JP2010261416A - Energy storage device and differential pressure power generation system using the same - Google Patents

Energy storage device and differential pressure power generation system using the same Download PDF

Info

Publication number
JP2010261416A
JP2010261416A JP2009114332A JP2009114332A JP2010261416A JP 2010261416 A JP2010261416 A JP 2010261416A JP 2009114332 A JP2009114332 A JP 2009114332A JP 2009114332 A JP2009114332 A JP 2009114332A JP 2010261416 A JP2010261416 A JP 2010261416A
Authority
JP
Japan
Prior art keywords
pressure
power generation
gas
generation system
pressure vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009114332A
Other languages
Japanese (ja)
Other versions
JP5085606B2 (en
Inventor
Yasuhiko Urabe
安彦 浦邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2009114332A priority Critical patent/JP5085606B2/en
Publication of JP2010261416A publication Critical patent/JP2010261416A/en
Application granted granted Critical
Publication of JP5085606B2 publication Critical patent/JP5085606B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an energy storage device suitable for effective use of new energy such as solar heat and unused energy such as waste heat, and a differential pressure power generation system using the same. <P>SOLUTION: The differential pressure power generation system 1 includes a pressure vessel 2, a sunlight beam condensing unit 5 giving the pressure vessel 2 solar heat energy, an expansion turbine 3 connecting to a downstream side pipe L4 of the pressure vessel 2, and a generator 4 connecting to a rotary shaft of the expansion turbine 3, as a major constitution. The pressure vessel 2 is connected to a branch pipe L3 of a high pressure line L1 of town gas containing methane as main component. An inside of the pressure vessel 2 is filled with adsorbent 10. A pressure sensor 11 and a shut-off valve 12 are disposed in a route of the branch pipe L4. An outlet side of the expansion turbine 3 is connected to a pipe L5 and merges with a branch pipe L2 through a pressure regulating valve 8. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、吸着材の吸着・脱着特性を利用したエネルギー貯蔵装置及びこれを用いた圧力差発電システムに係り、特に、太陽熱等の新エネルギーや、廃熱等の未利用エネルギーの有効利用に好適なエネルギー貯蔵装置及びこれを用いた圧力差発電システムに関する。 The present invention relates to an energy storage device using adsorption / desorption characteristics of an adsorbent and a pressure difference power generation system using the same, and particularly suitable for effective use of new energy such as solar heat and unused energy such as waste heat. The present invention relates to an energy storage device and a pressure difference power generation system using the same.

従来、エネルギー分野における吸着材の利用に関しては、燃料ガスの発熱量変動抑制を目的とする吸着塔貯蔵技術が公知である(例えば特許文献1)。また、吸着材の吸着熱、脱着熱を利用してヒートポンプサイクルを稼動させるデシカント空調システムも提案されている(例えば特許文献2)。さらに、吸着材を用いて太陽熱を集熱・蓄熱し、温水、暖房等に利用する技術も提案されている(例えば特許文献3)。
特許文献3のソーラーヒートポンプシステム100は、太陽熱を集熱する集熱器101、内部に吸着材を備え揮発性熱媒体を吸脱着させる吸放熱器102、熱媒体を凝縮貯蔵する貯蔵部104、蒸発器105a・放熱器(凝縮器)105bを備えた冷凍サイクル105、冷凍サイクル105から受熱する蓄熱部106、を主要構成とする。
Conventionally, regarding the use of adsorbents in the energy field, an adsorption tower storage technique for the purpose of suppressing fluctuations in the calorific value of fuel gas is known (for example, Patent Document 1). In addition, a desiccant air-conditioning system that operates a heat pump cycle using adsorption heat and desorption heat of an adsorbent has been proposed (for example, Patent Document 2). Furthermore, a technique for collecting and storing solar heat using an adsorbent and using it for hot water, heating, etc. has also been proposed (for example, Patent Document 3).
The solar heat pump system 100 of Patent Document 3 includes a heat collector 101 that collects solar heat, an absorber 102 that has an adsorbent inside and absorbs and desorbs a volatile heat medium, a storage unit 104 that condenses and stores the heat medium, and evaporation. The main components are a refrigeration cycle 105 including a heat exchanger 105a and a radiator (condenser) 105b, and a heat storage unit 106 that receives heat from the refrigeration cycle 105.

日射時には、吸着材に吸着されていた吸放熱器102内の揮発性熱媒体は蒸発し、貯蔵部104との圧力差により連絡配管103を経由して貯蔵部104に移動する。熱媒体は、冷凍サイクル105側の蒸発器105aの冷媒に放熱して凝縮し、液状態で貯蔵部5に貯蔵される。一方、冷凍サイクル105側の放熱器(凝縮器)105bでは、冷媒が蓄熱部106内の水に放熱して蓄熱部106内の水を加熱する。蓄熱部106内の温水は給湯、暖房等に用いられる。
また、非日射時には、貯蔵部104と吸放熱器102の温度差により圧力差が生じ、揮発性熱媒体は気相状態で吸放熱器102側に輸送される。さらに、低外気温時等、貯蔵部104と吸放熱器102の温度差が小さい場合には、熱交換器106aを介して蓄熱部106aの熱を貯蔵部104に与えて、圧力差を生じさせる。
ソーラーヒートポンプシステム100は上記作用により、太陽熱エネルギー利用を図るものである。
At the time of solar radiation, the volatile heat medium in the heat absorber 102 adsorbed by the adsorbent evaporates and moves to the storage unit 104 via the connection pipe 103 due to a pressure difference with the storage unit 104. The heat medium dissipates heat to the refrigerant in the evaporator 105a on the refrigeration cycle 105 side, condenses, and is stored in the storage unit 5 in a liquid state. On the other hand, in the radiator (condenser) 105 b on the refrigeration cycle 105 side, the refrigerant dissipates heat to the water in the heat storage unit 106 and heats the water in the heat storage unit 106. The hot water in the heat storage unit 106 is used for hot water supply, heating, and the like.
Further, during non-sunlight, a pressure difference is generated due to a temperature difference between the storage unit 104 and the heat sink / radiator 102, and the volatile heat medium is transported to the side of the heat sink / radiator 102 in a gas phase. Further, when the temperature difference between the storage unit 104 and the heat sink / radiator 102 is small, such as when the outside air temperature is low, the heat of the heat storage unit 106a is given to the storage unit 104 via the heat exchanger 106a to generate a pressure difference. .
The solar heat pump system 100 is intended to utilize solar thermal energy by the above action.

特開2004−331948号公報JP 2004-331948 A 特開2008−151388号公報JP 2008-151388 A 特開2005−257140号公報JP-A-2005-257140

本発明は、上記各先行技術文献に開示されていない、吸着材を用いた新たな熱エネルギー貯蔵技術を提案するものである。   The present invention proposes a new thermal energy storage technique using an adsorbent, which is not disclosed in the above prior art documents.

本発明は、以下の内容を要旨とする。すなわち、本発明に係るエネルギー貯蔵装置は、
(1)内部に吸着材を充填した圧力容器と、該圧力容器に外部から熱を供給する熱源と、該吸着材に対して吸着、脱着能力を有するガスを、該圧力容器に送入及び該圧力容器から送出する手段と、を備え、該熱源該圧力容器内を高温状態にして、該吸着材に吸着されているガスの脱着による圧力上昇を利用可能に構成したことを特徴とする。
The gist of the present invention is as follows. That is, the energy storage device according to the present invention is:
(1) A pressure vessel filled with an adsorbent inside, a heat source for supplying heat to the pressure vessel from the outside, and a gas having an adsorption / desorption capability for the adsorbent are sent to the pressure vessel and And a means for delivering the pressure from the pressure vessel, and the heat source is set to a high temperature state so that the pressure increase due to desorption of the gas adsorbed on the adsorbent can be used.

図3は本発明の作用を示す図であり、(a)吸着材を充填した圧力容器に吸着、脱着能力を有するガスを封入し、外部から加熱した場合と、(b)圧力容器にガスのみを封入して加熱した場合の、容器内温度―圧力の関係を比較したものである。吸着材充填容器の場合は、温度上昇に伴ってガスの脱着量が増加するため圧力上昇が大きく、常温では両者はほぼ同一であるが、50℃では吸着材充填容器の圧力は約2.3倍高くなっている。
本発明は、吸着材充填容器のこのような特性を利用して、熱エネルギーを圧力エネルギーとして貯蔵し、放出時の外気との圧力差を仕事として取り出し可能に構成したものである。
FIG. 3 is a diagram showing the operation of the present invention. (A) When a gas having adsorption / desorption ability is sealed in a pressure vessel filled with an adsorbent and heated from the outside, (b) Only the gas is contained in the pressure vessel. This is a comparison of the temperature-pressure relationship in the container when encapsulated and heated. In the case of the adsorbent-filled container, the amount of gas desorption increases as the temperature rises, so that the pressure rises greatly. It is twice as high.
The present invention uses such characteristics of the adsorbent-filled container to store heat energy as pressure energy and to extract the pressure difference from the outside air during discharge as work.

本発明に用いる吸着材としては、加熱された際に吸着している媒質を、大量に脱着する性質を持つことが重要である。脱着したガスによって容器内の圧力を高めるため、吸着時の温度における被吸着物質の吸着能力が高いことも重要である。
また、吸着材形状については容器に充填できるものであればよく、一般的な活性炭形状である粒状・破砕状でもいずれでもよい。ただし、容器に大量の吸着材が充填されることが望ましく、充填密度が高いものが有利である。
吸着材と被吸着物質であるガスの組み合わせは、利用形態により選択することができる。例えば、下記(4)のような都市ガス供給設備に付設される圧力差発電に利用する場合には、メタンをはじめとする炭化水素を吸着する吸着材が望ましい。また、例えばヒートポンプシステム等の一般的な設備に利用する場合には、不活性で安全な二酸化炭素や、空気を圧縮して貯蔵する場合の窒素等が想定され、これらに対する吸着能力が高い吸着材が望ましい。さらに、フロンや代替フロン等も対象となりうる。
It is important for the adsorbent used in the present invention to have a property of desorbing a large amount of the medium adsorbed when heated. Since the pressure in the container is increased by the desorbed gas, it is also important that the adsorption ability of the substance to be adsorbed at the temperature at the time of adsorption is high.
Further, the adsorbent shape may be any shape as long as it can be filled in the container, and may be any granular or crushed shape that is a general activated carbon shape. However, it is desirable that the container is filled with a large amount of adsorbent, and a high packing density is advantageous.
The combination of the adsorbent and the gas to be adsorbed can be selected depending on the usage form. For example, when used for pressure difference power generation attached to a city gas supply facility such as the following (4), an adsorbent that adsorbs hydrocarbons such as methane is desirable. In addition, when used for general equipment such as heat pump systems, for example, inert and safe carbon dioxide, nitrogen when compressing and storing air, etc. are assumed, and adsorbents with high adsorption capacity for these Is desirable. Furthermore, CFCs and CFC substitutes can also be targeted.

(2)上記発明において、前記熱源が太陽光集光装置であることを特徴とする。
本発明に用いる太陽光集光装置としては、タワー型、トラフ型、ディッシュ型等の公知の集光装置を適用することができる。
(2) In the above invention, the heat source is a sunlight condensing device.
As the solar light collecting device used in the present invention, a known light collecting device such as a tower type, a trough type, or a dish type can be applied.

また、本発明に係る圧力差発電システムは、
(3)上記(1)、(2)のエネルギー貯蔵装置の高圧ガスを利用する圧力差発電システムであって、前記エネルギー貯蔵装置と、膨張タービンと、該膨張タービンに連結する発電機と、を備え、かつ、前記エネルギー貯蔵装置から送出されるガスを、該膨張タービン入口に導入する手段を備えて成ることを特徴とする。
本発明は、エネルギー貯蔵装置で昇圧したガスを膨張タービンに導入し、タービン内部でガスが膨張する際の内部エネルギー減少を軸回転出力として取り出し、発電に供するものである。
Moreover, the pressure difference power generation system according to the present invention is:
(3) A pressure difference power generation system using the high-pressure gas of the energy storage device of (1) and (2) above, wherein the energy storage device, an expansion turbine, and a generator connected to the expansion turbine. And a means for introducing a gas sent from the energy storage device into the inlet of the expansion turbine.
The present invention introduces a gas boosted by an energy storage device into an expansion turbine, takes out a decrease in internal energy when the gas expands inside the turbine as an axial rotation output, and uses it for power generation.

(4)上記(3)の圧力差発電システムを、都市ガス供給ライン経路中に組み込んだ圧力差発電システムであって、高圧ガス供給ラインから分岐した減圧ライン経路中の減圧手段の上流側のガスを、前記エネルギー貯蔵装置の前記圧力容器に導入する手段と、前記膨張タービンを出たガスを、該減圧ラインの減圧手段の下流側に戻す手段と、を備えて成ることを特徴とする。
現在、都市ガス供給においては、工場から高圧(1.5MPa〜7MPa)で供給されるガスを、各拠点で中圧以下(1MPa未満)に減圧して需要家に供給している。
本発明は、減圧ラインに至る経路中に上記圧力差発電システムを組み込むことにより、従来利用されていなかった減圧時の圧力差エネルギーを有効利用可能とするものである。
本発明によれば、高圧ガスを直接又は予熱後に膨張タービンに導入する圧力差発電システムと比較して、エネルギー貯蔵装置においてさらに昇温・昇圧されるため、より高効率の発電システムが実現できる。
(4) A pressure difference power generation system in which the pressure difference power generation system of (3) above is incorporated in a city gas supply line route, the gas upstream of the pressure reducing means in the pressure reduction line route branched from the high pressure gas supply line Means for introducing the gas into the pressure vessel of the energy storage device, and means for returning the gas exiting the expansion turbine to the downstream side of the decompression means of the decompression line.
Currently, in city gas supply, gas supplied at a high pressure (1.5 MPa to 7 MPa) from a factory is reduced to a medium pressure or less (less than 1 MPa) at each base and supplied to consumers.
In the present invention, the pressure difference energy at the time of pressure reduction, which has not been conventionally used, can be effectively utilized by incorporating the pressure difference power generation system in the path leading to the pressure reduction line.
According to the present invention, compared with a pressure difference power generation system that introduces high-pressure gas directly or after preheating into the expansion turbine, the temperature is further increased and the pressure is increased in the energy storage device, so that a more efficient power generation system can be realized.

本発明によれば、未利用エネルギー、再生可能エネルギー等を有効に回収して、圧力エネルギーの形で効率的に貯蔵することができる。
また、本発明による圧力差発電システムによれば、上記エネルギー貯蔵装置に貯蔵された圧力エネルギーにより高効率の圧力差発電システムが実現できる。
According to the present invention, it is possible to effectively recover unused energy, renewable energy, and the like and efficiently store them in the form of pressure energy.
Further, according to the pressure difference power generation system of the present invention, a highly efficient pressure difference power generation system can be realized by the pressure energy stored in the energy storage device.

第一の実施形態に係る圧力差発電システム1の全体構成を示す図である。It is a figure showing the whole pressure difference power generation system 1 composition concerning a first embodiment. 第二の実施形態に係る圧力差発電システム20の全体構成を示す図である。It is a figure which shows the whole structure of the pressure difference power generation system 20 which concerns on 2nd embodiment. 吸着材充填の有無による圧力容器内ガスの温度―圧力の関係を比較した図である。It is the figure which compared the temperature-pressure relationship of the gas in a pressure vessel by the presence or absence of adsorption material filling. 従来の吸着材を用いたソーラーヒートポンプシステム100の構成を示す図である。It is a figure which shows the structure of the solar heat pump system 100 using the conventional adsorbent.

以下、本発明の実施形態について、図1、2を参照してさらに詳細に説明する。なお、重複記載を回避するため、各図において同一構成には同一符号を用いて示している。なお、本発明の範囲は特許請求の範囲記載のものであって、以下の実施形態に限定されないことはいうまでもない。   Hereinafter, embodiments of the present invention will be described in more detail with reference to FIGS. In addition, in order to avoid duplication description, in each figure, the same structure is shown using the same code | symbol. Needless to say, the scope of the present invention is described in the claims and is not limited to the following embodiments.

(第一の実施形態)
図1は、本実施形態に係る圧力差発電システム1の全体構成を示す図である。圧力差発電システム1は、圧力容器2と、圧力容器2に太陽熱エネルギーを与える太陽光集光装置5と、圧力容器2の下流側配管L4に接続する膨張タービン3と、膨張タービン3の回転軸に連結する発電機4と、を主要構成として備えている。
圧力容器2は、メタンを主成分とする都市ガス高圧ラインL1の分岐配管L2からさらに分岐する分岐配管L3に接続されている。圧力容器2内部には吸着材10が充填されている。吸着材としては、炭化水素に対する吸着能力の高い、例えば石炭原料活性炭を用いることができる。分岐配管L4経路内には圧力センサ11、閉止弁12が配設されており、制御部13が、圧力センサ11の計測値に基づいて閉止弁12を開閉できるように構成されている。膨張タービン3の出口側は配管L5に接続しており、圧力調整弁8を介して分岐配管L2に合流するように構成されている。また、圧力容器2の入口側には、容器内圧上昇時の逆流防止のための閉止弁14が配設されている。
一方、分岐配管L2経路内には高圧整圧器6a、流量調整弁6bを含む整圧部6が配設されている。このような配管系統により、膨張タービン3、圧力調整弁8を経由して所定の圧力に減圧されたガスは、分岐配管L2、整圧部6を経由する減圧ガスと合流してガスホルダ9に一旦貯蔵され、需要に応じて配管L6を介して供給される。
(First embodiment)
FIG. 1 is a diagram illustrating an overall configuration of a pressure difference power generation system 1 according to the present embodiment. The pressure difference power generation system 1 includes a pressure vessel 2, a solar light collecting device 5 that applies solar thermal energy to the pressure vessel 2, an expansion turbine 3 that is connected to a downstream pipe L <b> 4 of the pressure vessel 2, and a rotation shaft of the expansion turbine 3. And a generator 4 connected to the main unit.
The pressure vessel 2 is connected to a branch pipe L3 that further branches from the branch pipe L2 of the city gas high-pressure line L1 mainly composed of methane. The adsorbent 10 is filled in the pressure vessel 2. As the adsorbent, for example, a coal raw material activated carbon having a high adsorption capacity for hydrocarbons can be used. A pressure sensor 11 and a closing valve 12 are disposed in the branch pipe L4 path, and the control unit 13 is configured to be able to open and close the closing valve 12 based on the measured value of the pressure sensor 11. The outlet side of the expansion turbine 3 is connected to the pipe L5, and is configured to join the branch pipe L2 via the pressure regulating valve 8. Further, a closing valve 14 is provided on the inlet side of the pressure vessel 2 to prevent back flow when the internal pressure of the vessel rises.
On the other hand, a pressure regulator 6 including a high pressure regulator 6a and a flow rate regulating valve 6b is disposed in the branch pipe L2. By such a piping system, the gas decompressed to a predetermined pressure via the expansion turbine 3 and the pressure regulating valve 8 merges with the decompressed gas via the branch piping L2 and the pressure regulating unit 6, and temporarily enters the gas holder 9. It is stored and supplied via the pipe L6 according to demand.

圧力差発電システム1は以上のように構成されており、次に圧力差発電システム1における太陽熱エネルギーの貯蔵及び発電形態について説明する。
まず、エネルギー貯蔵段階においては、閉止弁12は閉に設定されている。圧力容器2内に導入される高圧(例えば、1.0MPa)の都市ガスは吸着材10に吸着されるが、吸着量は容器内温度、圧力における平衡吸着量となる。その後、圧力容器2は太陽光集光装置5を介して供給される熱エネルギーにより加熱される。容器内温度上昇により吸着材10に吸着されていたガスは脱着し、容器内圧力は通常の温度−圧力の関係を超えて上昇する。
次に、発電段階においては、圧力センサ11の計測値が閾値以上となると、制御部13により閉止弁12が開弁される。これに伴い容器内のガスは膨張タービン3に導入され、いずれも不図示のノズルから翼部に吹き付けられ、被駆動機である発電機4を駆動させて発電が行われる。発電機4内で発生した電力は、商用電力系統に売電される。
一方、膨張タービン3内で膨張し、減圧されて出口を出たガスは、圧力調整弁8により圧力調整された後に分岐配管L2に合流して、ガスホルダ9に貯蔵される。
The pressure difference power generation system 1 is configured as described above. Next, solar thermal energy storage and power generation modes in the pressure difference power generation system 1 will be described.
First, in the energy storage stage, the closing valve 12 is set to be closed. High-pressure (for example, 1.0 MPa) city gas introduced into the pressure vessel 2 is adsorbed by the adsorbent 10, and the adsorption amount is an equilibrium adsorption amount at the temperature and pressure in the vessel. Thereafter, the pressure vessel 2 is heated by the thermal energy supplied through the solar light collecting device 5. The gas adsorbed by the adsorbent 10 due to the rise in the temperature in the container is desorbed, and the pressure in the container rises beyond the normal temperature-pressure relationship.
Next, in the power generation stage, when the measured value of the pressure sensor 11 is equal to or greater than the threshold value, the control unit 13 opens the closing valve 12. Along with this, the gas in the container is introduced into the expansion turbine 3, and both are blown from the nozzles (not shown) to the wings, and the generator 4 as the driven machine is driven to generate power. The electric power generated in the generator 4 is sold to the commercial power system.
On the other hand, the gas that has been expanded in the expansion turbine 3 and reduced in pressure and exited from the outlet is adjusted in pressure by the pressure adjusting valve 8, merged into the branch pipe L <b> 2, and stored in the gas holder 9.

なお、本実施形態では、容器の昇温・昇圧手段として太陽熱エネルギーを用いる例を示したが、これに替えて他の熱源を用いる形態とすることもできる。
また、圧力容器2を分岐配管L2から取り出した分岐配管L3に接続する例を示したが、直接高圧ラインL1に接続する形態とすることもできる。
In the present embodiment, an example is shown in which solar thermal energy is used as the temperature raising / pressurizing means for the container, but other heat sources may be used instead.
Moreover, although the example which connects the pressure vessel 2 to the branch piping L3 taken out from the branch piping L2 was shown, it can also be set as the form directly connected to the high voltage | pressure line L1.

(第二の実施形態)
次に、本発明の他の実施形態について説明する。図2は、本実施形態に係る圧力差発電システム20の全体構成を示す図である。圧力差発電システム20が上述の圧力差発電システム1と異なる点は、並列に接続される複数の圧力容器21a〜21cを備えており、また、各圧力容器とそれぞれ熱的に接続する太陽光集光装置22a〜22cを備えていることである。さらに、各圧力容器の下流側配管L8a〜L8cには、圧力センサ23a〜23c及び切替弁24a〜24cを備えており、各圧力センサの計測値に基づいて制御部26が各切替弁を適宜、開閉可能に構成されていることである。また、圧力容器21a〜21cの入口側には、それぞれ逆流防止用閉止弁27a〜27cが配設されている。その他の構成は圧力差発電システム1と同一であるので、重複説明を省略する。
(Second embodiment)
Next, another embodiment of the present invention will be described. FIG. 2 is a diagram illustrating an overall configuration of the pressure difference power generation system 20 according to the present embodiment. The difference between the pressure difference power generation system 20 and the pressure difference power generation system 1 described above includes a plurality of pressure vessels 21a to 21c connected in parallel, and a solar collector that is thermally connected to each pressure vessel. The optical devices 22a to 22c are provided. Furthermore, the downstream pipes L8a to L8c of each pressure vessel are provided with pressure sensors 23a to 23c and switching valves 24a to 24c, and the control unit 26 appropriately sets each switching valve based on the measurement value of each pressure sensor. It is configured to be openable and closable. In addition, on the inlet sides of the pressure vessels 21a to 21c, backflow prevention stop valves 27a to 27c are arranged, respectively. Since the other configuration is the same as that of the pressure difference power generation system 1, a duplicate description is omitted.

次に、圧力差発電システム20における発電制御について説明する。エネルギー貯蔵段階については、上述の実施形態と同様であるので説明を省略する。次に、発電段階においては、まず切替弁24a開、24b及び24c閉とすることにより、容器21a内のガスが膨張タービン3に導入され、被駆動機である発電機4を駆動させて発電が行われる。膨張タービン3を出たガスの挙動は、上述の実施形態と同様であるので説明を省略する。
圧力容器21aの圧力が下限値(膨張タービン3の能力に合わせて設定される)を下回ったときは、切替弁24b開、24c及び24a閉のように切り替えて、容器21bから容器21b内のガスを膨張タービン3に導入する。このように、順次ローテーションさせることにより、所定圧力以上のガスを連続的に膨張タービン3に導入することが可能となる。
Next, power generation control in the pressure difference power generation system 20 will be described. Since the energy storage stage is the same as that of the above-described embodiment, the description thereof is omitted. Next, in the power generation stage, the switching valve 24a is first opened, 24b and 24c are closed, whereby the gas in the container 21a is introduced into the expansion turbine 3 to drive the generator 4 which is a driven machine to generate power. Done. Since the behavior of the gas exiting the expansion turbine 3 is the same as that of the above-described embodiment, the description thereof is omitted.
When the pressure in the pressure vessel 21a falls below the lower limit value (set in accordance with the capacity of the expansion turbine 3), the gas is switched from the vessel 21b to the gas in the vessel 21b by switching to the switching valve 24b open, 24c and 24a closed. Is introduced into the expansion turbine 3. Thus, by sequentially rotating, it becomes possible to continuously introduce a gas having a predetermined pressure or higher into the expansion turbine 3.

なお、本実施形態では圧力容器3台を用いる例を示したが、吸着材充填量、膨張タービン能力等に合わせて適切な台数に設定することができる。   In addition, although the example which uses three pressure vessels was shown in this embodiment, it can set to an appropriate number according to adsorbent filling amount, expansion turbine capability, etc.

本発明は発電に限らず、例えば供給ガスの昇圧装置としても応用可能である。現状圧力より高い圧力にすることにより、昇圧に必要なエネルギーをセーブすることができる。
さらに、圧縮空気自動車への応用も可能である。本発明による貯蔵装置により昇圧した圧縮空気を供給源として、駆動源(エンジン、タービン等)に供給することができる。
このように、圧力差を利用してエネルギーを取り出す装置・システムに広く応用可能である。
The present invention is not limited to power generation, and can be applied, for example, as a booster device for supply gas. By making the pressure higher than the current pressure, energy required for boosting can be saved.
Furthermore, application to a compressed air vehicle is also possible. The compressed air boosted by the storage device according to the present invention can be used as a supply source and supplied to a drive source (engine, turbine, etc.).
As described above, the present invention can be widely applied to devices and systems that extract energy using a pressure difference.

1、20・・・・圧力差発電システム
2、21a〜21c・・・・圧力容器
3・・・・膨張タービン
4・・・・発電機
5、22a〜22c・・・・太陽光集光装置
9・・・・ガスホルダ
6・・・・整圧部
8・・・・圧力調整弁
10・・・・吸着材
11、23a〜23c・・・・圧力センサ
12、14、27a〜27c・・・・閉止弁
24a〜24c・・・・切替弁
L1・・・・都市ガス高圧ライン
DESCRIPTION OF SYMBOLS 1, 20 ... Pressure difference power generation system 2, 21a-21c ... Pressure vessel 3 ... Expansion turbine 4 ... Generator 5, 22a-22c ... Solar light condensing device 9 ... Gas holder 6 ... Pressure regulating unit 8 ... Pressure regulating valve 10 ... Adsorbent 11, 23a-23c ... Pressure sensors 12, 14, 27a-27c ...・ Close valves 24a-24c ・ ・ ・ ・ Switching valve L1 ・ ・ ・ ・ ・ ・ City gas high-pressure line

Claims (4)

内部に吸着材を充填した圧力容器と、
該圧力容器に外部から熱を供給する熱源と、
該吸着材に対して吸着、脱着能力を有するガスを、該圧力容器に送入及び該圧力容器から送出する手段と、を備え、
該熱源該圧力容器内を高温状態にして、該吸着材に吸着されているガスの脱着による圧力上昇を利用可能に構成したことを特徴とするエネルギー貯蔵装置。
A pressure vessel filled with an adsorbent inside;
A heat source for supplying heat to the pressure vessel from the outside;
Means for feeding a gas having an adsorption / desorption capability to the adsorbent into the pressure vessel and delivering the gas from the pressure vessel;
An energy storage device characterized in that the heat source has a high temperature inside the pressure vessel so that a pressure increase due to desorption of the gas adsorbed on the adsorbent can be used.
前記熱源が、太陽光集光装置であることを特徴とする請求項1に記載のエネルギー貯蔵装置。 The energy storage device according to claim 1, wherein the heat source is a solar light collecting device. 請求項1又は2に記載のエネルギー貯蔵装置の高圧ガスを利用する圧力差発電システムであって、
前記エネルギー貯蔵装置と、膨張タービンと、該膨張タービンに連結する発電機と、を備え、かつ、
前記エネルギー貯蔵装置から送出されるガスを、該膨張タービン入口に導入する手段を備えて成ることを特徴とする圧力差発電システム。
A pressure difference power generation system using the high-pressure gas of the energy storage device according to claim 1 or 2,
The energy storage device, an expansion turbine, and a generator coupled to the expansion turbine, and
A pressure difference power generation system comprising means for introducing a gas delivered from the energy storage device into an inlet of the expansion turbine.
請求項3に記載の圧力差発電システムを、さらに都市ガス供給ライン経路中に組み込んだ圧力差発電システムであって、
高圧ガス供給ラインから分岐した減圧ライン経路中の減圧手段の上流側のガスを、前記エネルギー貯蔵装置の前記圧力容器に導入する手段と、
前記膨張タービンを出たガスを、該減圧ラインの減圧手段の下流側に戻す手段と、
を備えて成ることを特徴とする圧力差発電システム。
A pressure difference power generation system in which the pressure difference power generation system according to claim 3 is further incorporated in a city gas supply line path,
Means for introducing the gas upstream of the decompression means in the decompression line route branched from the high pressure gas supply line into the pressure vessel of the energy storage device;
Means for returning the gas exiting the expansion turbine to the downstream side of the decompression means of the decompression line;
A pressure difference power generation system comprising:
JP2009114332A 2009-05-11 2009-05-11 Energy storage device and pressure difference power generation system using the same Active JP5085606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009114332A JP5085606B2 (en) 2009-05-11 2009-05-11 Energy storage device and pressure difference power generation system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009114332A JP5085606B2 (en) 2009-05-11 2009-05-11 Energy storage device and pressure difference power generation system using the same

Publications (2)

Publication Number Publication Date
JP2010261416A true JP2010261416A (en) 2010-11-18
JP5085606B2 JP5085606B2 (en) 2012-11-28

Family

ID=43359707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009114332A Active JP5085606B2 (en) 2009-05-11 2009-05-11 Energy storage device and pressure difference power generation system using the same

Country Status (1)

Country Link
JP (1) JP5085606B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102748259A (en) * 2012-07-10 2012-10-24 李建 Natural gas differential pressure power generation system based on high-precision voltage control and temperature control and control method of power generation system
CN102748254A (en) * 2012-07-11 2012-10-24 李建 Natural gas differential pressure generating transforming machine set based on solar heating and implementation method thereof
JP5585858B1 (en) * 2013-10-02 2014-09-10 岡本 應守 Seesaw type temperature difference power generator
JP2016504530A (en) * 2013-01-28 2016-02-12 シュウフ フォン Air energy machinery equipment
JP2016035254A (en) * 2014-08-04 2016-03-17 東京ガス・エンジニアリング株式会社 Decompression energy recovery device in gas pipeline

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108457824A (en) * 2018-03-21 2018-08-28 李良杰 Pneumatic road surface electricity generation system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58119907A (en) * 1982-01-11 1983-07-16 Hitachi Ltd Cooling/heating energy utilizer of liquefied natural gas
JPS61202051A (en) * 1985-03-01 1986-09-06 Daido Steel Co Ltd Solar energy utilizing device
JPS63246419A (en) * 1987-04-01 1988-10-13 Osaka Gas Co Ltd Method for reducing generation quantity fluctuation of electric power and city gas due to demand fluctuation
JPH03111668A (en) * 1989-09-25 1991-05-13 Kawasaki Steel Corp Method and device for moving hydrogen gas between containers of hydrogen storage alloy
JPH06101624A (en) * 1992-09-18 1994-04-12 Kansai Electric Power Co Inc:The Power generating set utilizing hydrogen storage alloy
JPH07217800A (en) * 1994-01-31 1995-08-15 Osaka Gas Co Ltd City gas pressure regulating device incorporating energy recovery device
JPH0826700A (en) * 1994-07-21 1996-01-30 Matsushita Electric Ind Co Ltd Raising and lowering device
JP2000045926A (en) * 1998-07-31 2000-02-15 Japan Steel Works Ltd:The Hydraulic power generation
JP2001241304A (en) * 2000-02-29 2001-09-07 Nkk Corp Combined power generation system utilizing gas pressure energy
JP2009097389A (en) * 2007-10-15 2009-05-07 Jfe Engineering Corp Decompression installation provided with energy recovery function

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58119907A (en) * 1982-01-11 1983-07-16 Hitachi Ltd Cooling/heating energy utilizer of liquefied natural gas
JPS61202051A (en) * 1985-03-01 1986-09-06 Daido Steel Co Ltd Solar energy utilizing device
JPS63246419A (en) * 1987-04-01 1988-10-13 Osaka Gas Co Ltd Method for reducing generation quantity fluctuation of electric power and city gas due to demand fluctuation
JPH03111668A (en) * 1989-09-25 1991-05-13 Kawasaki Steel Corp Method and device for moving hydrogen gas between containers of hydrogen storage alloy
JPH06101624A (en) * 1992-09-18 1994-04-12 Kansai Electric Power Co Inc:The Power generating set utilizing hydrogen storage alloy
JPH07217800A (en) * 1994-01-31 1995-08-15 Osaka Gas Co Ltd City gas pressure regulating device incorporating energy recovery device
JPH0826700A (en) * 1994-07-21 1996-01-30 Matsushita Electric Ind Co Ltd Raising and lowering device
JP2000045926A (en) * 1998-07-31 2000-02-15 Japan Steel Works Ltd:The Hydraulic power generation
JP2001241304A (en) * 2000-02-29 2001-09-07 Nkk Corp Combined power generation system utilizing gas pressure energy
JP2009097389A (en) * 2007-10-15 2009-05-07 Jfe Engineering Corp Decompression installation provided with energy recovery function

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102748259A (en) * 2012-07-10 2012-10-24 李建 Natural gas differential pressure power generation system based on high-precision voltage control and temperature control and control method of power generation system
CN102748254A (en) * 2012-07-11 2012-10-24 李建 Natural gas differential pressure generating transforming machine set based on solar heating and implementation method thereof
JP2016504530A (en) * 2013-01-28 2016-02-12 シュウフ フォン Air energy machinery equipment
JP5585858B1 (en) * 2013-10-02 2014-09-10 岡本 應守 Seesaw type temperature difference power generator
JP2016035254A (en) * 2014-08-04 2016-03-17 東京ガス・エンジニアリング株式会社 Decompression energy recovery device in gas pipeline

Also Published As

Publication number Publication date
JP5085606B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
JP5085606B2 (en) Energy storage device and pressure difference power generation system using the same
WO2012164856A1 (en) Co2 recovery method and apparatus
JP6309172B2 (en) Solar energy water heating auxiliary heat storage device and power plant boiler solar energy water heating supply system formed from solar energy water heating auxiliary heat storage device
Jiang et al. Experimental study on a resorption system for power and refrigeration cogeneration
JP6746692B2 (en) Combined heat and power system with electrical and thermal energy storage
Khan et al. Study on solar/waste heat driven multi-bed adsorption chiller with mass recovery
Hassan et al. Energy, exergy, economic and environmental (4E) assessment of hybrid solar system powering adsorption-parallel/series ORC multigeneration system
US8479529B2 (en) Two-stage low temperature air cooled adsorption cooling unit
CA2830623C (en) Solid co2 adsorbent material system
AU2009223725A1 (en) Adsorption-enhanced compressed air energy storage
JP2019124130A (en) Cold power generation device
AU2010254067B2 (en) Adsorption-enhanced compressed air energy storage
JP4603379B2 (en) Fuel cell operating method and apparatus
US11684888B2 (en) Integrated heat management systems and processes for adsorbed natural gas storage facilities
WO2023228457A1 (en) Dry ice production system using atmospheric carbon dioxide as gas source and capable of supplying air for air conditioning
Grzebielec et al. Analysis of the use of adsorption processes in trigeneration systems
KR20160060207A (en) Energy Storage System and Method by Liquefied Carbon Dioxide
Peng et al. Experimental study of adsorption CO2 storage device for compressed CO2 energy storage system
KR20150036899A (en) A system for saving and generating the electric power using supercritical carbon dioxide
JP2016176461A (en) Binary power generator
US6751958B1 (en) Physical chemistry compression
JP2002004813A (en) Combined-cycle generating device utilizing cryogenic lng
US9608498B2 (en) Method and device for generating electrical energy
JP2005069536A (en) Waste heat recovery type adsorption type freezer
CN109973152B (en) Piston hydrogen energy work system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120905

R150 Certificate of patent or registration of utility model

Ref document number: 5085606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250