JPH0491303A - Turbine controller - Google Patents

Turbine controller

Info

Publication number
JPH0491303A
JPH0491303A JP2202548A JP20254890A JPH0491303A JP H0491303 A JPH0491303 A JP H0491303A JP 2202548 A JP2202548 A JP 2202548A JP 20254890 A JP20254890 A JP 20254890A JP H0491303 A JPH0491303 A JP H0491303A
Authority
JP
Japan
Prior art keywords
pressure
turbine
reactor
value
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2202548A
Other languages
Japanese (ja)
Other versions
JP2809836B2 (en
Inventor
Masayoshi Tahira
昌祥 田平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2202548A priority Critical patent/JP2809836B2/en
Publication of JPH0491303A publication Critical patent/JPH0491303A/en
Application granted granted Critical
Publication of JP2809836B2 publication Critical patent/JP2809836B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Abstract

PURPOSE:To eliminate need of operation for increasing a pressure set value by an operator even when a reactor pressure is raised in starting of a nuclear reactor by adding a bias to a deviation between the pressure set value and an actual pressure, and automatically bringing the pressure set value to a value higher than the actual pressure. CONSTITUTION:In normal operation, input of a pressure set deviation signal into an adder 20 is interrupted by a follow-up mode switch 21, and a pressure set value is operated only by a pressure setting increase manipulator 11 or a pressure setting decrease manipulator 12. And at a rise of reactor pressure in starting of a nuclear reactor, pressure setting follow-up is operated by connecting a contact point 19 by using a follow-up mode switch 21. At this time, a pressure setter 8 has an integrating function, and as for input of a signal in the positive polarity, for example, an output is increased. That is, when the contact point 19 is made connected, the pressure set value is follow-up controlled to a value higher than an actual pressure by a biasamount. By this, opening of a BPV at the reactor pressure rise in starting of the nuclear reactor is cancelled.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は原子カプラントのタービン制御装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a turbine control device for an atomic couplant.

(従来の技術) 原子カプラントにおけるタービン蒸気系統の一例を第3
図に示す。
(Prior art) An example of a turbine steam system in an atomic coupler is shown in the third example.
As shown in the figure.

第3図において、原子炉1で発生した蒸気は、主蒸気止
め弁(以下MSVと呼ぶ)2および蒸気管加減弁(以下
Cvと呼ぶ)3を通ってタービン4に流入し、復水器5
で復水される。
In FIG. 3, steam generated in a nuclear reactor 1 flows into a turbine 4 through a main steam stop valve (hereinafter referred to as MSV) 2 and a steam pipe control valve (hereinafter referred to as Cv) 3, and then flows into a condenser 5.
The water is condensed.

また、一部の蒸気はMSV2の手前からタービンバイパ
ス弁(以下BPVと呼ぶ)6を通ってタービン4をバイ
パスし復水器5に流される。
Further, some of the steam passes through a turbine bypass valve (hereinafter referred to as BPV) 6 from before the MSV 2, bypasses the turbine 4, and flows into the condenser 5.

常時はMSV2を全開とし、CV3とBPV6の弁開度
を調節してタービン速度およびタービン入口蒸気圧力の
制御が行なわれ、後者のタービン入口蒸気圧力制御のた
めにMSV2の手前に圧力検出器7が設けられている。
Normally, MSV2 is fully open, and the turbine speed and turbine inlet steam pressure are controlled by adjusting the valve openings of CV3 and BPV6, and a pressure detector 7 is installed in front of MSV2 to control the latter turbine inlet steam pressure. It is provided.

なお、新型炉では、タービン入口蒸気圧力の代りに原子
炉ドーム圧力を検出し原子炉ドーム圧力の制御が行なわ
れる。
In addition, in the new type of reactor, the reactor dome pressure is controlled by detecting the reactor dome pressure instead of the turbine inlet steam pressure.

従来のタービン制御装置の機能ブロック図を第4図に示
す。
A functional block diagram of a conventional turbine control device is shown in FIG.

第3図において、圧力検出器7から出力される実圧力V
6は、加算器13にて圧力設定器8から出力される圧力
設定値−v5との間で偏差演算され、圧力偏差信号V7
が得られる。圧力偏差信号す7は増幅器14で増幅され
、圧力制御信号す、とじて出力される。低値選択器15
にはこの圧力制御信号?eとタービン回転数および出力
を制御する速度負荷制御信号す、が入力され、両信号の
うち値の低いものをCV流量指令値−v9として出力す
る。
In FIG. 3, the actual pressure V output from the pressure detector 7
6 is calculated by the adder 13 as a deviation from the pressure setting value -v5 output from the pressure setting device 8, and a pressure deviation signal V7 is obtained.
is obtained. The pressure deviation signal 7 is amplified by an amplifier 14 and output as a pressure control signal 7. Low value selector 15
What about this pressure control signal? e and a speed load control signal S for controlling the turbine rotational speed and output are input, and the one with the lower value of both signals is output as the CV flow rate command value -v9.

加算器16では圧力制御指令VBとCV流量指令す9間
の偏差演算を行ない、両者の偏差(−v8−υ9)をB
PV流量指令す、。とじて出力する。
The adder 16 calculates the difference between the pressure control command VB and the CV flow rate command 9, and calculates the difference between the two (-v8-υ9) as B.
PV flow rate command. Bind and output.

CV3およびBPV6はそれぞれこのCv流量指令ヅ8
、BPV流量指令ヅ、。に応じた開度に調整制御される
CV3 and BPV6 are each based on this Cv flow rate command ㅅ8.
, BPV flow rate commandㅅ. The opening is adjusted and controlled according to the opening.

なお、前述の圧力設定値t5は次のような圧力設定器8
の動作により得られる。圧力設定器8は積分動作機能を
有し、圧力設定増操作器11の操作により接点10が導
通し、入力として正極性を持つ圧力制御信号す、が得ら
れると、出力である圧力設定値ヅ6を連続的に増方向に
変化させる。また、圧力設定減操作器12の操作により
接点9が心通し、入力として負極性を持つ圧力設定域信
号び2が得られると、出力である圧力設定値?llを連
続的に減方向に変化させる。圧力設定器8に信号入力が
ない場合、出力の圧力設定値ヅ、は一定値に保持される
The above-mentioned pressure setting value t5 is set using the following pressure setting device 8.
obtained by the operation of The pressure setting device 8 has an integral operation function, and when the contact point 10 is made conductive by operating the pressure setting increaser 11 and a pressure control signal S with positive polarity is obtained as an input, the pressure setting value Z which is the output is obtained. 6 is continuously changed in the increasing direction. Further, when the contact 9 is connected by operating the pressure setting/decrementing device 12 and a pressure setting range signal 2 having a negative polarity is obtained as an input, the output pressure setting value ? ll is continuously changed in a decreasing direction. When there is no signal input to the pressure setting device 8, the output pressure setting value ヅ is held at a constant value.

原子炉1の起動時、すなわち原子炉定格圧力へ向けての
原子炉圧力上昇時CV3は全開であり、BPV6により
原子炉1から復水器5へ導かれる蒸気量を調節し、原子
炉圧力の制御を行なうが、この圧力制御は、前述のター
ビン制御装置の場合、次のように行なわれる。
When the reactor 1 is started up, that is, when the reactor pressure rises toward the reactor rated pressure, the CV3 is fully open, and the BPV6 adjusts the amount of steam led from the reactor 1 to the condenser 5 to maintain the reactor pressure. In the case of the above-mentioned turbine control device, this pressure control is performed as follows.

圧力設定器8の出力である圧力設定値−v5より実圧力
1)6が高い場合、その圧力偏差信号す、に応じた正極
性(+x%)の圧力制御信号す、が得られる。原子炉起
動時は、速度負荷制御指令す、は0%に保持されており
、C■流量指令す、としては、この場合+X%の圧力制
御信号す、と、0%の速度制御信号す、を比較し、より
低い値である0%の値が低値選択器15により出力され
る。また、BPV流量指令ytoとして圧力制御指令−
v8とC■液流量令1Jg の偏差演算の結果として+
x%の値が得られ、BPV6を開方向に制御する。
When the actual pressure 1)6 is higher than the pressure setting value -v5 which is the output of the pressure setting device 8, a positive polarity (+x%) pressure control signal S is obtained in accordance with the pressure deviation signal S. At reactor startup, the speed load control command is held at 0%, and the C■ flow rate command is, in this case, a +X% pressure control signal, a 0% speed control signal, The lower value of 0% is output by the low value selector 15. In addition, the pressure control command -
As a result of the deviation calculation between v8 and C■ liquid flow rate command 1Jg, +
A value of x% is obtained and BPV6 is controlled in the open direction.

圧力設定器8の出力である圧力設定値せ、より実圧カサ
ロが低い場合、その圧力偏差信号ヅ、に応じた負極性(
−y%)の圧力制御信号VIl が得られる。この場合
C■流量指令す、としては、前述のように0%の値であ
る速度負荷制御指令V□と−y%の圧力制御指令す、を
比較し、より低い値である一y%が低値選択器15より
出力される。BPv流量指令す、。を演算する加算器1
6へ入力されるCV流量指令す、は、0%の下限設定を
もつ下限リミッタ17により、−y%から0%の値に制
限された後入力され、加算器16では−y%の圧力側御
信号tll とこの0%の値で偏差演算を行なった一y
%をBPV流量指令ヅ、。とじて出力する。なお、CV
3およびBPV6ともに流量指令0%以下で全開であり
、この場合、CV3およびBPV6ともに全閉となる。
If the actual pressure is lower than the pressure setting value output from the pressure setting device 8, the negative polarity (
-y%) pressure control signal VII is obtained. In this case, the flow rate command C■ is compared with the speed load control command V□, which is a value of 0%, and the pressure control command V, which is -y%, as described above, and the lower value, 1y%, is It is output from the low value selector 15. BPv flow rate command. Adder 1 that calculates
The CV flow rate command input to 6 is input after being limited to a value from -y% to 0% by a lower limiter 17 having a lower limit setting of 0%, and the adder 16 inputs a value on the pressure side of -y%. The deviation calculation was performed using the control signal tll and this 0% value.
% to BPV flow rate commandㅅ. Bind and output. In addition, CV
Both CV3 and BPV6 are fully open when the flow rate command is 0% or less, and in this case, both CV3 and BPV6 are fully closed.

以上のように原子炉起動時は、常にCV3は全開であり
、圧力設定値V、より実圧力TGが高い場合、その偏差
に応じBPV6は開し、圧力設定値?Sより実圧カサ、
が低い場合、BPV6は全閉となる。
As mentioned above, when starting the reactor, CV3 is always fully open, and if the actual pressure TG is higher than the pressure set value V, BPV6 opens according to the deviation, and the pressure set value? Actual pressure bulkier than S,
is low, BPV6 is fully closed.

(発明が解決しようとする課題) 原子炉起動時は第5図に示すようにある一定のパターン
に基づき原子炉出力を増加させ、原子炉圧力を定格迄上
昇させる。この原子炉圧力上昇時は原子炉発生蒸気をタ
ービン4および復水器5に導く必要はなく、CV3およ
びBPV6が全閉となるような制御を行なう。
(Problems to be Solved by the Invention) When starting up a nuclear reactor, the reactor output is increased based on a certain pattern as shown in FIG. 5, and the reactor pressure is raised to the rated value. When the reactor pressure increases, there is no need to guide the reactor-generated steam to the turbine 4 and condenser 5, and control is performed so that the CV3 and BPV6 are fully closed.

この場合、前述のとおり、0%の速度負荷制御指令7j
、によりCV3は全閉に保たれるが、BP■6について
は原子炉圧力に応じ変動する実圧力v6が圧力設定値V
5を上回ると開動作する。このBPVe開動作を防ぐた
め第5図に示すように圧力設定値V5を実圧カヅ、に合
わせ増操作する必要があり、従来の制御装置では手動に
より圧力設定増操作器11の操作を行なうか、他の制御
装置からの指令に基づき圧力設定増操作器11を操作す
る必要が有った。
In this case, as described above, the speed load control command 7j of 0%
, CV3 is kept fully closed, but for BP■6, the actual pressure v6, which fluctuates depending on the reactor pressure, is the pressure set value V.
When the value exceeds 5, the opening operation occurs. In order to prevent this BPVe opening operation, it is necessary to increase the pressure setting value V5 according to the actual pressure as shown in FIG. , it was necessary to operate the pressure setting intensifier 11 based on commands from other control devices.

本発明は原子炉起動時の炉圧上昇の際に炉圧上昇にとも
なうBPV開動作を防ぐため、実圧力に対し圧力設定値
が若干高めの値に自動的に追従する機能を備えたタービ
ン制御装置を提供することを目的とする。
The present invention provides turbine control with a function to automatically follow a pressure setting value slightly higher than the actual pressure in order to prevent the BPV opening operation due to the rise in reactor pressure at the time of reactor startup. The purpose is to provide equipment.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記課題を解決するために本発明は、原子炉からタービ
ンに導かれる蒸気の流量を調節する複数の蒸気加減弁お
よびタービンをバイパスする蒸気の流量を調節するター
ビンバイパス弁の双方の開度を制御してタービン入口蒸
気圧力または原子炉ドーム圧力を制御するタービン制御
装置において、タービン入口蒸気圧力または原子炉ドー
ム圧力を検出する回路と、検出した前記圧力信号に一定
値を加算するバイアス回路と、バイアス値加算後の信号
を目標値として圧力設定器の設定値を追従制御する回路
とを備えることを特徴とする。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides a plurality of steam control valves that adjust the flow rate of steam guided from the nuclear reactor to the turbine, and a turbine that adjusts the flow rate of steam bypassing the turbine. A turbine control device that controls turbine inlet steam pressure or reactor dome pressure by controlling the opening degrees of both bypass valves includes a circuit that detects turbine inlet steam pressure or reactor dome pressure, and a circuit that detects the turbine inlet steam pressure or reactor dome pressure, and a circuit that detects the detected pressure signal. The present invention is characterized by comprising a bias circuit that adds values, and a circuit that follows and controls the set value of the pressure setting device using the signal after the bias value addition as a target value.

(作用) 本発明は上記構成において、タービン入口蒸気圧力ある
いは原子炉ドーム圧力が圧力設定値と等しくなるように
圧力制御を行なう場合に、圧力設定値と実圧力との偏差
を演算し、その偏差に対し第2図のようにバイアスを加
えて自動的に圧力設定値を実圧力よりも高めの値に持っ
て行く。これにより、原子炉起動時の炉圧上昇の際も、
運転員が圧力設定値を増操作する必要がなくなり、操作
上の負担を大きく軽減することができる。
(Function) In the above configuration, when pressure control is performed so that the turbine inlet steam pressure or the reactor dome pressure becomes equal to the pressure setting value, the present invention calculates the deviation between the pressure setting value and the actual pressure, and calculates the deviation between the pressure setting value and the actual pressure. By applying a bias as shown in Figure 2, the pressure setting value is automatically brought to a value higher than the actual pressure. As a result, even when reactor pressure rises during reactor startup,
There is no need for the operator to increase the pressure setting value, and the operational burden can be greatly reduced.

(実施例) 本発明の一実施例を第1図に示す。(Example) An embodiment of the present invention is shown in FIG.

なお、第1図中、第4図の参照符号と同一のものは同一
または相当部分を示す。
In FIG. 1, the same reference numerals as those in FIG. 4 indicate the same or corresponding parts.

第1図において、加算器18は実圧力1jG と圧カー
フ− 設定器8の出力である圧力設定値y、間の偏差(#G−
ys)を演算し、それに対しバイアスサ□□を加え、圧
力設定信号V□2を出力する。加算器20では加算器1
8の出力である圧力設定信号V1□と圧力設定操作信号
υ4とを加算し加算した結果を圧力設定器8へ出力する
。接点19は追従モード切換器21の操作により入切動
作をし、圧力設定偏差信号す、□の加算器20への入口
を操作する。
In FIG. 1, an adder 18 calculates the deviation (#G-
ys), a bias sensor □□ is added to it, and a pressure setting signal V□2 is output. In adder 20, adder 1
The pressure setting signal V1□ which is the output of 8 and the pressure setting operation signal υ4 are added and the result of the addition is output to the pressure setting device 8. The contact 19 is turned on and off by operating the follow-up mode switch 21, and operates the input of the pressure setting deviation signals S and □ to the adder 20.

次に、上記構成による作用を説明する。Next, the effect of the above configuration will be explained.

通常の運転時は追従モード切換器21により加算器20
への圧力設定偏差信号す□2の入力は断たれており、圧
力設定値−v5は圧力設定増操作器11あるノ2 いは圧力設定減操作−によってのみ操作される。
During normal operation, the follow-up mode switch 21 controls the adder 20.
The input of the pressure setting deviation signal □2 to the pressure setting deviation signal □2 is cut off, and the pressure setting value -v5 is operated only by the pressure setting increasing operation device 11 or □2 or the pressure setting decreasing operation.

原子炉起動時の炉圧上昇に際しては追従モード切換器2
1による接点19の入操作により次のような圧力設定追
従動作が行なわれる。
Follow-up mode switch 2 when the reactor pressure increases during reactor startup
1, the following pressure setting follow-up operation is performed by turning on the contact 19.

前述のように圧力設定器8は積分動作機能を持ち正極性
の信号入力に対しては出力を増、負極性の信号入力に対
しては出力を減、入力がOの場合出力を一定に保つ動作
が行なわれる。したがって、えた値(#s+Z’l□)
より圧力設定値せ、が低い場合、圧力設定偏差信号す、
□は正極性となり、圧力設定値V5を増操作、圧力設定
値?、、が高い場合。
As mentioned above, the pressure setting device 8 has an integral operation function, increases the output in response to a positive polarity signal input, decreases the output in response to a negative polarity signal input, and keeps the output constant when the input is O. An action is taken. Therefore, the obtained value (#s+Z'l□)
If the pressure setting value is lower than the pressure setting value, the pressure setting deviation signal is
□ becomes positive polarity, increase pressure setting value V5, pressure setting value? , , is high.

圧力設定偏差信号υ、2は負極性となり、圧力設定値t
5の減操作を行なう。
The pressure setting deviation signal υ,2 becomes negative polarity, and the pressure setting value t
Perform a subtraction operation of 5.

このようにして、接点す、9導通時には常に圧力設定値
V5は実圧カサ、よりバイアスジ1□分高い値に追従制
御される。
In this way, when the contacts 1 and 9 are conductive, the pressure set value V5 is always controlled to follow the actual pressure bulk and to a value higher by 1□ of the bias voltage.

かくして、原子炉起動時の炉圧上昇の際にBP■が開す
ることのないよう圧力設定値を実圧力より高めに操作す
る制御を追従モード切換器の操作により自動的に行なう
ことが可能となる。
In this way, it is possible to automatically control the pressure setting value to be higher than the actual pressure by operating the follow-up mode switch to prevent BP■ from opening when the reactor pressure increases at reactor startup. Become.

なお、本発明は次の回路を付加すれば、より望ましい結
果を得ることができる。
In addition, the present invention can obtain more desirable results by adding the following circuit.

第1図において圧力設定器8の出力である圧力設定値す
、を実圧カサ、にバイアスV11を加えた値に追従させ
る動作は、追従モード切換器21の操作により接点19
が入となることにより開始される。
In FIG. 1, the pressure set value S, which is the output of the pressure setting device 8, is made to follow the value obtained by adding the bias V11 to the actual pressure bulk, by operating the follow-up mode switch 21 at the contact 19.
It is started by turning on.

この追従モード切換器21は通常手動により操作成立し
た場合接点19が導通しないよう入操作禁止回路を設け
る。
This follow-up mode switch 21 is provided with an operation prohibition circuit so that the contact 19 will not be brought into conduction when the operation is normally performed manually.

この追従禁止条件としては、タービン起動信号、あるい
はBPV6開信号等があげられる。
Examples of this follow-up prohibition condition include a turbine start signal, a BPV6 open signal, and the like.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば原子炉起動時の炉圧
上昇に際しBPVが開しないよう炉圧上昇に合わせ圧力
設定値を増加させる操作をタービン制御装置側で自動的
に行なう事が可能となり、運転員の操作上の負担を大き
く軽減することができる。
As explained above, according to the present invention, it is possible for the turbine control device to automatically increase the pressure set value in accordance with the rise in reactor pressure so that the BPV does not open when the reactor pressure rises during reactor startup. , the operational burden on the operator can be greatly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す機能ブロック図、第2
図は本発明に従う場合の炉圧上昇操作を示す図、第3図
はタービンの一般的な構成を示す系統図、第4図は従来
のタービン制御装置の機能ブロック図、第5図は従来の
タービン制御装置による炉圧上昇操作を示す図である。 3・・蒸気加減弁    4 ・タービン6・・タービ
ンバイパス弁 9 、10.19・・・接点 13、16.18.20・・・加算器 15・・・低値選択器    17・・・下限リミッタ
21・・・追従モード切換器
Fig. 1 is a functional block diagram showing one embodiment of the present invention;
3 is a system diagram showing the general configuration of a turbine, FIG. 4 is a functional block diagram of a conventional turbine control device, and FIG. 5 is a diagram showing a furnace pressure raising operation according to the present invention. FIG. 3 is a diagram showing a furnace pressure increasing operation by the turbine control device. 3... Steam control valve 4 - Turbine 6... Turbine bypass valve 9, 10.19... Contact 13, 16.18.20... Adder 15... Low value selector 17... Lower limit limiter 21...Following mode switch

Claims (2)

【特許請求の範囲】[Claims] (1)原子炉からタービンに導かれる蒸気の流量を調節
する複数の蒸気加減弁およびタービンをバイパスする蒸
気の流量を調節するタービンバイパス弁の双方の開度を
制御してタービン入口蒸気圧力または原子炉ドーム圧力
を制御するタービン制御装置において、前記タービン入
口蒸気圧力または原子炉ドーム圧力を検出する回路と、
検出した前記圧力信号に一定値を加算するバイアス回路
と、バイアス値加算後の信号を目標値として圧力設定器
の設定値を追従制御する回路とを有することを特徴とす
るタービン制御装置。
(1) By controlling the opening degrees of both the multiple steam control valves that adjust the flow rate of steam led from the reactor to the turbine and the turbine bypass valve that adjusts the flow rate of steam bypassing the turbine, the turbine inlet steam pressure or the In a turbine control device that controls reactor dome pressure, a circuit that detects the turbine inlet steam pressure or reactor dome pressure;
A turbine control device comprising: a bias circuit that adds a constant value to the detected pressure signal; and a circuit that follows and controls a set value of a pressure setting device using the signal after adding the bias value as a target value.
(2)前記圧力設定器設定値の自動追従回路を入切する
切換回路および前記切換回路をタービン起動信号あるい
はタービンバイパス弁開信号により強制的に入操作不能
とする回路を有することを特徴とする請求項1記載のタ
ービン制御装置。
(2) It is characterized by having a switching circuit for turning on and off the automatic follow-up circuit for the pressure setting device setting value, and a circuit for forcibly disabling the switching circuit by a turbine start signal or a turbine bypass valve opening signal. The turbine control device according to claim 1.
JP2202548A 1990-08-01 1990-08-01 Turbine control device Expired - Fee Related JP2809836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2202548A JP2809836B2 (en) 1990-08-01 1990-08-01 Turbine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2202548A JP2809836B2 (en) 1990-08-01 1990-08-01 Turbine control device

Publications (2)

Publication Number Publication Date
JPH0491303A true JPH0491303A (en) 1992-03-24
JP2809836B2 JP2809836B2 (en) 1998-10-15

Family

ID=16459327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2202548A Expired - Fee Related JP2809836B2 (en) 1990-08-01 1990-08-01 Turbine control device

Country Status (1)

Country Link
JP (1) JP2809836B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109488394A (en) * 2018-10-19 2019-03-19 哈尔滨汽轮机厂有限责任公司 The control method that million nuclear steam turbine control system machine heaps are coordinated

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5254803A (en) * 1975-10-31 1977-05-04 Hitachi Ltd Initial pressure controlling device for of turbine
JPS60228710A (en) * 1984-04-27 1985-11-14 Toshiba Corp Control device for steam turbine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5254803A (en) * 1975-10-31 1977-05-04 Hitachi Ltd Initial pressure controlling device for of turbine
JPS60228710A (en) * 1984-04-27 1985-11-14 Toshiba Corp Control device for steam turbine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109488394A (en) * 2018-10-19 2019-03-19 哈尔滨汽轮机厂有限责任公司 The control method that million nuclear steam turbine control system machine heaps are coordinated

Also Published As

Publication number Publication date
JP2809836B2 (en) 1998-10-15

Similar Documents

Publication Publication Date Title
EP0406836B1 (en) Controlling apparatus utilized in process instrumentation system
EP0318006B1 (en) Automatic control system
JPH0491303A (en) Turbine controller
JP3315253B2 (en) Pressure control device
JP2963745B2 (en) Turbine control device
JPH0732944Y2 (en) Flow control device for turbine generator with limited output
JPS6137041Y2 (en)
JPH0347489A (en) Method and device for closed loop control for pump with variable capacity
JP3646425B2 (en) Turbine governor
JPH06317304A (en) Steam temperature controller with automatic bias circuit
JPH0343606A (en) Turbine controlling device
JPS5898603A (en) Controller for turbine
JP2511908B2 (en) Turbine controller
JPS5818506A (en) Method of controlling operation of boiler turbine under variable pressure
JPS623283B2 (en)
JPS63278101A (en) Process controller
JPH09282001A (en) Controller having manual switching function
JPH0474201A (en) Process controller
JPH06230176A (en) Turbine controller
JPS62226303A (en) Eliminating system for reset wind-up in cascade control system
JPH0479731A (en) Reactive power controller
JPS62157219A (en) Waste heat turbine pre-pressure controller
JPS63253894A (en) Controller for motor
JPS60129694A (en) Controller for pressure of nuclear power plant
JPH07318689A (en) Pressure controller for nuclear power plant

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080731

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090731

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees