JP3117424B2 - Gas turbine combined plant - Google Patents

Gas turbine combined plant

Info

Publication number
JP3117424B2
JP3117424B2 JP09288171A JP28817197A JP3117424B2 JP 3117424 B2 JP3117424 B2 JP 3117424B2 JP 09288171 A JP09288171 A JP 09288171A JP 28817197 A JP28817197 A JP 28817197A JP 3117424 B2 JP3117424 B2 JP 3117424B2
Authority
JP
Japan
Prior art keywords
air
heat recovery
recovery boiler
heater
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09288171A
Other languages
Japanese (ja)
Other versions
JPH11117714A (en
Inventor
浩史 三島
昌則 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP09288171A priority Critical patent/JP3117424B2/en
Publication of JPH11117714A publication Critical patent/JPH11117714A/en
Application granted granted Critical
Publication of JP3117424B2 publication Critical patent/JP3117424B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガスタービンと蒸
気タービンとを組み合わせたガスタービンコンバインド
プラントに関するものである。
The present invention relates to a gas turbine combined plant in which a gas turbine and a steam turbine are combined.

【0002】[0002]

【従来の技術】一般に、図2に示すようなガスタービン
コンバインドプラントにおいては、空気Aを空気圧縮機
51で圧縮して燃焼器52に送り、該燃焼器52内に供
給された燃料ガスGを燃焼させ(約1400〜1500
゜C)、生じた高温高圧ガスをガスタービン53中で膨
張させることにより発電機54の動力を生み出し、更
に、このガスタービン53の排気ガスの排熱(約600
゜C)を利用すべくボトミングサイクルBの排熱回収ボ
イラ(HRSG)55に送り、該排熱回収ボイラ55に
て発生させた蒸気により蒸気タービン56を駆動させて
発電機57の動力を生み出すようになっている。そし
て、蒸気タービン56から排出された蒸気は、復水器5
8の熱交換部に導かれ、該熱交換部において海水等の冷
却水で冷却されて凝縮され、復水として排熱回収ボイラ
55への給水系統に導かれている。
2. Description of the Related Art Generally, in a gas turbine combined plant as shown in FIG. 2, air A is compressed by an air compressor 51 and sent to a combustor 52, and fuel gas G supplied to the combustor 52 is supplied to the combustor 52. Burn (about 1400-1500
゜ C), the generated high-temperature and high-pressure gas is expanded in the gas turbine 53 to generate the power of the generator 54, and further, the exhaust heat of the exhaust gas of the gas turbine 53 (about 600
(C) is sent to an exhaust heat recovery boiler (HRSG) 55 of the bottoming cycle B to utilize the steam, and the steam generated by the exhaust heat recovery boiler 55 drives a steam turbine 56 to generate power for a generator 57. It has become. The steam discharged from the steam turbine 56 is supplied to the condenser 5
In the heat exchange section, the water is cooled by condensed water such as seawater and condensed, and is condensed as condensed water into a water supply system to the exhaust heat recovery boiler 55.

【0003】このようなガスタービンコンバインドプラ
ントでは、GTロータ冷却空気を通常の空気冷却器にて
大気温度より冷却すると冷却後の温度まで熱を系外にそ
のまま放出することになり、約1.5%の燃料損失を招
くことから、系外に放出する空気Aで燃料ガスGを加熱
し、7割程度回収するTCAによる空冷加熱システム
(タービン冷却空気システム)の空気冷却兼燃料加熱器
(TCAクーラ)59が設けられている。この空気冷却
兼燃料加熱器59は、図2および図3に示す如く、空気
圧縮機51とガスタービン53との間に設備されてお
り、外部下方には空冷のためのファン60が設置されて
いる。しかして、GTロータ冷却空気は空気圧縮機51
から空気冷却兼燃料加熱器59に送られ温度T1 (約4
40゜C)の空気Aは、ファン60から送給される温度
30゜Cの大気で冷却されて温度T2 (約200゜C)
となり、ガスタービン53に送られてタービンロータな
どを冷却し、タービン損傷を防止している。一方、空気
冷却兼燃料加熱器59内に送られてくる温度T3 (約6
0゜C)の燃料ガスGは、ロータ冷却空気冷却後の大気
(約220゜C)によって温度T4 (約200゜C)に
加熱されて、燃焼器52に供給されるようになってい
る。
In such a gas turbine combined plant, if the cooling air of the GT rotor is cooled from the ambient temperature by a normal air cooler, the heat is released to the cooled temperature as it is outside the system. % Of the fuel loss, the fuel gas G is heated by the air A released to the outside of the system, and the air cooling and fuel heater (TCA cooler) of the air-cooling heating system (turbine cooling air system) by TCA recovers about 70%. ) 59 are provided. The air cooling and fuel heater 59 is provided between the air compressor 51 and the gas turbine 53, as shown in FIGS. 2 and 3, and a fan 60 for air cooling is installed below the outside. I have. Thus, the GT rotor cooling air is supplied to the air compressor 51.
Sent to the air cooling and fuel heater 59 from the temperature T 1 (about 4
The air A at 40 ° C. is cooled by the air at a temperature of 30 ° C. supplied from the fan 60 and the temperature T 2 (about 200 ° C.)
Is sent to the gas turbine 53 to cool the turbine rotor and the like, thereby preventing turbine damage. On the other hand, the temperature T 3 (about 6) sent into the air cooling and fuel heater 59.
The fuel gas G at 0 ° C. is heated to a temperature T 4 (about 200 ° C.) by the atmosphere (about 220 ° C.) after cooling the rotor cooling air, and is supplied to the combustor 52. .

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
た従来のガスタービンコンバインドプラントの空気冷却
兼燃料加熱器59による熱回収では、冷却後の大気温度
が約220゜Cであり、燃料ガス加熱媒体(空気)上限
による空気―ガス熱交換器の制約があるため、約0.4
%程度の燃料損失が依然として残存しており、更なる改
善が要望されていた。
However, in the above-described heat recovery by the air cooling and fuel heater 59 of the conventional gas turbine combined plant, the ambient temperature after cooling is about 220 ° C., and the fuel gas heating medium ( (Air) Approximately 0.4
% Of fuel loss still remains, and further improvements have been requested.

【0005】本発明はこのような実状に鑑みてなされた
ものであって、その目的は、従来の空冷加熱システムに
比べて更に熱効率を改善し、運転コストを低減させるこ
とが可能なガスタービンコンバインドプラントを提供す
ることにある。
The present invention has been made in view of such circumstances, and has as its object to provide a gas turbine combined system capable of further improving thermal efficiency and reducing operating costs as compared with a conventional air-cooled heating system. To provide a plant.

【0006】[0006]

【課題を解決するための手段】上記従来技術の有する課
題を解決するために、本発明においては、空気圧縮機、
燃焼器および空気冷却器を有するガスタービンの排気ガ
スを排熱回収ボイラに送り、該排熱回収ボイラにて発生
させた蒸気により蒸気タービンを駆動するガスタービン
コンバインドプラントにおいて、前記ガスタービンの燃
焼器の上流側に加熱器を設け、該加熱器と前記排熱回収
ボイラの中圧エコノマイザまたは低圧エバポレータとを
接続するとともに、前記加熱器と脱気器とを接続し、か
前記空気冷却器と前記排熱回収ボイラの高圧エコノマ
イザとを接続するとともに、前記空気冷却器と高圧ドラ
ムとを接続し、前記排熱回収ボイラの高圧エコノマイザ
へ送られる第1作動流体によって前記空気圧縮機から送
られる前記空気冷却器内の空気を冷却し、熱交換後にお
ける前記空気冷却器内の第1作動流体を前記高圧ドラム
に送給する一方、前記排熱回収ボイラの中圧エコノマイ
ザまたは低圧エバポレータから送られる第2作動流体に
よって前記加熱器内の燃料ガスを加熱して前記燃焼器に
供給し、燃料ガスを加熱した前記加熱器内の第2作動流
体を前記脱気器に送給して戻すように構成している。
In order to solve the above-mentioned problems of the prior art, the present invention provides an air compressor,
In a gas turbine combined plant in which exhaust gas of a gas turbine having a combustor and an air cooler is sent to an exhaust heat recovery boiler and a steam turbine is driven by steam generated in the exhaust heat recovery boiler, the combustor of the gas turbine A heater is provided on the upstream side, and the heater is connected to the medium-pressure economizer or the low-pressure evaporator of the exhaust heat recovery boiler, and the heater is connected to the deaerator.
One said while connected to the air cooler and the high pressure economizer of the waste heat recovery boiler, the air cooler and the high pressure Dora
The air in the air cooler sent from the air compressor is cooled by the first working fluid sent to the high-pressure economizer of the exhaust heat recovery boiler .
The first working fluid in the air cooler to the high pressure drum
While feeding the said heated fuel gas in the heater by a second working fluid sent from intermediate pressure economizer or low pressure evaporator of the waste heat recovery boiler is supplied to the combustor, and heat the fuel gas the Second working flow in heater
The body is configured to be fed back to the deaerator .

【0007】[0007]

【発明の実施の形態】以下、本発明を図示の実施の形態
に基づいて詳細に説明する。ここで、図1は本発明の実
施の形態に係るガスタービンコンバインドプラントの説
明図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on illustrated embodiments. Here, FIG. 1 is an explanatory diagram of a gas turbine combined plant according to an embodiment of the present invention.

【0008】本発明の実施形態のガスタービンコンバイ
ンドプラントは、図1に示す如く、主として空気圧縮機
1、燃焼器2、空気冷却器3、ガスタービン4および加
熱器5が設備されるトッピングサイクルTと、主として
排熱回収ボイラ(HRSG)6、蒸気タービン7および
復水器8が設備されるボトミングサイクルBとを組み合
わせたもので、ガスタービン4の排気ガスを排熱回収ボ
イラ6に送り、この排熱回収ボイラ6にて発生させた蒸
気により蒸気タービン7を駆動する発電プラントであ
る。
As shown in FIG. 1, a gas turbine combined plant according to an embodiment of the present invention mainly includes a topping cycle T in which an air compressor 1, a combustor 2, an air cooler 3, a gas turbine 4 and a heater 5 are installed. And a bottoming cycle B in which a heat recovery steam generator (HRSG) 6, a steam turbine 7 and a condenser 8 are installed, and the exhaust gas of the gas turbine 4 is sent to the heat recovery steam generator 6. This is a power plant that drives a steam turbine 7 with steam generated by the exhaust heat recovery boiler 6.

【0009】上記トッピングサイクルTは、従来のTC
Aによる空冷加熱システムを採用しておらず、これに代
えてボトミングサイクルBによるロータ冷却空気の冷却
と、ボトミングサイクルBによる燃料ガスGの加熱を行
うシステムを採用している。空気圧縮機1は、供給され
た空気Aを圧縮するもので、その下流側は2系統に分岐
されており、それぞれの経路には燃焼器2または空気冷
却器3が設けられている。燃焼器2は、供給された燃焼
ガスGを加熱燃焼するもので、その下流側には生じた高
温高圧ガスを送給するガスタービン4が設けられてい
る。このガスタービン4は、内部で高温高圧ガスを膨張
させることにより駆動され、発電機9を回して発電する
ように構成されている。
The above-mentioned topping cycle T is the same as the conventional TC
An air-cooled heating system according to A is not employed, and instead, a system that cools the rotor cooling air by the bottoming cycle B and heats the fuel gas G by the bottoming cycle B is employed. The air compressor 1 compresses the supplied air A, and its downstream side is branched into two systems, and each path is provided with a combustor 2 or an air cooler 3. The combustor 2 heats and burns the supplied combustion gas G, and a gas turbine 4 for supplying the generated high-temperature and high-pressure gas is provided downstream thereof. The gas turbine 4 is driven by expanding a high-temperature and high-pressure gas inside, and is configured to rotate a generator 9 to generate power.

【0010】また、空気冷却器3は、TCAクーラでな
い通常の冷却器であって、空気圧縮機1から送られてく
る高温の空気Aを内部で強制的に冷却するものであり、
冷却された空気Aは下流側に設置されたガスタービン4
に送られてタービンロータなどを冷却している。このた
め、上記空気冷却器3と上記ボトミングサイクルBの排
熱回収ボイラ6とは互いに接続されており、該排熱回収
ボイラ6から高温の空気Aを冷却する第1作動流体W1
が空気冷却器3内に送給されるように構成されている。
The air cooler 3 is a normal cooler that is not a TCA cooler, and forcibly cools the high-temperature air A sent from the air compressor 1 inside.
The cooled air A is supplied to the gas turbine 4 installed on the downstream side.
To cool the turbine rotor. Therefore, the air cooler 3 and the exhaust heat recovery boiler 6 of the bottoming cycle B are connected to each other, and the first working fluid W 1 for cooling the high-temperature air A from the exhaust heat recovery boiler 6.
Is supplied into the air cooler 3.

【0011】一方、上記加熱器5は、燃焼器2の上流側
に設けられているとともに、排熱回収ボイラ6と互いに
接続されており、該排熱回収ボイラ6から燃料ガスGを
加熱する第2作動流体W2 が加熱器5内に送給されるよ
うに構成されている。なお、加熱器5は脱気器10に接
続されており、加熱後における加熱器5内の第2作動流
体W2 は脱気器10に送給されるようになっている。
On the other hand, the heater 5 is provided on the upstream side of the combustor 2 and is connected to the exhaust heat recovery boiler 6 to heat the fuel gas G from the exhaust heat recovery boiler 6. The two working fluids W 2 are configured to be supplied into the heater 5. Incidentally, the heater 5 is connected to Datsukiki 10, second working fluid W 2 in the heater 5 after heating is adapted to be delivered to Datsukiki 10.

【0012】上記ボトミングサイクルBの排熱回収ボイ
ラ6は、ボイラ本体の内部に供給されているボイラ水を
加熱することにより所定の圧力および温度の蒸気を発生
させるものであり、高圧(HP)・中圧(IP)・低圧
(LP)に分かれた三重圧方式構造となっている。そし
て、本実施形態に係る排熱回収ボイラ6の内部には、そ
れぞれの圧力と対応して図示しない節炭器のエコノマイ
ザ(ECO)、蒸発器のエバポレータ(EVA)および
スーパヒータ(SH)等が設けられている。本実施形態
では、空気冷却器3が排熱回収ボイラ6の高圧エコノマ
イザ(HP―ECO)の入口と接続され、該高圧エコノ
マイザの入口への給水(約138゜C)を第1作動流体
1 として使用しており、第1作動流体(水)W1 は空
気冷却器3に送給されるようになっている。そして、熱
交換後における空気冷却器3内の第1作動流体W1 は、
高圧ドラムに送給されるようになっている。また、本実
施形態では、加熱器5が排熱回収ボイラ6の中圧エコノ
マイザ(IP―ECO)の出口と接続され、該中圧エコ
ノマイザの出口から排出される抽水(約240゜C)を
第2作動流体W2 として使用しており、第2作動流体
(水)W2 は加熱器5に送給され燃料を加熱した後、脱
気器の貯水槽へ戻される。
The exhaust heat recovery boiler 6 of the bottoming cycle B generates steam at a predetermined pressure and temperature by heating boiler water supplied to the inside of the boiler main body. It has a triple pressure type structure divided into medium pressure (IP) and low pressure (LP). Inside the exhaust heat recovery boiler 6 according to the present embodiment, an economizer (ECO) of a economizer, an evaporator (EVA) of an evaporator, a superheater (SH), and the like (not shown) are provided corresponding to the respective pressures. Have been. In the present embodiment, the air cooler 3 is connected to the inlet of the high-pressure economizer (HP-ECO) of the exhaust heat recovery boiler 6, and supplies water (about 138 ° C.) to the inlet of the high-pressure economizer with the first working fluid W 1. The first working fluid (water) W 1 is supplied to the air cooler 3. Then, the first working fluid W 1 in the air cooler 3 after the heat exchange is:
It is fed to a high pressure drum. Further, in the present embodiment, the heater 5 is connected to the outlet of the medium pressure economizer (IP-ECO) of the exhaust heat recovery boiler 6 and extracts the extracted water (about 240 ° C.) from the outlet of the medium pressure economizer. are used as a second working fluid W 2, the second working fluid (water) W 2 after heating the fuel is fed to the heater 5, it is returned to the reservoir of the deaerator.

【0013】なお、排熱回収ボイラ6の下流側には、蒸
気により駆動されて発電機11を回す動力を生み出す蒸
気タービン7が設置されており、該蒸気タービン7の下
流側にはタービン排気を凝縮させ、復水として排熱回収
ボイラ6への給水系統に導く復水器8が設置されてい
る。
A steam turbine 7 which is driven by steam to generate power for rotating the generator 11 is provided downstream of the exhaust heat recovery boiler 6, and turbine exhaust is provided downstream of the steam turbine 7. A condenser 8 is provided to condense the water and lead it to a water supply system to a waste heat recovery boiler 6 as condensate.

【0014】本実施形態のガスタービンコンバインドプ
ラントにおいて、空気Aが空気圧縮機1に供給される
と、この空気Aは空気圧縮機1で圧縮されるとともに、
燃焼器2および空気冷却器3に送られる。空気冷却器3
に送られてくる空気Aは、温度が約440゜Cとなって
いるが、排熱回収ボイラ6の高圧エコノマイザから第1
作動流体(138゜C)W1 が空気冷却器3内に送給さ
れており、この第1作動流体W1 で約200゜Cに冷却
されて、ガスタービン4に送られる。また、上記加熱器
5には、排熱回収ボイラ6の中圧エコノマイザから第2
作動流体(約240゜C)W2 が送られており、加熱器
5内の燃料ガスGは、当該第2作動流体W2 によって加
熱される(約220゜C)。この加熱された燃料ガスG
は、燃焼器2に供給されて空気圧縮機1からの圧縮空気
と一緒に加熱燃焼され、高温高圧ガスとなってガスター
ビン4に送給される。しかる後、従来例と同様の手順
で、ガスタービン4は発電機9の動力を生み出し、その
排気ガスは排熱回収ボイラ6に送られて排熱が利用さ
れ、該排熱回収ボイラ6の蒸気で蒸気タービン7が駆動
される。
In the gas turbine combined plant of the present embodiment, when air A is supplied to the air compressor 1, this air A is compressed by the air compressor 1 and
It is sent to the combustor 2 and the air cooler 3. Air cooler 3
The temperature of the air A sent to the exhaust gas is about 440 ° C.
The working fluid (138 ° C.) W 1 is supplied into the air cooler 3, cooled to about 200 ° C. by the first working fluid W 1 , and sent to the gas turbine 4. Further, the heater 5 is provided with the second heat from the medium pressure economizer
The working fluid (about 240 ° C.) W 2 is sent, and the fuel gas G in the heater 5 is heated by the second working fluid W 2 (about 220 ° C.). This heated fuel gas G
Is supplied to the combustor 2 and is heated and burned together with the compressed air from the air compressor 1 to be supplied to the gas turbine 4 as a high-temperature high-pressure gas. Thereafter, in the same procedure as in the conventional example, the gas turbine 4 generates the power of the generator 9, and the exhaust gas is sent to the exhaust heat recovery boiler 6 to use the exhaust heat, and the steam of the exhaust heat recovery boiler 6 is used. Drives the steam turbine 7.

【0015】本実施形態のガスタービンコンバインドプ
ラントでは、ロータ冷却空気が排熱回収ボイラ6の第1
作動流体W1 によって冷却され、加熱器5内の燃料ガス
Gが排熱回収ボイラ6の第2作動流体W2 によって加熱
され、従来の燃料ガス温度(約200゜C)に比べて、
約30〜60゜C程度高めることが可能になるため、元
来の損失の相対値で約0.4%程度を改善することがで
きる。この改善による経済的な利益は約4億円に相当す
る。
In the gas turbine combined plant of the present embodiment, the rotor cooling air is supplied to the first heat recovery boiler 6
Cooled by working fluid W 1, the fuel gas G in the heater 5 is heated by the second working fluid W 2 of the exhaust heat recovery boiler 6, as compared with the conventional fuel gas temperature (about 200 ° C),
Since the temperature can be increased by about 30 to 60 ° C., the relative value of the original loss can be improved by about 0.4%. The economic benefit of this improvement is about 400 million yen.

【0016】以上、本発明の実施の形態につき述べた
が、本発明は既述の実施の形態に限定されるものではな
く、本発明の要旨を逸脱しない範囲内において種々の変
形および変更を加え得るものである。例えば、既述の実
施の形態では、加熱器5内で燃焼ガスGを加熱する第2
作動流体W2 として排熱回収ボイラ6からの中圧エコノ
マイザから抽水された水を使用したが、確実に燃焼ガス
Gを加熱できるものであれば、低圧エバポレータの蒸気
などを作動流体として使用しても良い。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications and changes may be made without departing from the spirit of the present invention. What you get. For example, in the above-described embodiment, the second heating of the combustion gas G in the heater 5 is performed.
While using emergent water from pressure economizer among the exhaust heat recovery boiler 6 as the working fluid W 2, as long as it can heat reliably combustion gas G, it was used as such a working fluid vapor of the low-pressure evaporator Is also good.

【0017】[0017]

【発明の効果】上述の如く、本発明に係るガスタービン
コンバインドプラントは、空気圧縮機、燃焼器および空
気冷却器を有するガスタービンの排気ガスを排熱回収ボ
イラに送り、該排熱回収ボイラにて発生させた蒸気によ
り蒸気タービンを駆動するガスタービンコンバインドプ
ラントにおいて、前記ガスタービンの燃焼器の上流側に
加熱器を設け、該加熱器と前記排熱回収ボイラの中圧エ
コノマイザまたは低圧エバポレータとを接続するととも
に、前記加熱器と脱気器とを接続し、かつ前記空気冷却
器と前記排熱回収ボイラの高圧エコノマイザとを接続す
るとともに、前記空気冷却器と高圧ドラムとを接続し、
前記排熱回収ボイラの高圧エコノマイザへ送られる第1
作動流体によって前記空気圧縮機から送られる前記空気
冷却器内の空気を冷却し、熱交換後における前記空気冷
却器内の第1作動流体を前記高圧ドラムに送給する一
方、前記排熱回収ボイラの中圧エコノマイザまたは低圧
エバポレータから送られる第2作動流体によって前記加
熱器内の燃料ガスを加熱して前記燃焼器に供給し、燃焼
ガスを加熱した前記加熱器内の第2作動流体を前記脱気
器に送給して戻すように構成しているので、次のような
種々の効果が得られる。すなわち、本発明のガスタービ
ンコンバインドプラントによれば、従来の空冷加熱シス
テムに比べて、プラント熱効率が改善され運転コスト
の低減化を図ることができる。しかも、本発明のガスタ
ービンコンバインドプラントでは、燃焼器やガスタービ
ンへの水の漏洩に対する検知精度を向上させて高圧の給
水等レベルまでの圧力で回収熱を高圧の飽和温度程度ま
で上げることを可能にし、空気冷却器内のロータ冷却空
気の冷却を排熱回収ボイラの作動流体を利用して行い、
かつ冷却後の作動流体を高圧ドラムに戻し蒸気として回
収し得る上、加熱器内の燃料ガスの熱源として排熱回収
ボイラの作動流体を利用して行い、かつ加熱後の作動流
体をボイラ水として使用し得るので、設備費が安価で済
み、経済的に有利である。
As described above, the gas turbine combined plant according to the present invention sends the exhaust gas of a gas turbine having an air compressor, a combustor, and an air cooler to an exhaust heat recovery boiler, and sends the exhaust gas to the exhaust heat recovery boiler. In a gas turbine combined plant that drives a steam turbine by using the generated steam, a heater is provided upstream of a combustor of the gas turbine, and the heater and the medium-pressure economizer or the low-pressure evaporator of the exhaust heat recovery boiler are provided. While connecting, the heater and the deaerator are connected, and the air cooler and the high-pressure economizer of the exhaust heat recovery boiler are connected, and the air cooler and the high-pressure drum are connected,
First sent to the high pressure economizer of the waste heat recovery boiler
The air in the air cooler sent from the air compressor is cooled by a working fluid, and the first working fluid in the air cooler after heat exchange is supplied to the high-pressure drum, while the exhaust heat recovery boiler is used. The fuel gas in the heater is heated by the second working fluid sent from the medium-pressure economizer or the low-pressure evaporator and supplied to the combustor, and the second working fluid in the heater that heats the combustion gas is removed from the heater. Since it is configured to be fed back to the gastrointestinal tract, the following various effects can be obtained. That is, according to the gas turbine combined plant of the present invention, the plant thermal efficiency can be improved and the operating cost can be reduced as compared with the conventional air-cooled heating system. Moreover, in the gas turbine combined plant of the present invention, it is possible to improve the detection accuracy of water leakage to the combustor and the gas turbine, and to increase the recovered heat to a high pressure saturation temperature at a pressure up to a high pressure water supply level. The cooling of the rotor cooling air in the air cooler is performed using the working fluid of the exhaust heat recovery boiler,
In addition to returning the cooled working fluid to the high-pressure drum and recovering it as steam, the working fluid of the exhaust heat recovery boiler is used as a heat source for the fuel gas in the heater, and the heated working fluid is used as boiler water. Since it can be used, the equipment cost is low and it is economically advantageous.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係るガスタービンコンバ
インドプラントを示す概略図である。
FIG. 1 is a schematic diagram showing a gas turbine combined plant according to an embodiment of the present invention.

【図2】従来のガスタービンコンバインドプラントを示
す概略図である。
FIG. 2 is a schematic view showing a conventional gas turbine combined plant.

【図3】従来のガスタービンコンバインドプラントに設
備される空気冷却兼燃料加熱器を示す概略図である。
FIG. 3 is a schematic diagram showing an air cooling and fuel heater installed in a conventional gas turbine combined plant.

【符号の説明】[Explanation of symbols]

1 空気圧縮機 2 燃焼器 3 空気冷却器 4 ガスタービン 5 加熱器 6 排熱回収ボイラ 7 蒸気タービン 8 復水器 9,11 発電機 A 空気 G 燃料ガス W1 第1作動流体 W2 第2作動流体DESCRIPTION OF SYMBOLS 1 Air compressor 2 Combustor 3 Air cooler 4 Gas turbine 5 Heater 6 Waste heat recovery boiler 7 Steam turbine 8 Condenser 9, 11 Generator A Air G Fuel gas W 1 First working fluid W 2 Second working fluid

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F01K 23/10 F02C 6/18 F02C 7/143 F02C 7/224 Continuation of the front page (58) Field surveyed (Int.Cl. 7 , DB name) F01K 23/10 F02C 6/18 F02C 7/143 F02C 7/224

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 空気圧縮機、燃焼器および空気冷却器を
有するガスタービンの排気ガスを排熱回収ボイラに送
り、該排熱回収ボイラにて発生させた蒸気により蒸気タ
ービンを駆動するガスタービンコンバインドプラントに
おいて、前記ガスタービンの燃焼器の上流側に加熱器を
設け、該加熱器と前記排熱回収ボイラの中圧エコノマイ
ザまたは低圧エバポレータとを接続するとともに、前記
加熱器と脱気器とを接続し、かつ前記空気冷却器と前記
排熱回収ボイラの高圧エコノマイザとを接続するととも
に、前記空気冷却器と高圧ドラムとを接続し、前記排熱
回収ボイラの高圧エコノマイザへ送られる第1作動流体
によって前記空気圧縮機から送られる前記空気冷却器内
の空気を冷却し、熱交換後における前記空気冷却器内の
第1作動流体を前記高圧ドラムに送給する一方、前記排
熱回収ボイラの中圧エコノマイザまたは低圧エバポレー
タから送られる第2作動流体によって前記加熱器内の燃
料ガスを加熱して前記燃焼器に供給し、燃料ガスを加熱
した前記加熱器内の第2作動流体を前記脱気器に送給し
て戻すように構成したことを特徴とするガスタービンコ
ンバインドプラント。
An exhaust gas from a gas turbine having an air compressor, a combustor, and an air cooler is sent to an exhaust heat recovery boiler, and the steam turbine is driven by steam generated by the exhaust heat recovery boiler. in the plant, together with the heater on the upstream side of the combustor of a gas turbine is provided, connected to the the heating device and the intermediate pressure economizer or low pressure evaporator of the heat recovery steam generator, wherein
Connecting the heater and the deaerator, and connects Then together the high pressure economizer of the waste heat recovery boiler and the air cooler
Connecting the air cooler and a high-pressure drum, cooling the air in the air cooler sent from the air compressor by the first working fluid sent to the high-pressure economizer of the exhaust heat recovery boiler , and exchanging heat. Later in the air cooler
The first working fluid is supplied to the high-pressure drum, and the fuel gas in the heater is heated by the second working fluid sent from the medium-pressure economizer or the low-pressure evaporator of the exhaust heat recovery boiler and supplied to the combustor. And heat the fuel gas
Supplying the second working fluid in the heater to the deaerator.
A gas turbine combined plant characterized by being configured to return .
JP09288171A 1997-10-21 1997-10-21 Gas turbine combined plant Expired - Lifetime JP3117424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09288171A JP3117424B2 (en) 1997-10-21 1997-10-21 Gas turbine combined plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09288171A JP3117424B2 (en) 1997-10-21 1997-10-21 Gas turbine combined plant

Publications (2)

Publication Number Publication Date
JPH11117714A JPH11117714A (en) 1999-04-27
JP3117424B2 true JP3117424B2 (en) 2000-12-11

Family

ID=17726738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09288171A Expired - Lifetime JP3117424B2 (en) 1997-10-21 1997-10-21 Gas turbine combined plant

Country Status (1)

Country Link
JP (1) JP3117424B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4488631B2 (en) 2001-01-18 2010-06-23 株式会社東芝 Combined cycle power generation facility and operation method thereof
JP3716188B2 (en) 2001-04-10 2005-11-16 三菱重工業株式会社 Gas turbine combined plant
JP5787857B2 (en) 2012-09-27 2015-09-30 三菱日立パワーシステムズ株式会社 Control method for gas turbine cooling system, control device for executing the method, and gas turbine equipment equipped with the control device
KR101784553B1 (en) * 2015-04-16 2017-11-06 두산중공업 주식회사 Hybrid power generation system using a supercritical CO2 cycle

Also Published As

Publication number Publication date
JPH11117714A (en) 1999-04-27

Similar Documents

Publication Publication Date Title
US6499302B1 (en) Method and apparatus for fuel gas heating in combined cycle power plants
JP3652962B2 (en) Gas turbine combined cycle
JP3681434B2 (en) Cogeneration system and combined cycle power generation system
JP5567961B2 (en) Double reheat Rankine cycle system and method
US20100242429A1 (en) Split flow regenerative power cycle
KR20100081279A (en) Method for expanding compressor discharge bleed air
JPH11257023A (en) Operation method for gas turbine group
JPH10159584A (en) Steam-cooled gas turbine system
JP2009299682A (en) System for recovering waste heat generated by auxiliary system of turbo machine
JP2699808B2 (en) Steam-cooled gas turbine combined plant
JP3117424B2 (en) Gas turbine combined plant
CA2429938C (en) A turbine arrangement and a method of operating a turbine arrangement
JPH11117712A (en) Gas turbine combined plant
WO1999037889A1 (en) Combined cycle power plant
JP2984442B2 (en) Gas turbine steam cooling method and apparatus
JP3389019B2 (en) Steam cooled gas turbine
JP2986426B2 (en) Hydrogen combustion turbine plant
JPH11280412A (en) Combined cycle power generation plant
JP4090584B2 (en) Combined cycle power plant
JP3133034B2 (en) Combined cycle plant
TWI841733B (en) Gas turbine combined-cycle power plant, organic rankine cycle (orc) system for operation with gas turbine combined-cycle power plant comprising fuel system, and method of operating gas turbine combined-cycle power plant
JPH04124411A (en) Steam turbine combine generator equipment
JP4138157B2 (en) Steam-cooled gas turbine startup system
JPH06330709A (en) Power generation plant
JP3059115B2 (en) Hydrogen combustion turbine plant

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000905

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081006

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081006

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 13

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term