JPH11117712A - Gas turbine combined plant - Google Patents

Gas turbine combined plant

Info

Publication number
JPH11117712A
JPH11117712A JP28817097A JP28817097A JPH11117712A JP H11117712 A JPH11117712 A JP H11117712A JP 28817097 A JP28817097 A JP 28817097A JP 28817097 A JP28817097 A JP 28817097A JP H11117712 A JPH11117712 A JP H11117712A
Authority
JP
Japan
Prior art keywords
heater
fuel
gas turbine
air
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28817097A
Other languages
Japanese (ja)
Inventor
Hiroshi Mishima
浩史 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP28817097A priority Critical patent/JPH11117712A/en
Publication of JPH11117712A publication Critical patent/JPH11117712A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle

Abstract

PROBLEM TO BE SOLVED: To provide a gas turbine combined plant which is capable of improving the thermal efficiency more compared to conventional air cooling and heating systems, and thereby reducing the operating cost. SOLUTION: In a gas turbine combined plant where exhaust gas of a gas turbine 4 provided with an air compressor 1, a combustor 2, and an air cooler- fuel heater 3, is sent to an exhaust heat recovery boiler 6, and a steam turbine 7 is driven by the steam generated by the exhaust heat recovery boiler 6, a heater 5 is provided on the upstream side of the combustor 2 of the gas turbine 4, the heater 5 is connected to the air cooling cum fuel heater 3, and the heater 5 is connected to the exhaust heat recovery boiler 6. Fuel gas G is heated in the fuel heater 3 by the air sent from the air compressor 1 to be sent to the heater 5, or is heated by the heater 5 to be sent to the air cooling cum fuel heater 3. The fuel gas G in the heater 5 is heated by working fluid W sent from the exhaust heat recovery boiler 6 and then supplied to the combustor 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガスタービンと蒸
気タービンとを組み合わせたガスタービンコンバインド
プラントに関するものである。
The present invention relates to a gas turbine combined plant in which a gas turbine and a steam turbine are combined.

【0002】[0002]

【従来の技術】一般に、図2に示すようなガスタービン
コンバインドプラントにおいては、空気Aを空気圧縮機
51で圧縮して燃焼器52に送り、該燃焼器52内に供
給された燃料Gと一緒に加熱(約1400〜1500゜
C)し、生じた高温高圧ガスをガスタービン53中で膨
張させることにより発電機54の動力を生み出し、更
に、このガスタービン53の排気ガスの排熱(約600
゜C)を利用すべくボトミングサイクルBの排熱回収ボ
イラ(HRSG)55に送り、該排熱回収ボイラ55に
て発生させた蒸気により蒸気タービン56を駆動させて
発電機57の動力を生み出すようになっている。そし
て、蒸気タービン56から排出された蒸気は、復水器5
8の熱交換部に導かれ、該熱交換部において海水等の冷
却水で冷却されて凝縮され、復水として排熱回収ボイラ
55への給水系統に導かれている。
2. Description of the Related Art In general, in a gas turbine combined plant as shown in FIG. 2, air A is compressed by an air compressor 51 and sent to a combustor 52, and together with fuel G supplied into the combustor 52, (Approximately 1400-1500 ° C.), and the generated high-temperature and high-pressure gas is expanded in the gas turbine 53 to generate power for the generator 54. Further, the exhaust heat of the exhaust gas from the gas turbine 53 (approximately 600
(C) is sent to an exhaust heat recovery boiler (HRSG) 55 of the bottoming cycle B to utilize the steam, and the steam generated by the exhaust heat recovery boiler 55 drives a steam turbine 56 to generate power for a generator 57. It has become. The steam discharged from the steam turbine 56 is supplied to the condenser 5
In the heat exchange section, the water is cooled by condensed water such as seawater and condensed, and is condensed as condensed water into a water supply system to the exhaust heat recovery boiler 55.

【0003】ガスタービン装置では、空気圧縮機51か
ら圧縮空気の一部を抽気してガスタービン53の冷却に
用いているが、その際、抽気した圧縮空気を外部の冷却
器等にて冷却することが一般的であった。しかし、この
場合、圧縮空気の熱はそのまま系外に放出されるため、
約1.5%の燃効率の低下を招いていた。そこで、系外
に捨てる熱を燃料に回収させるため圧縮空気と燃料Gと
の熱交換を行うシステムが考え出され、このシステムに
より放出熱量の約7割が回収できることとなった。図3
はTCAクーラと呼ばれている空気冷却兼燃料加熱器5
9示しており、上記の熱交換はこのTCAクーラにて行
われている。同図において、管路61は空気圧縮機51
から抽気した圧縮空気を流す流路であり、その上方に燃
料Gを流す管路62が設けられている。そして、両管路
61,62の下方には、上に向けて空気を流すファン6
0が設けられている。しかして、空気圧縮機51から空
気冷却兼燃料加熱器59に送られる温度T1(約440
゜C)の圧縮空気は、ファン60から送給される温度3
0゜Cの大気で冷却されて温度T2 (約200゜C)と
なり、ガスタービン53に送られてタービンロータなど
を冷却し、タービン損傷を防止している。一方、空気冷
却兼燃料加熱器59内に送られてくる温度T3 (約60
゜C)の燃料ガスGは、圧縮空気を冷却した後の大気
(約220゜C)によって温度T4 (約200゜C)に
加熱されて、燃焼器52に供給されるようになってい
る。
In the gas turbine device, a part of the compressed air is extracted from the air compressor 51 and used for cooling the gas turbine 53. At this time, the extracted compressed air is cooled by an external cooler or the like. That was common. However, in this case, the heat of the compressed air is released out of the system as it is,
The fuel efficiency was reduced by about 1.5%. Therefore, a system for exchanging heat between the compressed air and the fuel G has been devised in order to recover the heat discarded outside the system to the fuel, and this system can recover about 70% of the released heat. FIG.
Is an air cooling and fuel heater 5 called TCA cooler
9, the above heat exchange is performed in this TCA cooler. In the figure, a line 61 is connected to an air compressor 51.
A flow path through which the compressed air extracted from the air flows, and a pipe 62 through which the fuel G flows is provided above the flow path. A fan 6 that allows air to flow upward is provided below the two conduits 61 and 62.
0 is provided. Thus, the temperature T 1 (about 440) sent from the air compressor 51 to the air cooling and fuel heater 59.
The compressed air of 圧 縮 C) has a temperature of 3
The gas is cooled in the atmosphere of 0 ° C. to reach a temperature T 2 (about 200 ° C.), and is sent to the gas turbine 53 to cool the turbine rotor and the like, thereby preventing turbine damage. On the other hand, the temperature T 3 (about 60) sent into the air cooling and fuel heater 59.
The fuel gas G of ゜ C) is heated to a temperature T 4 (about 200 ° C) by the atmosphere (about 220 ° C) after cooling the compressed air, and is supplied to the combustor 52. .

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
た従来のガスタービンコンバインドプラントの空気冷却
兼燃料加熱器59による熱回収では、冷却後の大気温度
が約220゜Cであり、燃料ガス加熱媒体(空気)上限
による空気―ガス熱交換器の制約があるため、約0.4
%程度の燃料損失が依然として残存しており、更なる改
善が要望されていた。
However, in the above-described heat recovery by the air cooling and fuel heater 59 of the conventional gas turbine combined plant, the ambient temperature after cooling is about 220 ° C., and the fuel gas heating medium ( (Air) Approximately 0.4
% Of fuel loss still remains, and further improvements have been requested.

【0005】本発明はこのような実状に鑑みてなされた
ものであって、その目的は、従来の空冷加熱システムに
比べて更に熱効率を改善し、運転コストを低減させるこ
とが可能なガスタービンコンバインドプラントを提供す
ることにある。
The present invention has been made in view of such circumstances, and has as its object to provide a gas turbine combined system capable of further improving thermal efficiency and reducing operating costs as compared with a conventional air-cooled heating system. To provide a plant.

【0006】[0006]

【課題を解決するための手段】上記従来技術の有する課
題を解決するために、本発明においては、空気圧縮機、
燃焼器、ガスタービンおよび空気圧縮機から抽気した高
温部冷却用の圧縮空気と燃焼器に供給する燃料の熱交換
を行う空気冷却兼燃料加熱器を備えたガスタービン装置
と、該ガスタービン装置の下流に配設される排熱回収ボ
イラとを備えたガスタービンコンバインドプラントにお
いて、前記空気冷却兼燃料加熱器にて加熱した燃料を更
に加熱する加熱器あるいは前記空気冷却兼燃料加熱器の
上流で加熱する加熱器と、前記排熱回収ボイラから作動
流体の一部を抽出し前記加熱器に送る流路とを設け、前
記排熱回収ボイラから抽気した作動流体を前記加熱器に
おける熱源としている。
In order to solve the above-mentioned problems of the prior art, the present invention provides an air compressor,
A gas turbine device including a combustor, a gas turbine, and an air cooling and fuel heater for exchanging heat between fuel supplied to the combustor and compressed air for cooling a high-temperature portion extracted from a gas turbine and an air compressor; and In a gas turbine combined plant having an exhaust heat recovery boiler disposed downstream, a heater for further heating the fuel heated by the air cooling and fuel heater or heating upstream of the air cooling and fuel heater And a flow path for extracting a part of the working fluid from the waste heat recovery boiler and sending the working fluid to the heater, and the working fluid extracted from the waste heat recovery boiler is used as a heat source in the heater.

【0007】[0007]

【発明の実施の形態】以下、本発明を図示の実施の形態
に基づいて詳細に説明する。ここで、図1は本発明の実
施の形態に係るガスタービンコンバインドプラントの説
明図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on illustrated embodiments. Here, FIG. 1 is an explanatory diagram of a gas turbine combined plant according to an embodiment of the present invention.

【0008】本発明の実施形態のガスタービンコンバイ
ンドプラントは、図1に示す如く、主として空気圧縮機
1、燃焼器2、空気冷却兼燃料加熱器(TCAクーラ)
3、ガスタービン4および加熱器5が設備されるトッピ
ングサイクルTと、主として排熱回収ボイラ(HRS
G)6、蒸気タービン7および復水器8が設備されるボ
トミングサイクルBとを組み合わせたもので、ガスター
ビン4の排気ガスを排熱回収ボイラ6に送り、この排熱
回収ボイラ6にて発生させた蒸気により蒸気タービン7
を駆動する発電プラントである。
As shown in FIG. 1, a gas turbine combined plant according to an embodiment of the present invention mainly comprises an air compressor 1, a combustor 2, an air cooling and fuel heater (TCA cooler).
3, the topping cycle T in which the gas turbine 4 and the heater 5 are installed, and the exhaust heat recovery boiler (HRS
G) Combination of 6, a steam turbine 7 and a bottoming cycle B in which a condenser 8 is installed. The exhaust gas of the gas turbine 4 is sent to an exhaust heat recovery boiler 6 and generated by the exhaust heat recovery boiler 6. Steam turbine 7
Power plant.

【0009】上記トッピングサイクルTの空気圧縮機1
は、供給された空気Aを圧縮するもので、その下流側は
2系統に分岐されており、それぞれの経路には燃焼器2
または空気冷却兼燃料加熱器3が設けられている。燃焼
器2は、供給された燃焼ガスGを加熱燃焼するもので、
その下流側には生じた高温高圧ガスを送給するガスター
ビン4が設けられている。このガスタービン4は、内部
で高温高圧ガスを膨張させることにより駆動され、発電
機9を回して発電するように構成されている。一方、空
気冷却兼燃料加熱器3は、従来と同様、空気圧縮機1か
ら送られてくる高温の圧縮空気Aを大気で冷却するもの
であり、冷却された空気は下流側に設置されたガスター
ビン4に送られてタービンロータなどを冷却している。
また、空気冷却兼燃料加熱器3内では送給された燃料ガ
スGが圧縮空気Aを冷却した後の大気で加熱され、加熱
された燃料ガスGは加熱器5に送られる。
The air compressor 1 of the above-mentioned topping cycle T
Is for compressing the supplied air A, the downstream side of which is branched into two systems, each of which has a combustor 2
Alternatively, an air cooling and fuel heater 3 is provided. The combustor 2 heats and burns the supplied combustion gas G.
A gas turbine 4 for supplying the generated high-temperature and high-pressure gas is provided on the downstream side. The gas turbine 4 is driven by expanding a high-temperature and high-pressure gas inside, and is configured to rotate a generator 9 to generate power. On the other hand, the air cooling and fuel heater 3 cools the high-temperature compressed air A sent from the air compressor 1 with the atmosphere as in the conventional case, and the cooled air is supplied to the gas installed on the downstream side. It is sent to the turbine 4 to cool the turbine rotor and the like.
Further, in the air cooling and fuel heater 3, the supplied fuel gas G is heated by the air after cooling the compressed air A, and the heated fuel gas G is sent to the heater 5.

【0010】このため、上記空気冷却兼燃料加熱器3と
上記加熱器5とは互いに接続され、該加熱器5は空気冷
却兼燃料加熱器3の下流側(又は上流側)に設置されて
いる。しかも、加熱器5は、燃焼器2の上流側に設けら
れているとともに、排熱回収ボイラ6と互いに接続され
ており、該排熱回収ボイラ6から燃料ガスGを加熱する
作動流体Wが加熱器5内に送給されるように構成されて
いる。なお、加熱器5は脱気器10に接続されており、
加熱後における加熱器5内の作動流体Wは脱気器10に
送給されるようになっている。
For this reason, the air cooling and fuel heater 3 and the heater 5 are connected to each other, and the heater 5 is installed downstream (or upstream) of the air cooling and fuel heater 3. . Moreover, the heater 5 is provided on the upstream side of the combustor 2 and is connected to the exhaust heat recovery boiler 6. The working fluid W for heating the fuel gas G from the exhaust heat recovery boiler 6 is heated. It is configured to be fed into the vessel 5. The heater 5 is connected to the deaerator 10,
The working fluid W in the heater 5 after the heating is supplied to the deaerator 10.

【0011】上記ボトミングサイクルBの排熱回収ボイ
ラ6は、ボイラ本体の内部に供給されているボイラ水を
加熱することにより所定の圧力および温度の蒸気を発生
させるものであり、高圧(HP)・中圧(IP)・低圧
(LP)に分かれた三重圧方式構造となっている。そし
て、本実施形態に係る排熱回収ボイラ6の内部には、そ
れぞれの圧力と対応して図示しない節炭器のエコノマイ
ザ(ECO)、蒸発器のエバポレータ(EVA)および
スーパヒータ(SH)等が設けられている。また、本実
施形態では、加熱器5が排熱回収ボイラ6の中圧エコノ
マイザ(IP―ECO)の出口と接続され、該中圧エコ
ノマイザの出口から排出される温度約240゜Cの作動
流体(水)Wが加熱器5に送給されるようになってい
る。なお、排熱回収ボイラ6の下流側には、蒸気により
駆動されて発電機11を回す動力を生み出す蒸気タービ
ン7が設置されており、該蒸気タービン7の下流側には
タービン排気を凝縮させ、復水として排熱回収ボイラ6
への給水系統に導く復水器8が設置されている。
The exhaust heat recovery boiler 6 in the bottoming cycle B generates steam at a predetermined pressure and temperature by heating boiler water supplied to the inside of the boiler main body. It has a triple pressure type structure divided into medium pressure (IP) and low pressure (LP). Inside the exhaust heat recovery boiler 6 according to the present embodiment, an economizer (ECO) of a economizer, an evaporator (EVA) of an evaporator, a superheater (SH), and the like (not shown) are provided corresponding to the respective pressures. Have been. Further, in the present embodiment, the heater 5 is connected to the outlet of the intermediate pressure economizer (IP-ECO) of the exhaust heat recovery boiler 6, and the working fluid (about 240 ° C.) discharged from the outlet of the intermediate pressure economizer ( (W) W is supplied to the heater 5. On the downstream side of the exhaust heat recovery boiler 6, a steam turbine 7 that is driven by steam to generate power for turning the generator 11 is installed. On the downstream side of the steam turbine 7, turbine exhaust gas is condensed. Waste heat recovery boiler 6 as condensate
A condenser 8 leading to a water supply system to the water supply system is installed.

【0012】本実施形態のガスタービンコンバインドプ
ラントにおいて、空気Aが空気圧縮機1に供給される
と、この空気Aは空気圧縮機1で圧縮されるとともに、
空気冷却兼燃料加熱器3を経由して燃焼器2に送られ
る。空気冷却兼燃料加熱器3に送られてくる圧縮空気A
は、温度が約440゜Cとなっているから、図示しない
ファンによって送給される大気(30゜C)で約200
゜Cに冷却されて、ガスタービン4に送られる。また、
空気冷却兼燃料加熱器3内に送られてくる燃料ガスG
(約60゜C)は、圧縮空気Aを冷却した後の大気(約
220゜C)によって加熱され(約200゜C)、加熱
器5内に送給される。
In the gas turbine combined plant of the present embodiment, when air A is supplied to the air compressor 1, the air A is compressed by the air compressor 1,
It is sent to the combustor 2 via the air cooling and fuel heater 3. Compressed air A sent to the air cooling and fuel heater 3
Has a temperature of about 440 ° C., and the atmosphere (30 ° C.) supplied by a fan (not shown) has a temperature of about 200 ° C.
Cooled to ゜ C and sent to the gas turbine 4. Also,
Fuel gas G sent into the air cooling and fuel heater 3
(About 60 ° C.) is heated (about 200 ° C.) by the atmosphere (about 220 ° C.) after cooling the compressed air A, and is sent into the heater 5.

【0013】上記加熱器5には、排熱回収ボイラ6の中
圧エコノマイザから作動流体(約240゜C)Wが送ら
れており、空気冷却兼燃料加熱器3から送給された加熱
器5内の燃料ガスGは、当該作動流体Wによって更に加
熱される(約260゜C)。この加熱された燃料ガスG
は、燃焼器2に供給されて空気圧縮機1からの圧縮空気
と一緒に加熱燃焼され、高温高圧ガスとなってガスター
ビン4に送給される。しかる後、従来例と同様の手順
で、ガスタービン4は発電機9の動力を生み出し、その
排気ガスは排熱回収ボイラ6に送られて排熱が利用さ
れ、該排熱回収ボイラ6の蒸気で蒸気タービン7が駆動
される。
A working fluid (approximately 240 ° C.) W is sent from the medium pressure economizer of the exhaust heat recovery boiler 6 to the heater 5, and is supplied from the air cooling and fuel heater 3. The fuel gas G inside is further heated by the working fluid W (about 260 ° C.). This heated fuel gas G
Is supplied to the combustor 2 and is heated and burned together with the compressed air from the air compressor 1 to be supplied to the gas turbine 4 as a high-temperature high-pressure gas. Thereafter, in the same procedure as in the conventional example, the gas turbine 4 generates the power of the generator 9, and the exhaust gas is sent to the exhaust heat recovery boiler 6 to use the exhaust heat, and the steam of the exhaust heat recovery boiler 6 is used. Drives the steam turbine 7.

【0014】本実施形態のガスタービンコンバインドプ
ラントでは、空気冷却兼燃料加熱器3で加熱された燃料
ガスGが排熱回収ボイラ6の作動流体Wによって更に加
熱され、従来の燃料ガス温度(約200゜C)に比べ
て、約60゜C程度高めることが可能になるため、相対
値で約0.2%程度熱効率を改善することができる。こ
の改善による経済的な利益は約2億円に相当する。又
は、空気冷却兼燃料加熱器3の上流側に加熱器5を設置
し、加熱の負荷分担を変え、コストミニマムの燃料加熱
システムへ改善することができる。
In the gas turbine combined plant of this embodiment, the fuel gas G heated by the air cooling and fuel heater 3 is further heated by the working fluid W of the exhaust heat recovery boiler 6, and the conventional fuel gas temperature (about 200 Since it is possible to increase the temperature by about 60 ° C. as compared with (C), the thermal efficiency can be improved by about 0.2% as a relative value. The economic benefit of this improvement is about 200 million yen. Alternatively, a heater 5 can be provided upstream of the air cooling and fuel heater 3 to change the load sharing of heating, thereby improving the fuel heating system to a minimum cost.

【0015】以上、本発明の実施の形態につき述べた
が、本発明は既述の実施の形態に限定されるものではな
く、本発明の要旨を逸脱しない範囲内において種々の変
形および変更を加え得るものである。例えば、既述の実
施の形態では、加熱器5内で燃焼ガスGを加熱する作動
流体Wとして排熱回収ボイラ6からの中圧エコノマイザ
から抽水された水を使用したが、確実に燃焼ガスGを加
熱できるものであれば、低圧エバポレータの蒸気などを
作動流体として使用しても良い。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications and changes may be made without departing from the gist of the present invention. What you get. For example, in the above-described embodiment, the water extracted from the medium pressure economizer from the exhaust heat recovery boiler 6 is used as the working fluid W for heating the combustion gas G in the heater 5, but the combustion gas G is surely used. May be used as the working fluid, as long as the working fluid can be heated.

【0016】[0016]

【発明の効果】上述の如く、本発明に係るガスタービン
コンバインドプラントは、空気圧縮機、燃焼器および空
気冷却兼燃料加熱器を有するガスタービンの排気ガスを
排熱回収ボイラに送り、該排熱回収ボイラにて発生させ
た蒸気により蒸気タービンを駆動するものであって、前
記ガスタービンの燃焼器の上流側に加熱器を設け、該加
熱器と前記空気冷却兼燃料加熱器とを接続するととも
に、前記加熱器と前記排熱回収ボイラとを接続し、前記
空気圧縮機から送られる空気によって燃料ガスを前記空
気冷却兼燃料加熱器内で加熱して前記加熱器内に送り、
かつ前記排熱回収ボイラから送られる作動流体によって
前記加熱器内の燃料ガスを加熱して前記燃焼器に供給す
るように構成しているので、従来の空冷加熱システムに
比べて、燃焼器へ供給する前の燃焼ガス温度を更に高め
ることができ、熱効率の改善によって運転コストの低減
化を図ることができる。しかも、本発明のガスタービン
コンバインドプラントでは、加熱器内の燃料ガスの熱源
として排熱回収ボイラの作動流体を利用しているので、
設備費が安価で済み、経済的に有利である。
As described above, in the gas turbine combined plant according to the present invention, the exhaust gas of a gas turbine having an air compressor, a combustor and an air cooling and fuel heater is sent to an exhaust heat recovery boiler. A steam turbine is driven by steam generated by a recovery boiler, and a heater is provided upstream of a combustor of the gas turbine, and the heater is connected to the air cooling and fuel heater. Connecting the heater and the exhaust heat recovery boiler, heating the fuel gas by the air sent from the air compressor in the air cooling and fuel heater and sending it into the heater,
Further, since the fuel gas in the heater is heated by the working fluid sent from the exhaust heat recovery boiler and supplied to the combustor, the fuel gas is supplied to the combustor as compared with a conventional air-cooled heating system. The temperature of the combustion gas before the combustion can be further increased, and the operating cost can be reduced by improving the thermal efficiency. Moreover, in the gas turbine combined plant of the present invention, since the working fluid of the exhaust heat recovery boiler is used as a heat source of the fuel gas in the heater,
Equipment costs are low, which is economically advantageous.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係るガスタービンコンバ
インドプラントを示す概略図である。
FIG. 1 is a schematic diagram showing a gas turbine combined plant according to an embodiment of the present invention.

【図2】従来のガスタービンコンバインドプラントを示
す概略図である。
FIG. 2 is a schematic view showing a conventional gas turbine combined plant.

【図3】従来のガスタービンコンバインドプラントに設
備される空気冷却兼燃料加熱器を示す概略図である。
FIG. 3 is a schematic diagram showing an air cooling and fuel heater installed in a conventional gas turbine combined plant.

【符号の説明】[Explanation of symbols]

1 空気圧縮機 2 燃焼器 3 空気冷却兼燃料加熱器 4 ガスタービン 5 加熱器 6 排熱回収ボイラ 7 蒸気タービン 8 復水器 9,11 発電機 A 空気 G 燃料ガス W 作動流体 DESCRIPTION OF SYMBOLS 1 Air compressor 2 Combustor 3 Air cooling and fuel heater 4 Gas turbine 5 Heater 6 Exhaust heat recovery boiler 7 Steam turbine 8 Condenser 9, 11 Generator A Air G Fuel gas W Working fluid

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 空気圧縮機、燃焼器、ガスタービンおよ
び空気圧縮機から抽気した高温部冷却用の圧縮空気と燃
焼器に供給する燃料の熱交換を行う空気冷却兼燃料加熱
器を備えたガスタービン装置と、該ガスタービン装置の
下流に配設される排熱回収ボイラとを備えたガスタービ
ンコンバインドプラントにおいて、前記空気冷却兼燃料
加熱器にて加熱した燃料を更に加熱する加熱器あるいは
前記空気冷却兼燃料加熱器の上流で加熱する加熱器と、
前記排熱回収ボイラから作動流体の一部を抽出し前記加
熱器に送る流路とを設け、前記排熱回収ボイラから抽気
した作動流体を前記加熱器における熱源としたことを特
徴とするガスタービンコンバインドプラント。
1. A gas comprising an air compressor, a combustor, a gas turbine, and an air cooling and fuel heater for exchanging heat between fuel supplied to the combustor and compressed air for cooling a high temperature portion extracted from the air compressor. In a gas turbine combined plant comprising a turbine device and an exhaust heat recovery boiler disposed downstream of the gas turbine device, a heater or the air for further heating the fuel heated by the air cooling and fuel heater A heater for heating upstream of the cooling and fuel heater;
A gas turbine, wherein a flow path for extracting a part of the working fluid from the exhaust heat recovery boiler and sending the working fluid to the heater is provided, and the working fluid extracted from the exhaust heat recovery boiler is used as a heat source in the heater. Combined plant.
JP28817097A 1997-10-21 1997-10-21 Gas turbine combined plant Pending JPH11117712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28817097A JPH11117712A (en) 1997-10-21 1997-10-21 Gas turbine combined plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28817097A JPH11117712A (en) 1997-10-21 1997-10-21 Gas turbine combined plant

Publications (1)

Publication Number Publication Date
JPH11117712A true JPH11117712A (en) 1999-04-27

Family

ID=17726724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28817097A Pending JPH11117712A (en) 1997-10-21 1997-10-21 Gas turbine combined plant

Country Status (1)

Country Link
JP (1) JPH11117712A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6698182B2 (en) 2001-04-10 2004-03-02 Mitsubishi Heavy Industries, Ltd. Gas turbine combined plant
JP2012180774A (en) * 2011-02-28 2012-09-20 Mitsubishi Heavy Ind Ltd Gas turbine plant and control method thereof
WO2015072159A1 (en) * 2013-11-14 2015-05-21 三菱日立パワーシステムズ株式会社 Gas turbine cooling system, gas turbine plant equipped with same, and method for cooling high-temperature section of gas turbine
CN108005788A (en) * 2016-11-01 2018-05-08 通用电气公司 Fuel-heating system and method and electricity generation system for combustion gas turbine systems
CN109026400A (en) * 2018-08-01 2018-12-18 中国华能集团有限公司 A kind of gas turbine engine systems and method using the pre-heating fuel that exchanges heat between grade
US10774691B2 (en) 2014-12-25 2020-09-15 Mitsubishi Heavy Industries Compressor Corporation Combined cycle power plants with a steam connection line
US11415054B2 (en) 2017-08-31 2022-08-16 Mitsubishi Heavy Industries, Ltd. Gas turbine combined cycle system equipped with control device and its control method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6698182B2 (en) 2001-04-10 2004-03-02 Mitsubishi Heavy Industries, Ltd. Gas turbine combined plant
JP2012180774A (en) * 2011-02-28 2012-09-20 Mitsubishi Heavy Ind Ltd Gas turbine plant and control method thereof
WO2015072159A1 (en) * 2013-11-14 2015-05-21 三菱日立パワーシステムズ株式会社 Gas turbine cooling system, gas turbine plant equipped with same, and method for cooling high-temperature section of gas turbine
US10774691B2 (en) 2014-12-25 2020-09-15 Mitsubishi Heavy Industries Compressor Corporation Combined cycle power plants with a steam connection line
CN108005788A (en) * 2016-11-01 2018-05-08 通用电气公司 Fuel-heating system and method and electricity generation system for combustion gas turbine systems
CN108005788B (en) * 2016-11-01 2022-07-08 通用电气公司 Fuel heating system and method for gas turbine system and power generation system
US11415054B2 (en) 2017-08-31 2022-08-16 Mitsubishi Heavy Industries, Ltd. Gas turbine combined cycle system equipped with control device and its control method
CN109026400A (en) * 2018-08-01 2018-12-18 中国华能集团有限公司 A kind of gas turbine engine systems and method using the pre-heating fuel that exchanges heat between grade

Similar Documents

Publication Publication Date Title
US6499302B1 (en) Method and apparatus for fuel gas heating in combined cycle power plants
JP3681434B2 (en) Cogeneration system and combined cycle power generation system
KR100341646B1 (en) Method of cooling thermally loaded components of a gas turbine group
JP3652962B2 (en) Gas turbine combined cycle
JP3650112B2 (en) Gas turbine cooling medium cooling system for gas / steam turbine combined equipment
JP3890104B2 (en) Combined cycle power plant and steam supply method for cooling the same
US20070017207A1 (en) Combined Cycle Power Plant
US20060254280A1 (en) Combined cycle power plant using compressor air extraction
US20100170218A1 (en) Method for expanding compressor discharge bleed air
JPH11257023A (en) Operation method for gas turbine group
US20030037534A1 (en) Steam cooled gas turbine system with regenerative heat exchange
US6244039B1 (en) Combined cycle plant having a heat exchanger for compressed air
US20100242429A1 (en) Split flow regenerative power cycle
JP2012117517A (en) Heat exchanger for combined cycle power plant
JPH05163960A (en) Combined cycle power generation plant
JPH10131717A (en) Combined cycle power generating plant
JPH11117712A (en) Gas turbine combined plant
JP2003106163A (en) Gas and air combined turbine facility and power plant and operating method thereof
JP2000161018A (en) Method and device of exhaust heat recovery power generation by water-ammonia mixed fluid
KR101935637B1 (en) Combined cycle power generation system
WO1999037889A1 (en) Combined cycle power plant
JP3117424B2 (en) Gas turbine combined plant
JP2001241304A (en) Combined power generation system utilizing gas pressure energy
JPH06330709A (en) Power generation plant
JPH10339172A (en) Hydrogen combustion turbine plant

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000201