JP2001241304A - Combined power generation system utilizing gas pressure energy - Google Patents

Combined power generation system utilizing gas pressure energy

Info

Publication number
JP2001241304A
JP2001241304A JP2000052897A JP2000052897A JP2001241304A JP 2001241304 A JP2001241304 A JP 2001241304A JP 2000052897 A JP2000052897 A JP 2000052897A JP 2000052897 A JP2000052897 A JP 2000052897A JP 2001241304 A JP2001241304 A JP 2001241304A
Authority
JP
Japan
Prior art keywords
gas
power generation
turbine
fuel gas
exhaust heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000052897A
Other languages
Japanese (ja)
Other versions
JP3697476B2 (en
Inventor
Atsushi Okamoto
岡本  敦
Takeji Bito
武治 尾藤
Yoshitaka Moriyama
喜貴 森山
Mitsuru Tanaka
満 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2000052897A priority Critical patent/JP3697476B2/en
Publication of JP2001241304A publication Critical patent/JP2001241304A/en
Application granted granted Critical
Publication of JP3697476B2 publication Critical patent/JP3697476B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a combined power generation system wherein utilities such as steam and water are unnecessary, an operation and maintenance are easy, and high power generation output and a power generating efficiency are achieved by recovering gas pressure energy which is not utilized beforehand. SOLUTION: The combined power generation system is provided with a gas turbine 1, an expansion turbine 7 serving fuel gas as an operating fluid, a power generator 4 driven by those turbines, and exhaust heat recovering/gas heater 12 for recovering exhaust heat from the gas turbine 1 and for heating the fuel gas which flows into the expansion turbine 7 using exhaust heat.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、発電システムに関
連し、特に、ガスタービン発電と、燃料ガスの減圧設備
などでの利用を目的としたガス圧力エネルギ利用の膨張
タービン発電とによる複合発電システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power generation system, and more particularly to a combined power generation system using gas turbine power generation and expansion turbine power generation using gas pressure energy for use in a fuel gas decompression facility or the like. About.

【0002】[0002]

【従来の技術】ガスタービン発電は、汽力発電に比べ大
幅な負荷変動や急激な起動・停止などが容易であり、ま
た負荷調整機能にも優れると言う長所を有しながら、単
独では発電効率の低さから、我国ではこれまで非常用・
電力需要のピーク時用の利用が有ったものの、常用の発
電設備としての利用は少なかった。しかし、ガスタービ
ンによる発電の総合発電効率を向上させる手段として、
ガスタービンと汽力プラントの複合サイクル発電(コン
バインドサイクル発電)が登場し、現在では天然ガス焚
事業用発電の主流を占めるに至っている。
2. Description of the Related Art Compared to steam power generation, gas turbine power generation has the advantages that it is easy to perform large load fluctuations, sudden start / stop, and has excellent load adjustment functions. Due to its lowness, in Japan,
Although it was used during peak times of power demand, it was rarely used as a regular power generation facility. However, as a means to improve the overall power generation efficiency of power generation by gas turbines,
Combined cycle power generation of gas turbines and steam power plants has emerged, and has now become the mainstream of natural gas-fired power generation.

【0003】複合サイクル発電方式にはいくつかの種類
が有るが、最もシンプルで一般に広く用いられているの
は排熱回収式と呼ばれる方式で、図4に示されるよう
に、ガスタービン1の排ガスを排熱回収ボイラ2に導
き、排ガスの熱を回収して蒸気を発生させ、この蒸気を
利用して蒸気タービン3を駆動し、ガスタービン1と蒸
気タービン3とで発電機4を駆動させる技術である。な
お、図中、5は蒸気を凝縮させるための復水器である。
There are several types of combined cycle power generation systems, and the simplest and most widely used system is a system called an exhaust heat recovery system, and as shown in FIG. To the exhaust heat recovery boiler 2, recovering the heat of the exhaust gas to generate steam, using this steam to drive the steam turbine 3, and driving the generator 4 with the gas turbine 1 and the steam turbine 3. It is. In the figure, reference numeral 5 denotes a condenser for condensing steam.

【0004】一方、燃料ガスを経済的に効率よく輸送す
る為に、都市ガス・天然ガスなどの燃料ガスは、高圧力
で輸送パイプラインに送出されている。この高圧力の燃
料ガスは、ガスの需要地近辺で、需要先で要求される圧
力にまで減圧される。従来、この減圧操作はガバナース
テーション(減圧設備)の減圧弁で行うことが一般的で
あった。この燃料ガスの減圧工程を膨張タービンを用い
て圧力エネルギを電力として回収する発電(以後、ガス
圧力回収発電と呼ぶ)に全部または一部を利用すること
は、これまで未利用であった圧力エネルギを有効に活用
でき有用である。高圧の燃料ガスを作動流体として膨脹
タービンに供給するガス圧力回収発電は、従来LNG
(液化天然ガス)基地を中心として実施されている。こ
の発電設備では、図5に示すように、ポンプで昇圧され
たLNGを気化器6によって気化させ、そのガスを膨張
タービン7で減圧膨張させることにより発電機4を駆動
して発電を行い、ガスは減圧膨脹の際に温度低下してい
るので更にガス加温器8によってガス温度を所定の温度
まで昇温させた上で、燃料ガスを需要先に供給する。L
NG基地は一般に沿岸に立地されており、気化器6やガ
ス加温器8における温熱源として、大量の海水を使用す
ることが多い。
On the other hand, in order to transport fuel gas economically and efficiently, fuel gas such as city gas and natural gas is delivered to a transport pipeline at high pressure. This high-pressure fuel gas is reduced to a pressure required by a demand destination near a gas demand area. Conventionally, this pressure reduction operation has been generally performed by a pressure reduction valve of a governor station (pressure reduction equipment). Utilizing all or a part of this fuel gas decompression process for power generation using an expansion turbine to recover pressure energy as electric power (hereinafter, referred to as gas pressure recovery power generation) requires the use of pressure energy that has not been used until now. Is useful and useful. Gas pressure recovery power generation that supplies high-pressure fuel gas as a working fluid to an expansion turbine has been conventionally known as LNG.
(Liquefied natural gas) is being implemented mainly at bases. In this power generation facility, as shown in FIG. 5, LNG pressurized by a pump is vaporized by a vaporizer 6, and the gas is decompressed and expanded by an expansion turbine 7, thereby driving a generator 4 to generate electric power. Since the temperature is lowered during the decompression and expansion, the gas temperature is further raised to a predetermined temperature by the gas heater 8, and then the fuel gas is supplied to the demand destination. L
The NG terminal is generally located on the coast, and often uses a large amount of seawater as a heat source in the vaporizer 6 and the gas heater 8.

【0005】上記のような燃料ガス減圧時のガス圧力回
収発電の他の例として、地域冷暖房施設や事業用発電施
設が、都市ガスのガバナーステーションに近接する場合
に、その立地条件を活かして、ガスエンジンやガスター
ビンによる主発電とは別にガス圧力回収発電を行ってい
るものが有る。図6がそのシステム例で、ガスタービン
複合サイクル発電(右側部)と、都市ガスの減圧時の圧
力エネルギを利用して膨脹タービン7を動かし、その力
で発電機9を駆動するガス圧力回収発電(左側部)とを
組み合わせたものである。プレヒータ10で都市ガスを
加温してから膨脹タービン7に供給し、膨脹タービン7
から排出される都市ガスの温度を所定の温度として、需
要先に供給する。都市ガスの加温にはガスタービン複合
サイクル発電からの排ガスの排熱を回収する排熱ボイラ
2から供給される低圧蒸気が利用されている。なお、図
中、11は蒸気を凝縮させるための復水器である。この
他、都市ガスのガバナーステーションでの膨脹タービン
を利用した発電に言及するものとして、特開平7−21
7800号がある。
[0005] As another example of the gas pressure recovery power generation at the time of fuel gas decompression as described above, when a district heating / cooling facility or a business power generation facility is close to a city gas governor station, the location condition is taken advantage of. Some of them perform gas pressure recovery power generation separately from main power generation by gas engines and gas turbines. FIG. 6 shows an example of such a system, in which gas turbine combined cycle power generation (right side) and gas pressure recovery power generation in which the expansion turbine 7 is operated by utilizing the pressure energy at the time of decompression of city gas and the generator 9 is driven by that power (Left side). The city gas is heated by the preheater 10 and then supplied to the expansion turbine 7,
The temperature of the city gas discharged from is supplied to the demand destination as a predetermined temperature. For heating city gas, low-pressure steam supplied from an exhaust heat boiler 2 for recovering exhaust heat of exhaust gas from a gas turbine combined cycle power generation is used. In the figure, reference numeral 11 denotes a condenser for condensing steam. In addition, Japanese Patent Application Laid-Open No. Hei 7-21 describes power generation using an expansion turbine at a governor station for city gas.
No. 7800.

【0006】[0006]

【発明が解決しようとする課題】電力需給の根本は現
在、その高い発電効率と経済性ゆえに大規模発電所によ
って支えられている。これら大容量の火力・原子力発電
所は、立地上の制約等の理由で、電力需要の大きな都市
や工業地帯から遥かに離れた地域に建設され、延々と遠
距離送電されることが多く、送電の過程で多くのエネル
ギーを失うと同時に、エネルギー保安上も問題が多い。
また、こういった遠隔地にある大規模発電所は、更なる
熱効率向上を目指して、発電に伴う排熱を回収し、熱供
給をはかっても、熱電併給を行うには熱需要があまり期
待できない。このような状況下で、電力需要地に近接す
る中・小規模の分散型発電設備の開発は、ベースロード
対応としての大規模発電所を補完するために重要であ
る。しかし、例えば沿岸以外の地域に設けた分散型発電
設備では、水や蒸気と言った用役を外部から入手困難な
場合も多く、また大規模設備のような十分な要員も期待
できないことから、簡便で外部からの取水などを要しな
い独立した設備が必要となる。加えて、高い発電効率が
求められる。
The root of the power supply and demand is currently supported by large-scale power plants because of its high power generation efficiency and economy. These large-capacity thermal and nuclear power plants are often constructed far away from cities and industrial areas where power demand is high, due to location constraints, etc., and are often transmitted endlessly over long distances. In the process of losing a lot of energy, there are many problems in energy security.
In addition, large-scale power plants located in such remote areas are expected to have much more heat demand to collect heat and power even if they collect waste heat from power generation and aim to further improve thermal efficiency. Can not. Under these circumstances, the development of small and medium-sized distributed power generation facilities close to the power demand area is important to complement large-scale power plants that can handle base loads. However, for example, in the case of distributed power generation facilities installed in areas other than the coast, it is often difficult to obtain utilities such as water and steam from the outside, and sufficient personnel such as large-scale facilities cannot be expected. Simple and independent facilities that do not require external water intake are required. In addition, high power generation efficiency is required.

【0007】また、前述したように、通常のガスタービ
ン発電では、ガスタービン(プレイトンサイクル)と蒸
気タービン(ランキンサイクル)を組み合せた複合熱機
関とし、作動温度域を高温から低温まで広げることによ
り、総合発電効率を現在の火力発電システムのなかで最
も高いレベルにまで向上させている。ガスタービンは、
中間冷却器付きのような特殊な例を除くと、通常、冷却
水は不要であるが、複合サイクル発電を構成した場合
は、蒸気タービンの復水器用に大量の冷却水が必要とな
る。復水用に、冷却塔や空冷コンデンサの使用も原理的
には可能であるが、設置スペースに広大なものが必要に
なり現実的ではない。さらに、外部からのボイラ用の給
水が必要であり、また外部への温排水も発生する。従っ
て、従来の複合サイクル発電では、そのための広い敷地
が必要となる他、原動機自体の運転管理に加えて、ボイ
ラの運転制御や水処理(復水・給水処理と、ボイラ水処
理)が必要になり、運転・保守が単独のガスタービン発
電に比べて複雑となり、多くの要員が必要である。
[0007] As described above, in ordinary gas turbine power generation, a composite heat engine is used in which a gas turbine (Preyton cycle) and a steam turbine (Rankine cycle) are combined, and the operating temperature range is widened from high to low. It has improved the total power generation efficiency to the highest level of the current thermal power generation system. Gas turbines
Except for special cases such as those with an intercooler, cooling water is usually unnecessary, but when combined cycle power generation is configured, a large amount of cooling water is required for the condenser of the steam turbine. Although it is possible in principle to use a cooling tower or an air-cooled condenser for condensing water, it is not practical because a large space is required for the installation space. In addition, external boiler water supply is required, and hot drainage to the outside is also generated. Therefore, conventional combined cycle power generation requires a large site for that purpose, and in addition to operation management of the prime mover itself, operation control of the boiler and water treatment (condensation / water supply treatment and boiler water treatment) are required. Therefore, operation and maintenance are more complicated than single gas turbine power generation, and many personnel are required.

【0008】一方、高圧の燃料ガスを作動流体として膨
脹タービンに供給するガス圧力回収発電を、燃料ガスの
供給パイプラインの減圧設備に設けることが、これまで
未利用であった圧力エネルギの有効利用に有用である。
ガスの需要地に近接した上記の減圧設備は、一般に電力
の需要地にも近いと考えられ、ここに発電設備を設置す
ることは送電効率の面でも望ましい。
On the other hand, providing gas pressure recovery power generation for supplying a high-pressure fuel gas as a working fluid to an expansion turbine in a decompression facility of a fuel gas supply pipeline is effective use of pressure energy which has not been used before. Useful for
The above-described decompression facility close to the gas demand area is generally considered to be close to the power demand area, and it is desirable to install a power generation facility here in terms of power transmission efficiency.

【0009】ところが、燃料ガス輸送時におけるガス圧
力回収発電は、前述した一部の設置例等を除いて実用化
例は少ない。普及を阻む技術的問題点の一つに、温熱源
の確保の問題が有る。すなわち、減圧弁でのガスの減圧
過程は近似的に等エンタルピー膨張であるのに対し、膨
張タービンでのそれは等エントロピー変化に近い。この
膨張過程でガスが発電機に対し仕事を行うことにより、
膨張タービンからの排出燃料ガス温度は著しく低下す
る。燃料ガス導管の場合、ガス温度が0℃以下になる
と、導管や周辺施設の凍結・凍土の問題が発生する為、
ガス温度が0℃を下回らないようにする必要がある。ま
た、ガス温度の低下が大きい場合には、ガス成分の一部
が凝縮してしまうこともある上、天然ガス中に一定量以
上の水分を含む場合には、ハイドレートを生成して導管
や計器の閉塞を引き起こす危険性もある。このため、膨
張タービンによる減圧工程の上流側、下流側のいずれ
か、あるいはその両方にガス加温器が必要となる。従っ
て、海水、温水、蒸気といった温熱源が設備内にある
か、それらを容易に供給でき、利用できる場合以外に
は、ガス圧力回収発電システムの実用化が困難であっ
た。
However, there are few practical examples of gas pressure recovery power generation at the time of transporting fuel gas, except for some installation examples described above. One of the technical problems preventing the spread is the problem of securing a heat source. That is, the gas depressurization process at the pressure reducing valve is approximately isenthalpy expansion, while that at the expansion turbine is close to isentropic change. During this expansion process, the gas works on the generator,
The temperature of the fuel gas exhausted from the expansion turbine drops significantly. In the case of fuel gas conduits, if the gas temperature drops below 0 ° C, problems such as freezing and frozen soil in the conduits and surrounding facilities will occur.
It is necessary to keep the gas temperature below 0 ° C. In addition, when the temperature of the gas decreases significantly, some of the gas components may be condensed.In addition, when natural gas contains a certain amount of water or more, hydrate is generated and conduits or pipes are formed. There is also a risk of instrument blockage. For this reason, a gas heater is required on either or both of the upstream side and the downstream side of the pressure reduction step by the expansion turbine. Therefore, it has been difficult to put the gas pressure recovery power generation system into practical use unless a heat source such as seawater, hot water, or steam is in the facility or can be easily supplied and used.

【0010】本発明は、従来の複合サイクル発電および
ガス圧力回収発電を、分散型発電設備として利用する際
の上述した問題点を解決する為になされたものであり、
特に、燃料ガスの減圧設備の一部もしくは全部として使
用されることを前提として、蒸気、水と言った用役が不
要で、運転、保守が簡便であり、しかもこれまで未利用
であったエネルギを回収することにより高い発電出力、
発電効率を達成できるガス圧力エネルギを利用した複合
発電システムを提供することを目的とする。
The present invention has been made in order to solve the above-mentioned problems when the conventional combined cycle power generation and gas pressure recovery power generation are used as a distributed power generation facility.
In particular, assuming that it is used as a part or all of the fuel gas decompression equipment, there is no need for utilities such as steam and water, and operation and maintenance are simple, and energy that has not been used so far is used. By collecting high power output,
It is an object of the present invention to provide a combined power generation system using gas pressure energy capable of achieving power generation efficiency.

【0011】[0011]

【課題を解決するための手段】本発明の発電システム
は、ガスタービンと、燃料ガスを作動流体とする膨張夕
ービンと、これらのタービンで駆動される発電機と、前
記ガスタービンからの排熱を回収し該排熱を用いて前記
膨張タービンに流入する燃料ガスを加温する排熱回収/
ガス加温器とを備えたものである。また、前記排熱回収
/ガス加温器が、前記膨張タービンに流入する高圧側燃
料ガスを加温するとともに、該膨張タービンから排出さ
れる低圧側燃料ガスも加温するようにしたものである。
更に、前記膨張タービンから排出される低圧側燃料ガス
の冷熱を取り込んで前記ガスタービンヘ流入される吸気
を冷却する吸気冷却器を備えたものである。
SUMMARY OF THE INVENTION A power generation system according to the present invention includes a gas turbine, an expansion bin using a fuel gas as a working fluid, a generator driven by these turbines, and a waste heat from the gas turbine. Waste heat recovery / heating the fuel gas flowing into the expansion turbine using the waste heat.
And a gas heater. The exhaust heat recovery / gas heater warms the high-pressure fuel gas flowing into the expansion turbine and also heats the low-pressure fuel gas discharged from the expansion turbine. .
The gas turbine further includes an intake air cooler that takes in the cold heat of the low-pressure side fuel gas discharged from the expansion turbine and cools the intake air flowing into the gas turbine.

【0012】また、前記排熱回収/ガス加温器は前記ガ
スタービンからの排ガスと前記燃料ガスとのガス同士間
で熱交換を行うようにしたものである。また、前記ガス
タービンと前記膨張タービンで共通の発電機を駆動させ
るようにしたものである。更に、前記膨張タービンの作
動流体として利用する燃料ガスの一部を前記ガスタービ
ンの燃料としたものである。
Further, the exhaust heat recovery / gas heater is configured to exchange heat between the exhaust gas from the gas turbine and the fuel gas. Further, a common generator is driven by the gas turbine and the expansion turbine. Further, a part of the fuel gas used as the working fluid of the expansion turbine is used as the fuel of the gas turbine.

【0013】[0013]

【発明の実施の形態】実施の形態1.ガスタービンの排
熱は、その殆どが排気ガス熱として排出されるので、ガ
スタービン発電の熱効率を向上させる為には、排ガスの
排熱回収をいかに効率的に行うかが重要となる。従来の
ガスタービンと蒸気タービンを組み合せた複合サイクル
発電に見られるように、一般的な排熱回収の方法は、排
熱ボイラで蒸気を発生させる方法であるが、水の入手で
きない場所ではこの方法は利用できず、熱効率は著しく
低くとどまってしまう。本実施の形態では、排熱回収/
ガス加温器においてガスタービンの排ガスと膨張タービ
ンに流入する燃料ガスとの間で熱交換を行い、ガスター
ビン発電の熱効率を複合サイクル発電の場合と同程度以
上に向上させるとともに、回収した熱を膨張タービン発
電に必要なガス加温に利用するものである。その際、膨
張タービンから排出される燃料ガスの温度が下流側に悪
影響を及ぼさない温度(一般には0℃以上)になる様、
排熱回収/ガス加温器において、膨張タービンに流入す
る燃料ガスが所定の温度まで昇温される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 Most of the exhaust heat of the gas turbine is exhausted as exhaust gas heat. Therefore, in order to improve the thermal efficiency of gas turbine power generation, it is important to efficiently recover exhaust heat of exhaust gas. As seen in the conventional combined cycle power generation that combines a gas turbine and a steam turbine, a general method of recovering waste heat is to generate steam in a waste heat boiler. Is not available and the thermal efficiency remains significantly lower. In the present embodiment, the exhaust heat recovery /
In the gas heater, heat is exchanged between the exhaust gas of the gas turbine and the fuel gas flowing into the expansion turbine to improve the thermal efficiency of gas turbine power generation to about the same level as that of combined cycle power generation, and to reduce the recovered heat. It is used for heating gas required for power generation of the expansion turbine. At this time, the temperature of the fuel gas discharged from the expansion turbine is set to a temperature that does not adversely affect the downstream side (generally 0 ° C. or more).
In the exhaust heat recovery / gas heater, the fuel gas flowing into the expansion turbine is heated to a predetermined temperature.

【0014】一般に他の原動機に比べ、ガスタービンの
排ガス温度は約500℃程度と高く、一方、膨張タービ
ンに流入する燃料ガスの温度はほぼ大気温であり、温度
差が大きいため、排ガスと燃料ガスとの直接熱交換であ
っても、従来の複合サイクル発電の場合と同程度以上の
効率的な排熱回収が可能である。すなわち、複合サイク
ル発電の場合の排熱ボイラ出口での排ガス温度は、通
常、ボイラの運転圧力での飽和蒸気温度によって決ま
り、更なる熱回収率向上の為に多重圧ボイラや節炭器を
用いた場合でも、排熱回収後の排熱ボイラ出口での排ガ
ス温度は、通常150〜100℃程度である。一方、膨
脹タービンに流入する燃料ガスの温度はほぼ大気温であ
り、排ガスとの温度差が大きいため、排熱回収/ガス加
温器出口での排ガス温度を、複合サイクル発電と同程度
の150〜100℃、あるいは100℃以下に設定した
場合には、より多くの熱回収ができるので、ガスタービ
ン発電の熱効率を向上させることができる。
In general, the temperature of exhaust gas from a gas turbine is as high as about 500 ° C. as compared with other prime movers, while the temperature of fuel gas flowing into an expansion turbine is almost the same as the ambient temperature. Even in the case of direct heat exchange with gas, it is possible to recover waste heat more efficiently than in the case of conventional combined cycle power generation. In other words, the exhaust gas temperature at the exhaust heat boiler outlet in the case of combined cycle power generation is usually determined by the saturated steam temperature at the operating pressure of the boiler, and a multi-pressure boiler or economizer is used to further improve the heat recovery rate. However, the temperature of exhaust gas at the exhaust heat boiler outlet after exhaust heat recovery is usually about 150 to 100 ° C. On the other hand, the temperature of the fuel gas flowing into the expansion turbine is almost the same as the temperature of the exhaust gas, and the temperature difference between the fuel gas and the exhaust gas is large. When the temperature is set to 100 ° C. or 100 ° C. or lower, more heat can be recovered, so that the thermal efficiency of gas turbine power generation can be improved.

【0015】図1は、本発明の実施の形態1に係るガス
タービン発電とガス圧力回収発電の複合発電システムの
構成図である。圧縮機と燃焼器とタービンから構成され
るガスタービン1において、ガスタービン用燃料ガスは
圧縮機で加圧された空気と燃焼器で混合されて燃焼し、
タービン内で燃焼ガスが膨張する際に動力を発生させ、
発電機4を駆動する。そして、ガスタービン1のタービ
ンを出た高温の排ガスは、排熱回収/ガス加温器12に
導入され燃料ガスと熱交換され、減温された後、大気中
に排出される。一方、膨張タービン7側では、都市ガス
などの高圧の燃料ガスが排熱回収/ガス加温器12に導
入され、それが排ガスとの熱交換より昇温された後、作
動流体として膨張タービン7に入る。膨張タービン7
は、燃料ガスが断熱膨張する際に動力を発生させ、発電
機4を駆動する。そして、膨張タービン7を出た燃料ガ
スは、低圧の燃料ガスとして需要先に供給される。
FIG. 1 is a configuration diagram of a combined power generation system of gas turbine power generation and gas pressure recovery power generation according to Embodiment 1 of the present invention. In the gas turbine 1 including the compressor, the combustor, and the turbine, the fuel gas for the gas turbine is mixed with the air compressed by the compressor and the combustor and burns,
Generates power when the combustion gas expands in the turbine,
The generator 4 is driven. Then, the high-temperature exhaust gas that has exited the turbine of the gas turbine 1 is introduced into the exhaust heat recovery / gas heater 12, exchanges heat with the fuel gas, is cooled, and is then discharged into the atmosphere. On the other hand, on the side of the expansion turbine 7, high-pressure fuel gas such as city gas is introduced into the exhaust heat recovery / gas heater 12, which is heated by heat exchange with the exhaust gas. to go into. Expansion turbine 7
Generates power when the fuel gas adiabatically expands, and drives the generator 4. The fuel gas exiting the expansion turbine 7 is supplied to a demand destination as a low-pressure fuel gas.

【0016】実施例1.次に、実施の形態1の発電シス
テムの具体例を実施例1として紹介する。膨張タービン
作動用燃料ガスの種類、圧力・温度条件は下記の通りと
する。 燃料ガス種別:都市ガス13A 高圧側燃料ガス 圧力:40kg/cm2 G,温度:24℃ 低圧側燃料ガス 圧力: 6kg/cm2 G,温度: 5℃ 出力定格1000kwクラスのガスタービン1と、上記
都市ガスを作動流体とした膨張タービン7と、排熱回収
/ガス加温器12を用いて図1のシステムを構成し、排
熱回収/ガス加温器12出口での排ガス温度が100℃
になる様に設定して運転した時の、都市ガス使用量と出
力を、ガスタービン発電単独システムの場合と比較して
その結果を下記に示す。なお、発電効率は、ガスタービ
ンで消費される燃料ガスの低位発熱量に対する発生電力
量の比である。
Embodiment 1 FIG. Next, a specific example of the power generation system according to Embodiment 1 will be introduced as Example 1. The type of fuel gas, pressure and temperature conditions for operating the expansion turbine are as follows. Fuel gas type: City gas 13A High-pressure side fuel gas Pressure: 40 kg / cm 2 G, temperature: 24 ° C. Low-pressure side fuel gas pressure: 6 kg / cm 2 G, temperature: 5 ° C. Gas turbine 1 with an output rating of 1000 kW class and the above The system shown in FIG. 1 is configured by using the expansion turbine 7 using city gas as a working fluid and the exhaust heat recovery / gas heater 12, and the exhaust gas temperature at the outlet of the exhaust heat recovery / gas heater 12 is 100 ° C.
The results are shown below, comparing the city gas consumption and output when operating with setting to be as follows. The power generation efficiency is the ratio of the amount of generated power to the lower calorific value of the fuel gas consumed by the gas turbine.

【0017】 実施例1のシステム ガスタービン発電単独 ガスタービン燃料消費量 402Nm3 /h 402Nm3 /h 作動流体の流量 74,900Nm3 /h 0Nm3 /h 発電機出力 4149kw 1003kw 発電効率 89.4% 21.6%System of Embodiment 1 Gas turbine power generation alone Gas turbine fuel consumption 402 Nm 3 / h 402 Nm 3 / h Flow rate of working fluid 74,900 Nm 3 / h 0 Nm 3 / h Generator output 4149 kw 1003 kW Power generation efficiency 89.4% 21.6%

【0018】このように、都市ガスを作動流体とする膨
張タービン発電と、ガスタービン発電とを組み合わせ、
排熱回収/ガス加温器12で回収したガスタービン1か
らの排ガス熱を利用し、膨張タービン7に流入する都市
ガスを加温することにより、ガスタービン発電の熱効率
の向上と、都市ガスの圧力エネルギの効率的な回収を、
蒸気や水といった用役なしで同時に達成できる。なお、
実施例1で、排熱回収/ガス加温器12を出て膨脹ター
ビン7に入る都市ガスの温度は約97℃に昇温される。
As described above, expansion turbine power generation using city gas as a working fluid and gas turbine power generation are combined,
By using the exhaust gas heat from the gas turbine 1 recovered by the exhaust heat recovery / gas heater 12 to heat the city gas flowing into the expansion turbine 7, the thermal efficiency of the gas turbine power generation is improved, and Efficient recovery of pressure energy
Can be achieved simultaneously without utilities such as steam and water. In addition,
In the first embodiment, the temperature of the city gas exiting the exhaust heat recovery / gas heater 12 and entering the expansion turbine 7 is increased to about 97 ° C.

【0019】実施の形態2.図2は、本発明の実施の形
態2に係るガスタービン発電とガス圧力回収発電の複合
発電システムの構成図である。これは、排熱回収/ガス
加温器を含む膨張タービン側の作動流体である燃料ガス
の流路構成を除いて図1のシステム構成と同じである。
すなわち、膨張タービン7に導入する高圧の燃料ガスと
膨張タービン7から出る低圧の燃料ガスとの両方を、排
熱回収/ガス加温器12のそれぞれ前段部と後段部で昇
温するようにしている。
Embodiment 2 FIG. 2 is a configuration diagram of a combined power generation system of gas turbine power generation and gas pressure recovery power generation according to Embodiment 2 of the present invention. This is the same as the system configuration of FIG. 1 except for the flow channel configuration of the working gas on the expansion turbine side including the exhaust heat recovery / gas heater.
That is, both the high-pressure fuel gas introduced into the expansion turbine 7 and the low-pressure fuel gas emitted from the expansion turbine 7 are heated at the front stage and the rear stage of the exhaust heat recovery / gas heater 12, respectively. I have.

【0020】排熱回収/ガス加温器12出口での排ガス
温度を下げるほど熱回収を多くでき熱効率は向上する
が、そのためには排熱回収熱交換器部分の伝熱面積が大
きくなり、設備費がかさむ。しかし、この実施の形態2
のように、排熱回収/ガス加温器12の前段部で膨張タ
ービン7入口側の高圧の燃料ガスを、排熱回収/ガス加
温器12の後段部で膨張タービン7出口側の低圧の燃料
ガスを加温する構成とすることにより、熱交換の効率を
向上させることができる。すなわち、膨張タービン7の
入口側ガス温度を実施の形態1に比べて低く設定する
と、その分膨張タービン7の出口側のガス温度は実施の
形態1に比べてより低温になるため、排熱回収/ガス加
温器12での排ガスとの温度差が大きいため、排熱回収
効率が向上し、より小さな伝熱面積で効果的な熱効率を
得ることが可能となる。
As the exhaust gas temperature at the outlet of the exhaust heat recovery / gas warmer 12 is lowered, the amount of heat recovery can be increased and the thermal efficiency can be improved. Expensive. However, the second embodiment
The high-pressure fuel gas on the inlet side of the expansion turbine 7 at the front stage of the exhaust heat recovery / gas heater 12 and the low-pressure fuel gas on the outlet side of the expansion turbine 7 at the rear stage of the exhaust heat recovery / gas heater 12 By adopting a configuration in which the fuel gas is heated, the efficiency of heat exchange can be improved. That is, if the gas temperature on the inlet side of the expansion turbine 7 is set lower than that in the first embodiment, the gas temperature on the outlet side of the expansion turbine 7 becomes lower than that in the first embodiment. Since the temperature difference between the gas and the exhaust gas in the gas heater 12 is large, the efficiency of exhaust heat recovery is improved, and effective heat efficiency can be obtained with a smaller heat transfer area.

【0021】なお、実際には、排熱回収/ガス加温器1
2出口での排ガス温度の下限は、伝熱管の腐食問題によ
って規制される。一般の都市ガスのように、硫黄分を含
まない燃料ガスの場合は、硫酸腐食の問題は発生しない
が、排ガス中のCO2 と水分による炭酸腐食には注意が
必要である。この事から、伝熱管に比較的低温のガスを
通す場合には、伝熱管外面温度を水露点以上に保つか、
低温部伝熱管に耐腐食性材料を使うなどの配慮が必要で
ある。ただし、ガスタービンは大量の冷却空気を必要と
するがゆえに空気過剰率が高く、そのため排ガスの水露
点は他の原動機に比べかなり低いという特徴があり、伝
熱管外面温度を水露点以上に保つことは容易である。
Incidentally, actually, the exhaust heat recovery / gas heater 1
The lower limit of the exhaust gas temperature at the two outlets is regulated by the heat transfer tube corrosion problem. In the case of fuel gas containing no sulfur, such as general city gas, the problem of sulfuric acid corrosion does not occur, but caution must be exercised in carbonic acid corrosion due to CO 2 and moisture in the exhaust gas. For this reason, when passing relatively low-temperature gas through the heat transfer tubes, keep the outer surface temperature of the heat transfer tubes above the water dew point,
Consideration must be given to using a corrosion-resistant material for the low-temperature heat transfer tubes. However, since gas turbines require a large amount of cooling air, the excess air ratio is high, so the water dew point of exhaust gas is considerably lower than that of other prime movers, and the temperature of the heat transfer tube outer surface must be kept above the water dew point. Is easy.

【0022】実施例2.実施例1と同じガスタービン、
膨張タービン、および発電機、同じ種類および同じ入口
/出口の圧力・温度条件の燃料ガスを使い、さらに、排
熱回収/ガス冷却器12を利用して、図2に示す発電シ
ステムを実施例2として構成し、実施例1と同じ発電機
出力を得、排熱回収/ガス加温器12出口での排ガス温
度が実施例1と同じ100℃になるように設定した。こ
の場合に、排熱回収/ガス加温器12から出て膨張ター
ビン7に入る高圧側燃料ガスの温度は約70℃、また、
膨張タービン7から出て排熱回収/ガス加温器12に入
る低圧側燃料ガスの温度は約−19℃となり、実施例1
の場合に比べてより低温になる。従って、排熱回収/ガ
ス加温器12の排熱回収効率が向上するため、排熱回収
/ガス加温器12の熱交換器の伝熱面積は、実施例1の
それに比較して約11%低減でき、排熱回収/ガス加温
器12を小さくして、設備費を低減できる。
Embodiment 2 FIG. The same gas turbine as in the first embodiment,
The power generation system shown in FIG. 2 is implemented by using an expansion turbine, a generator, fuel gas of the same type and the same inlet / outlet pressure and temperature conditions, and further using an exhaust heat recovery / gas cooler 12 according to the second embodiment. The same generator output as in Example 1 was obtained, and the exhaust gas temperature at the outlet of the exhaust heat recovery / gas heater 12 was set to 100 ° C., the same as in Example 1. In this case, the temperature of the high-pressure side fuel gas exiting the exhaust heat recovery / gas heater 12 and entering the expansion turbine 7 is about 70 ° C., and
The temperature of the low-pressure side fuel gas exiting the expansion turbine 7 and entering the exhaust heat recovery / gas heater 12 is about -19 ° C.
The temperature is lower than in the case of Therefore, the heat transfer area of the heat exchanger of the exhaust heat recovery / gas heater 12 is about 11 times that of the heat exchanger of the first embodiment because the heat recovery efficiency of the exhaust heat recovery / gas heater 12 is improved. %, The exhaust heat recovery / gas heater 12 can be made smaller, and equipment costs can be reduced.

【0023】実施の形態3.図3は、本発明の実施の形
態3に係るガスタービン発電とガス圧力回収発電との複
合発電システムの構成図である。これは、膨張タービン
7から出る低圧側燃料ガスを、一旦、吸気冷却器13に
導入してガスタービン1に供給する空気と熱交換を行な
わせ、ガスタービン1に供給する空気の温度を下げると
ともに、燃料ガスは吸気冷却器13で昇温された後、需
要先に供給されるようにした点を除いて図1のシステム
構成と同じである。
Embodiment 3 FIG. FIG. 3 is a configuration diagram of a combined power generation system of gas turbine power generation and gas pressure recovery power generation according to Embodiment 3 of the present invention. This is because the low-pressure side fuel gas discharged from the expansion turbine 7 is once introduced into the intake air cooler 13 to exchange heat with the air supplied to the gas turbine 1, thereby lowering the temperature of the air supplied to the gas turbine 1. 1 is the same as the system configuration of FIG. 1 except that the fuel gas is heated by the intake air cooler 13 and then supplied to a demand destination.

【0024】ガスタービン1は、その最大出力が吸入す
る空気温度に左右されると言う特性を持っており、吸入
温度が高いと最大出力が低下してしまう。しかし、この
ように、膨張タービン7出口側の低温の燃料ガスを吸気
冷却器13に導入し、これによりガスタービン1の吸気
温度を低くすることで、大気温度の高い夏場の昼間など
大出力が要求される場合にも、ガスタービン1の出力を
維持して電力供給の低下を防ぐことが可能となる。次
に、この実施例を説明する。
The gas turbine 1 has a characteristic that its maximum output depends on the temperature of the air to be taken in. If the intake temperature is high, the maximum output will decrease. However, by introducing the low-temperature fuel gas at the outlet side of the expansion turbine 7 into the intake air cooler 13 to lower the intake air temperature of the gas turbine 1 in this way, a large output such as during the daytime in summer when the atmospheric temperature is high can be obtained. Even when required, it is possible to maintain the output of the gas turbine 1 and prevent a decrease in power supply. Next, this embodiment will be described.

【0025】実施例3,実施例4.実施例1と同じガス
タービン、膨張夕ービン、および発電機を用い、ガスタ
ービン1の吸気温度が35℃の場合の図1のシステムを
実施例3とし、一方、図3のように吸気冷却器13を加
えて、ガスタービン1の吸気温度を17℃にした場合の
システムを実施例4として、これらのシステムの燃料ガ
ス使用量と最大出力とを比較した。なお、膨張タービン
作動用燃料ガスの条件は下記の通りとする。 燃料ガス種別:都市ガス13A 高圧側燃料ガス 圧力:40kg/cm2 G,温度:35℃ 低圧側燃料ガス 圧力: 6kg/cm2 G,温度: 5℃ また、膨張タービン7へ流入する燃料ガス流量は実施例
3と実施例4で同一とした。この結果、下記に示すよう
に吸気冷却を行った実施例4(図3のシステム)の発電
の方が、発電機の最大出力は4.3%向上した。
Embodiment 3 and Embodiment 4. The system of FIG. 1 in which the gas temperature of the gas turbine 1 is 35 ° C. using the same gas turbine, expansion bin, and generator as in the first embodiment is referred to as a third embodiment. On the other hand, as shown in FIG. 13 and the system in which the intake temperature of the gas turbine 1 was set to 17 ° C. was set as Example 4 and the fuel gas consumption and the maximum output of these systems were compared. The conditions of the fuel gas for operating the expansion turbine are as follows. Fuel gas type: city gas 13A High-pressure side fuel gas Pressure: 40 kg / cm 2 G, temperature: 35 ° C. Low-pressure side fuel gas pressure: 6 kg / cm 2 G, temperature: 5 ° C. Also, the flow rate of fuel gas flowing into the expansion turbine 7 Was the same in Example 3 and Example 4. As a result, the maximum output of the generator was improved by 4.3% in the case of the power generation in Example 4 (the system in FIG. 3) in which the intake air was cooled as described below.

【0026】 実施例3のシステム 実施例4のシステム ガスタービン吸気温度 35℃ 17℃ ガスタービン燃料消費量 377Nm3 /h 419Nm3 /h 発電機出力 4026kw 4199kwSystem of Embodiment 3 System of Embodiment 4 Gas turbine intake temperature 35 ° C. 17 ° C. Gas turbine fuel consumption 377 Nm 3 / h 419 Nm 3 / h Generator output 4026 kW 4199 kW

【0027】上記実施例4で、排熱回収/ガス加温器1
2から出て膨張タービン7に入る燃料ガスの温度は約9
3℃、排熱回収/ガス加温器12出口での排ガスの温度
は180℃、膨張タービン7を出て吸気冷却器13に入
る燃料ガスの温度は約1℃と想定したが、需要側での温
度が例えば1℃程度でよいとすれば、膨張タービン7に
入る燃料ガスの温度、および膨張タービン7から出て吸
気冷却器13に入る燃料ガスの温度をさらに引き下げる
ことも可能になり、更に発電機の最大出力を向上でき
る。
In the fourth embodiment, the exhaust heat recovery / gas heater 1
The temperature of the fuel gas exiting from 2 and entering the expansion turbine 7 is about 9
It is assumed that the temperature of the exhaust gas at the outlet of the exhaust heat recovery / gas heater 12 is 180 ° C., and the temperature of the fuel gas exiting the expansion turbine 7 and entering the intake air cooler 13 is about 1 ° C. If the temperature is, for example, about 1 ° C., the temperature of the fuel gas entering the expansion turbine 7 and the temperature of the fuel gas exiting the expansion turbine 7 and entering the intake air cooler 13 can be further reduced. The maximum output of the generator can be improved.

【0028】以上、本発明の具体例を詳細に説明してき
たが、ガスタービン発電機と膨張タービン発電機の組み
合わせには、各々のタービンが別々の発電機を駆動する
場合と、各々のタービンが共通の1台の発電機を駆動す
る一軸型との2種類がある。上記各実施の形態では一軸
型を示したが、本発明は別々の発電機を駆動する方式も
利用可能である。ただし、一軸型にした場合は、発電機
が共通の1台となり設備の設置スペースが少なくて済む
上、大型の発電機を駆動するため発電機効率が高くなる
と言う特徴を持つ。さらに一軸型の場合は、ガスタービ
ン起動時に膨張タービンを起動機として利用できる為、
ガスタービンの起動装置が不要になるという特徴もあ
る。また、上記各実施の形態において、膨張タービン7
を複数個設置し、それらの入出力流路が直列となるよう
に、多段に構成して、より発電効率を上げることもでき
る。さらに、各タービンと発電機の間には必要に応じて
減速機が設置される。
Although the embodiments of the present invention have been described in detail, the combination of the gas turbine generator and the expansion turbine generator includes a case where each turbine drives a separate generator, and a case where each turbine There are two types: a single-shaft type that drives one common generator. In each of the above embodiments, the single-shaft type is shown, but the present invention can also use a system for driving different generators. However, in the case of a single-shaft type, there is a feature that a single generator is used as a common unit, the installation space for the equipment is reduced, and a large generator is driven to increase the generator efficiency. In the case of a single-shaft type, the expansion turbine can be used as a starter when starting the gas turbine.
Another feature is that a starting device for the gas turbine is not required. In each of the above embodiments, the expansion turbine 7
Can be installed in a plurality of stages so that their input / output flow paths are connected in series to further increase the power generation efficiency. Further, a speed reducer is installed between each turbine and the generator as needed.

【0029】また、上記各実施の形態で、排熱回収/ガ
ス加温器はガス同士の熱交換を行うものとしたが、排熱
回収器とガス加温器を別々にして、その間で液体の熱媒
を循環させる間接熱交換も可能である。その場合には、
ガス同士の熱交換に比べ熱交換器の総括伝熱係数は大き
くとれるが、別々の熱交換器が必要となるため、設備が
大型化する。
Further, in each of the above embodiments, the exhaust heat recovery / gas heating device performs heat exchange between gases. However, the exhaust heat recovery device and the gas heating device are separately provided, and the liquid is interposed therebetween. Indirect heat exchange in which the heat medium is circulated is also possible. In that case,
The overall heat transfer coefficient of the heat exchanger can be larger than that of heat exchange between gases, but the equipment becomes large because separate heat exchangers are required.

【0030】さらに、本発明において、膨張タービンを
作動するための燃料ガスは、都市ガス、天然ガス(LN
Gを気化させたものを含む)が使用できる。その際、ガ
スタービンで使われる燃料として、膨張タービン用作動
流体である燃料ガスの一部を取り込んで使用するのが好
都合である。
Further, in the present invention, the fuel gas for operating the expansion turbine is city gas, natural gas (LN
G (including vaporized G) can be used. At that time, it is convenient to take in and use a part of the fuel gas as the working fluid for the expansion turbine as the fuel used in the gas turbine.

【0031】[0031]

【発明の効果】以上詳細に説明したように、本発明は、
ガスタービン発電機、排熱回収/ガス加温器、および膨
張タービン発電機とで複合発電システムを構成し、ガス
タービン発電での排熱を回収しそれを膨張タービン作動
流体の加温に利用するようにしたので、蒸気や水と言っ
た燃料ガス以外の用役が不要で、システムの運転・保守
が簡便となり、しかもこれまで未利用であったガス圧力
エネルギを回収することにより高い発電出力・発電効率
を達成できる効果がある。
As described in detail above, the present invention provides
A combined power generation system is configured with a gas turbine generator, an exhaust heat recovery / gas heater, and an expansion turbine generator to recover exhaust heat from gas turbine power generation and use it for heating the working fluid of the expansion turbine. This eliminates the need for utilities other than fuel gas such as steam and water, simplifies the operation and maintenance of the system, and recovers unused gas pressure energy to increase power generation output and output. This has the effect of achieving power generation efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1(実施例1,実施例3)
に係る発電システムの構成図。
FIG. 1 is a first embodiment of the present invention (Examples 1 and 3);
Configuration diagram of the power generation system according to FIG.

【図2】本発明の実施の形態2(実施例2)に係る発電
システムの構成図。
FIG. 2 is a configuration diagram of a power generation system according to Embodiment 2 (Example 2) of the present invention.

【図3】本発明の実施の形態3(実施例4)に係る発電
システムの構成図。
FIG. 3 is a configuration diagram of a power generation system according to Embodiment 3 (Example 4) of the present invention.

【図4】従来の複合サイクル発電システムの構成図。FIG. 4 is a configuration diagram of a conventional combined cycle power generation system.

【図5】膨脹タービンを利用した従来の発電システムの
構成図。
FIG. 5 is a configuration diagram of a conventional power generation system using an expansion turbine.

【図6】膨脹タービンを利用した従来の複合サイクル発
電システムの構成図。
FIG. 6 is a configuration diagram of a conventional combined cycle power generation system using an expansion turbine.

【符号の説明】[Explanation of symbols]

1 ガスタービン 4 発電機 7 膨脹タービン 12 排熱回収/ガス加温器 13 吸気冷却器 DESCRIPTION OF SYMBOLS 1 Gas turbine 4 Generator 7 Expansion turbine 12 Exhaust heat recovery / Gas heater 13 Intake cooler

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02C 7/143 F02C 7/143 7/224 7/224 (72)発明者 森山 喜貴 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 田中 満 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 3G081 BA02 BA11 BB00 BB06 BC07 DA21 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F02C 7/143 F02C 7/143 7/224 7/224 (72) Inventor Yoshiki Moriyama Marunouchi, Chiyoda-ku, Tokyo 1-1-2, Nihon Kokan Co., Ltd. (72) Inventor Mitsuru Tanaka 1-2-1, Marunouchi, Chiyoda-ku, Tokyo F-Term, Nihon Kokan Co., Ltd. 3G081 BA02 BA11 BB00 BB06 BC07 DA21

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ガスタービンと、燃料ガスを作動流体と
する膨張夕ービンと、これらのタービンで駆動される発
電機と、前記ガスタービンからの排熱を回収し該排熱を
用いて前記膨張タービンに流入する燃料ガスを加温する
排熱回収/ガス加温器とを備えてなることを特徴とする
ガス圧力エネルギを利用した複合発電システム。
1. A gas turbine, an expansion cylinder using fuel gas as a working fluid, a generator driven by these turbines, and recovering exhaust heat from the gas turbine and using the exhaust heat to perform the expansion. A combined power generation system utilizing gas pressure energy, comprising: an exhaust heat recovery / gas heater for heating fuel gas flowing into a turbine.
【請求項2】 前記排熱回収/ガス加温器が、前記膨張
タービンに流入する高圧側燃料ガスを加温するととも
に、該膨張タービンから排出される低圧側燃料ガスも加
温することを特徴とする、請求項1記載の発電システ
ム。
2. The exhaust heat recovery / gas heater warms a high-pressure fuel gas flowing into the expansion turbine and also heats a low-pressure fuel gas discharged from the expansion turbine. The power generation system according to claim 1, wherein
【請求項3】 前記膨張タービンから排出される低圧側
燃料ガスの冷熱を取り込んで前記ガスタービンヘ流入さ
れる吸気を冷却する吸気冷却器を備えたことを特徴とす
る、請求項1または2記載の発電システム。
3. The power generation system according to claim 1, further comprising an intake air cooler for taking in cold energy of the low-pressure side fuel gas discharged from the expansion turbine to cool intake air flowing into the gas turbine. system.
【請求項4】 前記排熱回収/ガス加温器は前記ガスタ
ービンからの排ガスと前記燃料ガスとのガス同士間で熱
交換を行うことを特徴とする、請求項1〜3のいずれか
に記載の発電システム。
4. The exhaust heat recovery / gas heater according to claim 1, wherein heat exchange is performed between exhaust gas from the gas turbine and the fuel gas. The described power generation system.
【請求項5】 前記ガスタービンと前記膨張タービンで
共通の発電機を駆動させることを特徴とする、請求項1
〜4のいずれかに記載の発電システム。
5. The gas turbine and the expansion turbine drive a common generator.
The power generation system according to any one of claims 1 to 4.
【請求項6】 前記膨張タービンの作動流体として利用
する燃料ガスの一部を前記ガスタービンの燃料とするこ
とを特徴とする、請求項1〜5のいずれかに記載の発電
システム。
6. The power generation system according to claim 1, wherein a part of a fuel gas used as a working fluid of the expansion turbine is used as fuel for the gas turbine.
JP2000052897A 2000-02-29 2000-02-29 Combined power generation system using gas pressure energy Expired - Lifetime JP3697476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000052897A JP3697476B2 (en) 2000-02-29 2000-02-29 Combined power generation system using gas pressure energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000052897A JP3697476B2 (en) 2000-02-29 2000-02-29 Combined power generation system using gas pressure energy

Publications (2)

Publication Number Publication Date
JP2001241304A true JP2001241304A (en) 2001-09-07
JP3697476B2 JP3697476B2 (en) 2005-09-21

Family

ID=18574348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000052897A Expired - Lifetime JP3697476B2 (en) 2000-02-29 2000-02-29 Combined power generation system using gas pressure energy

Country Status (1)

Country Link
JP (1) JP3697476B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261416A (en) * 2009-05-11 2010-11-18 Tokyo Gas Co Ltd Energy storage device and differential pressure power generation system using the same
JP2013204583A (en) * 2012-03-29 2013-10-07 Osaka Gas Co Ltd Engine and fuel supply method thereof
JP2015055269A (en) * 2013-09-10 2015-03-23 住友精密工業株式会社 Submerged combustion type vaporization device
JP2021046865A (en) * 2020-12-24 2021-03-25 三菱重工業株式会社 Exhaust heat recovery plant, and combined cycle plant
JP2021524558A (en) * 2018-07-13 2021-09-13 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Power plant including natural gas regasification
US11408339B2 (en) 2017-08-31 2022-08-09 Mitsubishi Heavy Industries, Ltd. Steam turbine system and combined cycle plant
WO2024053577A1 (en) * 2022-09-08 2024-03-14 三菱重工業株式会社 Heat engine system
US11982235B2 (en) 2022-03-23 2024-05-14 Rolls-Royce Plc Fuel system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261416A (en) * 2009-05-11 2010-11-18 Tokyo Gas Co Ltd Energy storage device and differential pressure power generation system using the same
JP2013204583A (en) * 2012-03-29 2013-10-07 Osaka Gas Co Ltd Engine and fuel supply method thereof
JP2015055269A (en) * 2013-09-10 2015-03-23 住友精密工業株式会社 Submerged combustion type vaporization device
US11408339B2 (en) 2017-08-31 2022-08-09 Mitsubishi Heavy Industries, Ltd. Steam turbine system and combined cycle plant
JP2021524558A (en) * 2018-07-13 2021-09-13 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Power plant including natural gas regasification
JP7121185B2 (en) 2018-07-13 2022-08-17 シーメンス アクチエンゲゼルシヤフト Power plant including natural gas regasification
JP2021046865A (en) * 2020-12-24 2021-03-25 三菱重工業株式会社 Exhaust heat recovery plant, and combined cycle plant
US11982235B2 (en) 2022-03-23 2024-05-14 Rolls-Royce Plc Fuel system
WO2024053577A1 (en) * 2022-09-08 2024-03-14 三菱重工業株式会社 Heat engine system

Also Published As

Publication number Publication date
JP3697476B2 (en) 2005-09-21

Similar Documents

Publication Publication Date Title
JP2856552B2 (en) Improved co-cycle plant using liquefied natural gas as fuel.
RU2537118C2 (en) System of efficient fluid medium pressure relief
EP1016775B1 (en) Waste heat recovery in an organic energy converter using an intermediate liquid cycle
US7398642B2 (en) Gas turbine system including vaporization of liquefied natural gas
US6422019B1 (en) Apparatus for augmenting power produced from gas turbines
US5425230A (en) Gas distribution station with power plant
US20100275644A1 (en) Natural gas liquefaction plant and motive power supply equipment for same
US10830105B2 (en) System and method for improving output and heat rate for a liquid natural gas combined cycle power plant
US20020053196A1 (en) Gas pipeline compressor stations with kalina cycles
JPH08296410A (en) Cogeneration equipment and combined cycle generation equipment
KR20120026569A (en) Intake air temperature control device and a method for operating an intake air temperature control device
US11773754B2 (en) Cryogenic energy system for cooling and powering an indoor environment
US7950214B2 (en) Method of and apparatus for pressurizing gas flowing in a pipeline
KR20200120940A (en) LNG regasification
KR101386179B1 (en) District heating water supply system for increasing gas turbin output by using heat pump
JP3697476B2 (en) Combined power generation system using gas pressure energy
JPH10238367A (en) Energy storage type gas turbine power generating system
CN110953069A (en) Multi-energy coupling power generation system of gas turbine power station
JPH0688538A (en) Gas turbine plant
JPH11343865A (en) Cryogenic turbine power generation system
JP2009097389A (en) Decompression installation provided with energy recovery function
JPH11117712A (en) Gas turbine combined plant
JP2009180101A (en) Decompression arrangement equipped with energy recovery capability
CN220791326U (en) Heat storage peak shaving system applied to CCPP power generation
JPH09177509A (en) Cryogenic power generating facility

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050530

R150 Certificate of patent or registration of utility model

Ref document number: 3697476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 9

EXPY Cancellation because of completion of term