JP4138157B2 - Steam-cooled gas turbine startup system - Google Patents

Steam-cooled gas turbine startup system Download PDF

Info

Publication number
JP4138157B2
JP4138157B2 JP16848499A JP16848499A JP4138157B2 JP 4138157 B2 JP4138157 B2 JP 4138157B2 JP 16848499 A JP16848499 A JP 16848499A JP 16848499 A JP16848499 A JP 16848499A JP 4138157 B2 JP4138157 B2 JP 4138157B2
Authority
JP
Japan
Prior art keywords
steam
header
gas turbine
boiler
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16848499A
Other languages
Japanese (ja)
Other versions
JP2000356111A (en
Inventor
正幸 高浜
安弘 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP16848499A priority Critical patent/JP4138157B2/en
Publication of JP2000356111A publication Critical patent/JP2000356111A/en
Application granted granted Critical
Publication of JP4138157B2 publication Critical patent/JP4138157B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は蒸気冷却ガスタービンの起動システムに関し、起動時に燃焼器の冷却用蒸気を他のプラントから供給し、不足分をバックアップできるようにしたものである。
【0002】
【従来の技術】
従来、圧縮機、燃焼器およびガスタービンを連結したガスタービン系統と、前記ガスタービンからの排ガスを導入する排熱回収ボイラ、このボイラからの蒸気で回転される蒸気タービン、および復水器を連結した蒸気タービン系統とを複合した複合発電プラントが知られている。
【0003】
このような複合発電プラントでは、ガスタービン系統の高温ガスに曝される部位、例えばガスタービンのタービン静翼や動翼、または燃焼器等を、圧縮機から抽気した空気の供給によって冷却するのが一般的であった。これに対して近年、ガスタービンの高効率化の要請により燃焼温度の高温化及びタービン部品の高温化が進む傾向にあることから、冷却性能の優れた蒸気を高温部品に供給して冷却を行うことが提案されている。
【0004】
図2はガスタービンと蒸気タービンを組合せた複合発電プラントにおいて蒸気冷却を行うガスタービン燃焼器を有するプラントの一般的な概念図である。図においてガスタービン41で発電に供され、排気される燃焼ガス60はボイラ42に供給され、ボイラ42では主燃料とこのガスタービン41からの高温燃焼ガス60とで蒸気61を発生し、排ガス62は煙突63から大気へ放出される。発生した蒸気61は蒸気タービン43へ供給され、発電機を回し、電力を得ている。ガスタービン41の燃焼器の冷却は、ボイラ42で発生する蒸気の一部を抽気し、蒸気44として燃焼器に導き、燃焼器を冷却し、冷却で加熱された回収蒸気45は蒸気タービン43へ戻されて再利用されている。
【0005】
しかしながら、上記のような蒸気冷却方式においては、起動直後のボイラ42の蒸気発生量が少いために補助蒸気発生装置を別途設置し、補助蒸気発生装置から冷却用の蒸気を導き、不足分の蒸気を補うことが行なわれている。
【0006】
【発明が解決しようとする課題】
前述のように従来の複合発電プラントにおけるガスタービン燃焼器の蒸気冷却方式においてはボイラからの蒸気を抽気し、燃焼器を冷却し、冷却後の蒸気は回収蒸気として蒸気タービンに戻し活用することが提案されているが、起動時におけるボイラでの蒸気発生量が少いので補助蒸気発生装置を必要としている。しかし、このような起動時のためには外部に大型の補助蒸気発生装置を必要とし、又、起動時の蒸気使用量も多く、補助蒸気の使用なしでボイラで発生する蒸気のみで起動できるようにすることが以前より強く望まれていた。
【0007】
そこで本発明は、蒸気冷却方式のガスタービンの燃焼器の冷却蒸気として補助蒸気発生装置を必要としないで、起動時には、運転を継続している他のプラントの蒸気を得るようにし、又、自己のプラントが充分立上り、運転を継続している時には他のプラントの起動用として蒸気の一部を溜めるようにするような蒸気冷却ガスタービン起動システムを提供することを課題としてなされたものである。
【0008】
【課題を解決するための手段】
本発明は前述の課題を解決するために次の(1),(2)の手段を提供する。
【0009】
(1)ガスタービンの排気をボイラに導き、同ボイラで発生した蒸気を蒸気タービンに導いてこれを駆動すると共に、同ボイラの蒸気の一部を抽気して前記ガスタービンの燃焼器に導き同燃焼器を冷却する蒸気冷却ガスタービンシステムにおいて、前記ボイラから抽気された蒸気は減温減圧装置を介して、蒸気を溜めておく機能を備えたヘッダに導かれ、同ヘッダから前記ガスタービンの燃焼器に導かれて同燃焼器を冷却すると共に、前記ヘッダは隣接する他のガスタービンにも冷却用蒸気を供給可能とし、同他のガスタービンの起動時の冷却用蒸気の供給をバックアップすることを特徴とする蒸気冷却ガスタービン起動システム。
【0010】
(2)上記(1)の発明において、前記ヘッダには隣接する他の蒸気タービンプラントから蒸気を供給可能とすることを特徴とする蒸気冷却ガスタービン起動システム。
【0011】
本発明の(1)においては、隣接する蒸気冷却ガスタービンが存在する場合には、ボイラからの蒸気の一部は蒸気を溜めておく機能を備えたヘッダに導かれる。ヘッダへは、例えばボイラからの高圧蒸気を減温減圧装置を介して減温、減圧して導くようにして蒸気を溜めておき、ヘッダから、ガスタービンの燃焼器へ蒸気を導き、燃焼器を冷却する。隣接する他のガスタービンを起動する場合には、ボイラから発生する蒸気は不充分であり、立上り時には冷却用蒸気が不足するが、その不足分は一方のヘッダに溜めてある蒸気が他方のガスタービンの燃焼器へ供給されるので、不足分がバックアップされ、起動時においても燃焼器を充分冷却することができる。従って、隣接して蒸気冷却ガスタービンが並設されている場合には、本発明のシステムによれば補助用の蒸気発生装置を別途設置する必要なく起動時の燃焼器の冷却が可能となり、安全な起動を行うことができる。
【0012】
本発明の(2)では、ヘッダの蒸気が不充分で起動時にガスタービンの燃焼器が充分に冷却できない場合には、隣接する他の蒸気タービンプラントからヘッダに蒸気を供給することができるので、上記(1)の発明の効果を一層確実なものとすることができる。特に並設するガスタービンを同時に起動するような場合には、立上り時にヘッダには充分な蒸気が溜まってないので、隣接する他の蒸気タービンから蒸気がヘッダに供給され、起動時に並設するガスタービンの蒸気冷却を充分に行うことができる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態について図面に基づいて具体的に説明する。図1は本発明の実施の一形態に係る蒸気冷却ガスタービン起動システムを適用したプラントの系統図である。図においてAは No.1発電プラント,Bは No.2発電プラント,Cは他の隣接するプラントである。本発明は No.1, No.2発電プラントA,Bの起動時にガスタービン燃焼器の冷却用蒸気が不足する場合には、 No.1, No.2プラントA,B同志で互いに蒸気の供給をバックアップし、又、他のプラント20からも蒸気を供給できるようにしたものであり、以下に詳しく説明する。
【0014】
図1において、1は蒸気タービン、2はガスタービン、3はボイラ、4は煙突であり、ガスタービン1の燃焼器で発生した高温の燃焼ガスはガスタービン1を駆動し、その排ガスはボイラ3に導入され、ボイラ3で蒸気を発生させ、煙突4より大気に放出される。5はヘッダであり蒸気を合流させ、又、分岐させるものである。6は減温減圧装置であり、7は蒸気タービン1へ流入する蒸気の流量調節弁、8は蒸気タービン1で仕事をし、流出する蒸気の流量調節弁、9はヘッダよりガスタービン2の燃焼器に導かれる冷却用蒸気の配管であり、配管9からの蒸気は燃焼器を冷却後回収蒸気9aとして回収されて蒸気タービンの蒸気系に戻されるものである。これら1〜9により No.1発電プラントAが構成されている。
【0015】
同様に No.2発電プラントBは、蒸気タービン11、ガスタービン12、ボイラ13、煙突14、減温減圧装置16、流量調節弁17,18で No.1発電プラントと同じように構成され、ガスタービン12の燃焼器にはヘッダ5から No.1発電プラントと同じように配管19を通り、冷却蒸気が導かれ、燃焼器を冷却後回収蒸気19aとして回収される。
【0016】
隣接する他のプラントCは、蒸気タービン21、ボイラ22、もう一方の蒸気タービン31とボイラ32低圧ヘッダ23、高圧ヘッダ24から構成される。25,35はボイラ22,32から蒸気タービン21,31へそれぞれ流入する高圧蒸気の流量調節弁、26,36はボイラ22から蒸気タービン21,31にそれぞれ流入する中圧又は低圧蒸気の流量調節弁である。
【0017】
上記構成のプラントにおいて、 No.1, No.2発電プラントA,Bでは、ガスタービン2,12の燃焼器で燃焼した高温燃焼ガスはガスタービン2,12をそれぞれ駆動し、その排気はボイラ3,13に導かれ、蒸気タービン1,11の排気する低温蒸気又は復水を加熱した後、煙突4,14からそれぞれ大気に放出される。
【0018】
ボイラ3,13で発生した蒸気は流量調節弁7,17を介して蒸気タービン1,11に流入し、蒸気タービン1,11をそれぞれ駆動して仕事をし、その排気は流量調節弁8,18を介して再びボイラ3,13へ導かれる。ボイラ3,13からの蒸気の一部は減温減圧装置6,16でそれぞれ減温、減圧されてヘッダ5へ流入し、又、蒸気タービン1,11で仕事をした蒸気の一部もボイラ3,13に流入する経路から分岐し、それぞれヘッダ5に流入し、ヘッダ5で合流してここに溜まる。
【0019】
ヘッダ5からはガスタービン2,12の各燃焼器にそれぞれ配管9,19により冷却用蒸気が導かれ、燃焼器をそれぞれ冷却し、冷却後の蒸気はそれぞれ蒸気タービン1,11側の蒸気系へ回収蒸気9a,19aとして回収され、有効活用される。
【0020】
一方、他のプラントCにおいては、ボイラ22で発生した高圧蒸気、低圧又は中圧蒸気はそれぞれ流量調節弁25,26を介して蒸気タービン21に導かれ、蒸気タービン21を駆動して仕事をし、ボイラ22に戻され、その一部は低圧ヘッダ23にも流入する。同様にボイラ32で発生した高圧蒸気、低圧又は中圧蒸気はそれぞれ流量調節弁35,36を介して蒸気タービン31に導かれ、蒸気タービン31で仕事をし、ボイラ32に戻される共に、その一部は低圧ヘッダ23にも流入する。なお、低圧ヘッダ23に溜まった蒸気は図示省略の他の系に導かれ利用される。
【0021】
又、ボイラ22で発生した高圧蒸気の一部は高圧ヘッダ24に流入し、更にボイラ32で発生した高圧蒸気の一部も高圧ヘッダ24に流入し、ここに溜まる。他のプラントCの高圧ヘッダ24に溜まった蒸気は配管20、流量調節弁38を介して No.1発電プラントAのヘッダ5に流入するようになっている。
【0022】
上記構成の蒸気冷却を採用したプラントにおいて、プラントの起動時には、ボイラ3,13の蒸気発生量が充分でなく、起動時には燃焼器の冷却用蒸気が不足する。そこで、まず No.1発電プラントAを運転中には、ボイラ3から蒸気タービン1に蒸気を供給すると共に、ボイラ3で発生した蒸気の一部は減温減圧装置6を通して蒸気を減温、減圧し、ヘッダ5に供給し、ここに溜めた状態にしておく。
【0023】
ここで No.2プラントBを起動する時には、 No.2プラントBのボイラ13は充分に蒸気を発生していないので、ガスタービン12の燃焼器の冷却用蒸気が不充分となるが、この不足分はヘッダ5に溜まっている蒸気を供給して不足分を補うことができる。なお、 No.2発電プラントBを先に駆動し、 No.1発電プラントAを後から起動する場合も同様に先に起動した方が後に起動するガスタービンをバックアップする。
【0024】
又、 No.1プラントA, No.2プラントBが同時に起動する場合にはガスタービン2,12の燃焼器の冷却蒸気が不足となるので、この場合には運転中の隣接する他のプラントCの高圧ヘッダ24から配管20、流量調節弁38を介して他のプラントCからの蒸気をヘッダ5に供給し、蒸気の不足分を補充し、ヘッダ5から配管9,19を通ってガスタービン2,12の燃焼器にそれぞれ冷却用蒸気を供給し、起動時においても充分に燃焼器を冷却することができる。
【0025】
以上説明の実施の形態によれば、蒸気冷却ガスタービンにおいて、ガスタービン2,12の燃焼器の冷却用蒸気を減温、減圧装置6,16を通してボイラ3,13から導き、ヘッダ5に溜めておく。ヘッダ5を共用することにより、ヘッダ5から冷却蒸気供給用の配管9,19を介してガスタービン2,12に蒸気を供給できるような構成とし、起動時の一方のボイラの発生する蒸気量が少い時に他方の冷却用蒸気の供給をバックアップすることができる。
【0026】
更に、 No.1発電プラントA、 No.2発電プラントBを同時に起動するような場合で、冷却用蒸気が不足する場合には、隣接する他のプラントCからヘッダ5へ蒸気を供給し、ガスタービン2,12の燃焼器の冷却用蒸気としてバックアップすることができる。このようなバックアップ系統により補助蒸気発生装置を特別に設置する必要がなく、起動時の冷却用蒸気を得ることができ、起動が可能になる。
【0027】
【発明の効果】
本発明の蒸気冷却ガスタービン起動システムは、(1)ガスタービンの排気をボイラに導き、同ボイラで発生した蒸気を蒸気タービンに導いてこれを駆動すると共に、同ボイラの蒸気の一部を抽気して前記ガスタービンの燃焼器に導き同燃焼器を冷却する蒸気冷却ガスタービンシステムにおいて、前記ボイラから抽気された蒸気は減温減圧装置を介して、蒸気を溜めておく機能を備えたヘッダに導かれ、同ヘッダから前記ガスタービンの燃焼器に導かれて同燃焼器を冷却すると共に、前記ヘッダは隣接する他のガスタービンにも冷却用蒸気を供給可能とし、同他のガスタービンの起動時の冷却用蒸気の供給をバックアップすることを特徴としている。このようなシステムにより、一方のガスタービンの起動時にボイラの発生する蒸気が不足し、燃焼器の冷却が不充分となる場合でも蒸気を溜めておく機能を備えたヘッダを介して他方のプラントがバックアップするので起動時の燃焼器の冷却を可能とする。又、起動用の補助蒸気発生装置を別途設置する必要なくガスタービンの起動を可能とするものである。
【0028】
本発明の(2)は、上記(1)の発明において、前記ヘッダには隣接する他の蒸気タービンプラントから蒸気を供給可能とすることを特徴としている。このようなシステムにおいて、上記(1)の発明のヘッダが充分に蒸気を供給できなくて、ガスタービンの起動時の燃焼器の冷却ができない場合には隣接する他の蒸気プラントがヘッダに蒸気を供給するので、起動時のガスタービン燃焼器の冷却を充分に行うことができる。
【図面の簡単な説明】
【図1】本発明の実施の一形態に係る蒸気冷却ガスタービンの起動方法を適用した発電システムの系統図である。
【図2】複合発電プラントにおける蒸気冷却システムの一般的な構成図である。
【符号の説明】
1,11,21,31 蒸気タービン
2,12 ガスタービン
3,13,22,32 ボイラ
5 ヘッダ
6,16 減温減圧装置
7,8,17,18,38 流量調節弁
9,19,20 配管
9a,19a 回収蒸気
23 低圧ヘッダ
24 高圧ヘッダ
25,26,35,36 流量調節弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a start system for a steam-cooled gas turbine, and supplies steam for cooling a combustor from another plant at the time of start-up so that the shortage can be backed up.
[0002]
[Prior art]
Conventionally, a gas turbine system in which a compressor, a combustor, and a gas turbine are connected, an exhaust heat recovery boiler that introduces exhaust gas from the gas turbine, a steam turbine that is rotated by steam from the boiler, and a condenser are connected. There is known a combined power plant combined with a steam turbine system.
[0003]
In such a combined power plant, a part exposed to a high-temperature gas in a gas turbine system, for example, a turbine stationary blade, moving blade, or combustor of a gas turbine is cooled by supplying air extracted from a compressor. It was general. On the other hand, in recent years, there has been a trend toward higher combustion temperatures and higher turbine components due to demands for higher efficiency of gas turbines, so cooling is performed by supplying steam with excellent cooling performance to high-temperature components. It has been proposed.
[0004]
FIG. 2 is a general conceptual diagram of a plant having a gas turbine combustor that performs steam cooling in a combined power plant combining a gas turbine and a steam turbine. In the figure, the combustion gas 60 that is supplied to the power generation and exhausted by the gas turbine 41 is supplied to the boiler 42, and the boiler 42 generates steam 61 from the main fuel and the high-temperature combustion gas 60 from the gas turbine 41, and the exhaust gas 62. Is emitted from the chimney 63 to the atmosphere. The generated steam 61 is supplied to the steam turbine 43 and rotates a generator to obtain electric power. For cooling the combustor of the gas turbine 41, a part of the steam generated in the boiler 42 is extracted and led to the combustor as steam 44, the combustor is cooled, and the recovered steam 45 heated by the cooling is sent to the steam turbine 43. Returned and reused.
[0005]
However, in the steam cooling system as described above, since the amount of steam generated in the boiler 42 immediately after startup is small, an auxiliary steam generator is installed separately, and the steam for cooling is led from the auxiliary steam generator, and the insufficient steam is generated. It is done to supplement.
[0006]
[Problems to be solved by the invention]
As described above, in the steam cooling system of a gas turbine combustor in a conventional combined power plant, steam from a boiler is extracted, the combustor is cooled, and the steam after cooling is returned to the steam turbine as recovered steam for use. Although proposed, the amount of steam generated in the boiler at startup is small, so an auxiliary steam generator is required. However, a large auxiliary steam generator is required outside for such startup, and the amount of steam used at startup is large so that it can be started only with steam generated in the boiler without using auxiliary steam. It was strongly desired to make it.
[0007]
Therefore, the present invention does not require an auxiliary steam generator as the cooling steam of the gas turbine combustor of the steam cooling system, and at the time of start-up, obtains steam from another plant that is continuing to operate, It is an object of the present invention to provide a steam-cooled gas turbine starting system that can store a part of steam for starting other plants when the plant is sufficiently up and running.
[0008]
[Means for Solving the Problems]
The present invention provides the following means (1) and (2) to solve the above-mentioned problems.
[0009]
(1) The gas turbine exhaust is guided to the boiler, the steam generated in the boiler is guided to the steam turbine and driven, and a part of the steam of the boiler is extracted and guided to the combustor of the gas turbine. In a steam-cooled gas turbine system for cooling a combustor, steam extracted from the boiler is guided to a header having a function of storing steam through a temperature reducing and decompressing device, and combustion of the gas turbine is performed from the header. The header is cooled to cool the combustor, and the header can also supply cooling steam to other adjacent gas turbines to back up the supply of cooling steam when starting the other gas turbines. A steam-cooled gas turbine startup system characterized by
[0010]
(2) In the invention of (1), a steam-cooled gas turbine starting system is characterized in that steam can be supplied to the header from another adjacent steam turbine plant.
[0011]
In (1) of the present invention, when there is an adjacent steam-cooled gas turbine, a part of the steam from the boiler is led to a header having a function of storing the steam . For example, the high pressure steam from the boiler is reduced and reduced in pressure via a temperature reducing and depressurizing device , and the steam is stored in the header. The steam is guided from the header to the combustor of the gas turbine, and the combustor is installed. Cooling. When starting another adjacent gas turbine, the steam generated from the boiler is insufficient, and there is insufficient cooling steam at the start-up, but the shortage is due to the steam stored in one header. Since it is supplied to the combustor of the turbine, the shortage is backed up, and the combustor can be sufficiently cooled even at the time of startup. Therefore, when steam-cooled gas turbines are arranged adjacent to each other, the system of the present invention enables cooling of the combustor at the start-up without the need to separately install an auxiliary steam generator. Can be started.
[0012]
In (2) of the present invention, when the steam in the header is insufficient and the combustor of the gas turbine cannot be sufficiently cooled at startup, steam can be supplied to the header from another adjacent steam turbine plant. The effect of the invention of (1) can be further ensured. Especially when gas turbines installed side by side are started at the same time, sufficient steam does not accumulate in the header at the start-up, so steam is supplied to the header from other adjacent steam turbines, and the gas is installed side by side at startup. The steam can be sufficiently cooled in the turbine.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 is a system diagram of a plant to which a steam-cooled gas turbine startup system according to an embodiment of the present invention is applied. In the figure, A is a No. 1 power plant, B is a No. 2 power plant, and C is another adjacent plant. When the steam for cooling the gas turbine combustor is insufficient at the start-up of No. 1 and No. 2 power plants A and B, the present invention supplies steam to each other between No. 1 and No. 2 plants A and B. The steam is supplied from the other plant 20 and will be described in detail below.
[0014]
In FIG. 1, 1 is a steam turbine, 2 is a gas turbine, 3 is a boiler, 4 is a chimney, high-temperature combustion gas generated in the combustor of the gas turbine 1 drives the gas turbine 1, and the exhaust gas is boiler 3. The steam is generated by the boiler 3 and discharged from the chimney 4 to the atmosphere. Reference numeral 5 denotes a header for joining and branching steam. 6 is a temperature reducing pressure reducing device, 7 is a flow rate control valve for the steam flowing into the steam turbine 1, 8 is a flow rate control valve for the steam flowing out and working in the steam turbine 1, and 9 is a combustion of the gas turbine 2 from the header. The steam from the pipe 9 is recovered as recovered steam 9a after cooling the combustor and returned to the steam system of the steam turbine. These Nos. 1 to 9 constitute No. 1 power plant A.
[0015]
Similarly, the No. 2 power plant B is configured in the same manner as the No. 1 power plant with the steam turbine 11, the gas turbine 12, the boiler 13, the chimney 14, the temperature reducing pressure reducing device 16, and the flow control valves 17 and 18, and the gas As with the No. 1 power plant, the cooling steam is guided from the header 5 to the combustor of the turbine 12 through the pipe 19, and is recovered as recovered steam 19a after cooling the combustor.
[0016]
The other adjacent plant C is composed of a steam turbine 21, a boiler 22, another steam turbine 31 and a boiler 32, a low pressure header 23, and a high pressure header 24. Reference numerals 25 and 35 denote flow control valves for high-pressure steam flowing from the boilers 22 and 32 to the steam turbines 21 and 31, respectively. Reference numerals 26 and 36 denote flow control valves for medium-pressure or low-pressure steam that flow from the boiler 22 to the steam turbines 21 and 31, respectively. It is.
[0017]
In the plants configured as described above, in the No. 1 and No. 2 power plants A and B, the high-temperature combustion gas burned in the combustors of the gas turbines 2 and 12 drives the gas turbines 2 and 12, respectively, and the exhaust gas is discharged from the boiler 3 , 13, and the low-temperature steam or condensate exhausted by the steam turbines 1, 11 is heated and then discharged from the chimneys 4, 14 to the atmosphere.
[0018]
The steam generated in the boilers 3 and 13 flows into the steam turbines 1 and 11 via the flow rate control valves 7 and 17 and drives the steam turbines 1 and 11 to perform work. Is again led to the boilers 3 and 13. Part of the steam from the boilers 3 and 13 is reduced in temperature and decompressed by the temperature reduction and decompression devices 6 and 16 and flows into the header 5, and part of the steam that has worked in the steam turbines 1 and 11 is also in the boiler 3. , 13 branches from the path flowing into the header 13, flows into the header 5, joins at the header 5, and accumulates here.
[0019]
From the header 5, cooling steam is guided to the respective combustors of the gas turbines 2 and 12 through the pipes 9 and 19, respectively, and the combustors are cooled, respectively, and the steam after cooling to the steam system on the steam turbine 1 and 11 side, respectively. The recovered steam 9a and 19a are recovered and effectively used.
[0020]
On the other hand, in the other plant C, high-pressure steam, low-pressure or medium-pressure steam generated in the boiler 22 is led to the steam turbine 21 through the flow control valves 25 and 26, respectively, and drives the steam turbine 21 to work. , Returned to the boiler 22, part of which also flows into the low-pressure header 23. Similarly, high-pressure steam, low-pressure, or medium-pressure steam generated in the boiler 32 is guided to the steam turbine 31 through the flow control valves 35 and 36, respectively, and works in the steam turbine 31 and is returned to the boiler 32. The part also flows into the low-pressure header 23. Note that the steam accumulated in the low-pressure header 23 is guided to another system not shown and used.
[0021]
A part of the high-pressure steam generated in the boiler 22 flows into the high-pressure header 24, and a part of the high-pressure steam generated in the boiler 32 also flows into the high-pressure header 24 and accumulates therein. Steam accumulated in the high-pressure header 24 of another plant C flows into the header 5 of the No. 1 power plant A via the pipe 20 and the flow rate control valve 38.
[0022]
In a plant employing steam cooling with the above-described configuration, the amount of steam generated by the boilers 3 and 13 is not sufficient when the plant is started up, and the cooling steam for the combustor is insufficient at the time of startup. Therefore, during operation of No. 1 power plant A, steam is supplied from the boiler 3 to the steam turbine 1, and part of the steam generated in the boiler 3 is reduced in temperature and reduced in pressure through the temperature reducing and decompressing device 6. Then, it is supplied to the header 5 and kept in a state where it is stored here.
[0023]
When the No. 2 plant B is started up, the boiler 13 of the No. 2 plant B does not generate enough steam, so the steam for cooling the combustor of the gas turbine 12 becomes insufficient. The minute can be compensated for by supplying the steam accumulated in the header 5. Note that when the No. 2 power plant B is driven first and the No. 1 power plant A is started later, the gas turbine that is started later backs up the gas turbine.
[0024]
In addition, when No. 1 plant A and No. 2 plant B are started simultaneously, the cooling steam of the combustors of gas turbines 2 and 12 becomes insufficient. In this case, other adjacent plant C in operation The steam from the other plant C is supplied to the header 5 through the pipe 20 and the flow rate control valve 38 from the high-pressure header 24, and the shortage of steam is replenished. , 12 can be supplied to each of the combustors, and the combustors can be sufficiently cooled even at startup.
[0025]
According to the embodiment described above, in the steam-cooled gas turbine, the temperature of the cooling steam for the combustor of the gas turbines 2 and 12 is reduced and guided from the boilers 3 and 13 through the decompression devices 6 and 16 and accumulated in the header 5. deep. By using the header 5 in common, the steam can be supplied from the header 5 to the gas turbines 2 and 12 via the cooling steam supply pipes 9 and 19, and the amount of steam generated by one boiler at the time of startup is reduced. The supply of the other cooling steam can be backed up at a low time.
[0026]
Further, when the No. 1 power plant A and the No. 2 power plant B are started simultaneously and the steam for cooling is insufficient, the steam is supplied to the header 5 from another adjacent plant C, and the gas It can be backed up as cooling steam for the combustors of the turbines 2 and 12. Such a backup system does not require any special installation of an auxiliary steam generator, can obtain the cooling steam at the time of startup, and can be started up.
[0027]
【The invention's effect】
The steam-cooled gas turbine starting system of the present invention is (1) guiding the exhaust of the gas turbine to a boiler, guiding the steam generated in the boiler to the steam turbine and driving it, and extracting a part of the steam of the boiler In the steam-cooled gas turbine system, which is led to the combustor of the gas turbine and cools the combustor, the steam extracted from the boiler is provided in a header having a function of accumulating steam through a temperature reducing and decompressing device. It is led from the header to the combustor of the gas turbine to cool the combustor, and the header can also supply cooling steam to other adjacent gas turbines. It is characterized by backing up the cooling steam supply at the time. With such a system, the steam generated by the boiler at the start of one gas turbine is insufficient, and the other plant is connected via a header that has a function of storing steam even when the combustor is insufficiently cooled. Since it is backed up, the combustor can be cooled at startup. Further, it is possible to start the gas turbine without the need to separately install an auxiliary steam generator for starting.
[0028]
(2) of the present invention is characterized in that, in the invention of (1), steam can be supplied from another steam turbine plant adjacent to the header. In such a system, when the header of the invention of (1) cannot sufficiently supply steam and the combustor cannot be cooled when the gas turbine is started, another adjacent steam plant supplies steam to the header. Since it supplies, cooling of the gas turbine combustor at the time of starting can fully be performed.
[Brief description of the drawings]
FIG. 1 is a system diagram of a power generation system to which a method for starting a steam-cooled gas turbine according to an embodiment of the present invention is applied.
FIG. 2 is a general configuration diagram of a steam cooling system in a combined power plant.
[Explanation of symbols]
1, 11, 21, 31 Steam turbine 2, 12 Gas turbine 3, 13, 22, 32 Boiler 5 Header 6, 16 Temperature reducing pressure reducing device 7, 8, 17, 18, 38 Flow rate adjusting valve 9, 19, 20 Piping 9 a , 19a Recovery steam 23 Low pressure header 24 High pressure header 25, 26, 35, 36 Flow control valve

Claims (2)

ガスタービンの排気をボイラに導き、同ボイラで発生した蒸気を蒸気タービンに導いてこれを駆動すると共に、同ボイラの蒸気の一部を抽気して前記ガスタービンの燃焼器に導き同燃焼器を冷却する蒸気冷却ガスタービンシステムにおいて、前記ボイラから抽気された蒸気は減温減圧装置を介して、蒸気を溜めておく機能を備えたヘッダに導かれ、同ヘッダから前記ガスタービンの燃焼器に導かれて同燃焼器を冷却すると共に、前記ヘッダは隣接する他のガスタービンにも冷却用蒸気を供給可能とし、同他のガスタービンの起動時の冷却用蒸気の供給をバックアップすることを特徴とする蒸気冷却ガスタービン起動システム。The exhaust of the gas turbine is guided to the boiler, the steam generated in the boiler is guided to the steam turbine and driven, and a part of the steam of the boiler is extracted and guided to the combustor of the gas turbine. In the steam-cooled gas turbine system to be cooled, the steam extracted from the boiler is led to a header having a function of storing steam via a temperature reducing and decompressing device, and from the header to the combustor of the gas turbine. In addition, the header cools the combustor, and the header can supply cooling steam to other adjacent gas turbines, and backs up the supply of cooling steam when starting the other gas turbines. Steam cooling gas turbine startup system. 前記ヘッダには隣接する他の蒸気タービンプラントから蒸気を供給可能とすることを特徴とする請求項1記載の蒸気冷却ガスタービン起動システム。  The steam-cooled gas turbine startup system according to claim 1, wherein steam can be supplied to the header from another steam turbine plant adjacent thereto.
JP16848499A 1999-06-15 1999-06-15 Steam-cooled gas turbine startup system Expired - Fee Related JP4138157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16848499A JP4138157B2 (en) 1999-06-15 1999-06-15 Steam-cooled gas turbine startup system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16848499A JP4138157B2 (en) 1999-06-15 1999-06-15 Steam-cooled gas turbine startup system

Publications (2)

Publication Number Publication Date
JP2000356111A JP2000356111A (en) 2000-12-26
JP4138157B2 true JP4138157B2 (en) 2008-08-20

Family

ID=15868960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16848499A Expired - Fee Related JP4138157B2 (en) 1999-06-15 1999-06-15 Steam-cooled gas turbine startup system

Country Status (1)

Country Link
JP (1) JP4138157B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104676250A (en) * 2014-12-25 2015-06-03 无锡职业技术学院 Steam exhaust recycling and main pipe network dual-combination steam regulating system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104676250A (en) * 2014-12-25 2015-06-03 无锡职业技术学院 Steam exhaust recycling and main pipe network dual-combination steam regulating system

Also Published As

Publication number Publication date
JP2000356111A (en) 2000-12-26

Similar Documents

Publication Publication Date Title
US6499302B1 (en) Method and apparatus for fuel gas heating in combined cycle power plants
JP3681434B2 (en) Cogeneration system and combined cycle power generation system
JP3068925B2 (en) Combined cycle power plant
JPH10131719A (en) Steam cooling gas turbine system
US20090056341A1 (en) Method and apparatus for facilitating cooling of a steam turbine component
US8327615B2 (en) Combined cycle powered generating plant having reduced start-up time
JPH1037713A (en) Combined cycle power plant
JPH1150812A (en) Full fired heat recovery combined cycle power generation plant
JPH09256815A (en) Steam cooling gas turbine, steam cooling combined cycle plant using the gas turbine, and its operating method
JPH09144560A (en) Hydrogen combustion gas turbine plant and its operating method
JP4138157B2 (en) Steam-cooled gas turbine startup system
JPH074210A (en) Steam-cooled gas turbine combined plant
JP2880938B2 (en) Hydrogen combustion gas turbine plant
WO1999037889A1 (en) Combined cycle power plant
JP2002129977A (en) Gas turbine equipment
JPH11117712A (en) Gas turbine combined plant
JP3389019B2 (en) Steam cooled gas turbine
JPH10311206A (en) Combined cycle power generation plant
JP3117424B2 (en) Gas turbine combined plant
JP3586539B2 (en) Combined cycle power plant
JP4418894B2 (en) Dual pass steam system
JPH09280010A (en) Gas turbine, combined cycle plant provided with the gas turbine, and driving method thereof
JP4209060B2 (en) Steam cooling rapid start system
JP2000291411A (en) Coal gasification combined cycle power generation plant
JP3586537B2 (en) Cooling steam supply method for combined cycle power plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080605

R151 Written notification of patent or utility model registration

Ref document number: 4138157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees