE102011011123B4 (en) Steam plant and process for configuring the steam plant
EP1801363A1 (en) Power plant
DE4432960C1 (en) Drive system for steam power station boiler plant
EP1055801B1 (en) Method for operating a steam power plant
DE10155508C5 (en) Method and device for generating electrical energy
EP2918793A1 (en) Control concept for district heating decoupling in a steam power plant
DE102016112601A1 (en) Device for power generation according to the ORC principle, geothermal system with such a device and operating method
EP4004349B1 (en) Pressure control for closed joule circuit processes
EP3810907B1 (en) Exhaust gas recirculation in gas and steam turbines plants
EP2556218B1 (en) Method for quickly connecting a steam generator
EP2829691A1 (en) Method for operating a combined power generation system
DE2512774A1 (en) Gas turbine water heating system - uses combination of exhaust gas heat and steam counter pressure (NL240976)
EP0657627B1 (en) Method and arrangement for starting a HRSG comprising at least two separated pressure systems

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

AKY No designation fees paid
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110205