JPH03111668A - Method and device for moving hydrogen gas between containers of hydrogen storage alloy - Google Patents

Method and device for moving hydrogen gas between containers of hydrogen storage alloy

Info

Publication number
JPH03111668A
JPH03111668A JP24634989A JP24634989A JPH03111668A JP H03111668 A JPH03111668 A JP H03111668A JP 24634989 A JP24634989 A JP 24634989A JP 24634989 A JP24634989 A JP 24634989A JP H03111668 A JPH03111668 A JP H03111668A
Authority
JP
Japan
Prior art keywords
pressure
turbine
hydrogen
alloy
gauge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24634989A
Other languages
Japanese (ja)
Inventor
Takeshi Uchiyama
武 内山
Seiji Taguchi
田口 整司
Kanji Takeda
武田 幹治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP24634989A priority Critical patent/JPH03111668A/en
Publication of JPH03111668A publication Critical patent/JPH03111668A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

PURPOSE:To operate a turbine efficiently and stably by providing a pressure regulating mechanism or a flow regulating mechanism before or after the turbine, and performing feedback control of pressure or flow. CONSTITUTION:Two alloy containers 1, 2 are connected with each other by hydrogen pipings 7. The output of a pressure gauge 11 disposed on the discharge side of a hydrogen turbine 8 is connected with a regulation gauge 13, and the output of the regulation gauge 13 is connected with a regulation valve 9 on the discharge side. The output of a pressure gauge 12 on the storage side of the hydrogen turbine 8 is connected with a regulation gauge 14, and the output of the regulation gauge 14 is connected with a regulation valve 10 on the storage side. The pressure on the turbine entrance side is kept constant by the regulation gauge 13 and the regulation valve 9. The pressure on the turbine exit side is kept at a constant pressure lower than a set value of the pressure on the turbine entrance side by the regulation gauge 14 and the regulation valve 10. The turbine can thus be operated efficiently and stably.

Description

【発明の詳細な説明】 〔産業上の利用分野J 本発明は水素吸蔵合金を用いてタービンを駆動するシス
テムに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application J] The present invention relates to a system for driving a turbine using a hydrogen storage alloy.

【従来の技術] 水素吸蔵合金をヒートポンプとして用いる場合は、水素
ガスを一定流量、一定圧力で流す必要は特にない、しか
し1本発明のように水素ガスを用いてタービンを回す場
合には水素ガスの流量、圧力を一定に制御する技術が必
要となってくる。
[Prior art] When using a hydrogen storage alloy as a heat pump, it is not necessary to flow hydrogen gas at a constant flow rate and constant pressure.However, when a turbine is rotated using hydrogen gas as in the present invention, hydrogen gas Technology to control the flow rate and pressure at a constant level is required.

水素ガスを一定流量で制御する方法は従来、特開昭63
−50301に合金に供給する熱媒の温度や流量を制御
して流量を一定に制御する方法が開示されている。また
、一般に蒸気あるいはフロンタービン等の制御ではター
ビン入側圧力は圧力調節器を用い、出側圧力は蒸気また
はフロン凝縮器へ供給する冷却水温度や流量等によって
制御することかを行われている。
The conventional method of controlling hydrogen gas at a constant flow rate was disclosed in JP-A-63
No. 50301 discloses a method of controlling the temperature and flow rate of a heat medium supplied to an alloy to keep the flow rate constant. Additionally, in general, when controlling steam or fluorocarbon turbines, the turbine inlet pressure is controlled using a pressure regulator, and the outlet pressure is controlled by the temperature and flow rate of the cooling water supplied to the steam or fluorocarbon condenser. .

「発明が解決しようとする課題1 一方、水素吸蔵合金を用いて水素タービンを回転させる
場合、前記の方法を用いてタービン前後の圧力を制御し
ても一般に合金層内の熱伝導性が悪いために、熱媒の温
度や流量を変化させても合金層内の温度が上昇あるいは
下降するには時間がかかり、制御に時間遅れが生じた。
``Problem to be Solved by the Invention 1 On the other hand, when a hydrogen storage alloy is used to rotate a hydrogen turbine, even if the pressure before and after the turbine is controlled using the above method, the thermal conductivity within the alloy layer is generally poor. Furthermore, even if the temperature and flow rate of the heating medium were changed, it took time for the temperature within the alloy layer to rise or fall, resulting in a time delay in control.

このため、このようなシステムのもとでは圧力あるいは
流量の変動は設定値の±5%以上となり、水素タービン
の運転に恋影響を与えるという問題があった。
For this reason, under such a system, there is a problem in that fluctuations in pressure or flow rate are ±5% or more of the set value, which adversely affects the operation of the hydrogen turbine.

本発明は、前記問題を解決した水素吸藏合・金を用いタ
ービンを回転させる場合にタービン入側、出側圧力およ
び流量を一定に制御する技術を提供することを目的とす
る。
An object of the present invention is to provide a technique for controlling the turbine inlet and outlet pressures and flow rates to be constant when rotating a turbine using a hydrogen-absorbing alloy/metal that solves the above-mentioned problems.

〔課題を解決するための手段1 本発明方法は、一対の水素吸蔵合金を収納した合金容器
間で水素を移動させ、移動路の途中にタービンを配設し
、タービンを作動させる方法において、 (a)  放出側圧力により放出側調節弁をフィードバ
ック制御し、タービン入側の圧力を一定に制(卸し。
[Means for Solving the Problems 1] The method of the present invention is a method in which hydrogen is transferred between a pair of alloy containers storing hydrogen storage alloys, a turbine is disposed in the middle of the transfer path, and the turbine is operated. a) The discharge side control valve is feedback-controlled by the discharge side pressure, and the pressure on the turbine inlet side is controlled at a constant level.

(b)  かつ吸蔵側圧力により吸蔵側調節弁をフィー
ドバラク制御し、タービン出調圧力を一定に制御するこ
と を特徴とする水素吸蔵合金容器間の水素ガス移動方法で
ある。
(b) A method for transferring hydrogen gas between hydrogen storage alloy containers, characterized in that the storage side control valve is subjected to feedbarak control based on the storage side pressure, and the turbine output pressure is controlled to be constant.

本発明方法を好適に実施する装置は、一対の水素吸蔵合
金を収納した容器合金間で水素を移動させ、合金容器の
配管途中でタービンを作動させる装置において、タービ
ンの入側および出側配管に圧力計または流量計と、これ
により制御される調節弁とを設けたことを特徴とする水
素吸蔵合金容器間の水素ガス移動装置である。
A device that preferably implements the method of the present invention is a device that moves hydrogen between a pair of container alloys containing a pair of hydrogen storage alloys and operates a turbine in the middle of the pipes of the alloy container. This is a hydrogen gas transfer device between hydrogen storage alloy containers, characterized by being provided with a pressure gauge or a flow meter, and a regulating valve controlled by the pressure gauge or flow meter.

[作用] 水素吸蔵合金は次の可逆反応によって水素の吸蔵、放出
を行う。
[Function] Hydrogen storage alloys store and release hydrogen through the following reversible reaction.

n             n ここにMは合金、Qは熱量であって1合金の水素放出/
吸蔵反応速度は合金の平衡圧力pe=f (T、H/M
)と実際の水素圧力の差によって決まる。H/Mは水素
濃度である。
n n Here, M is the alloy, Q is the amount of heat, and hydrogen release/
The absorption reaction rate is determined by the equilibrium pressure of the alloy pe=f (T, H/M
) and the actual hydrogen pressure. H/M is hydrogen concentration.

本発明は、第3図に示す水素吸蔵合金の等温解離圧曲線
によって示される特性を利用して問題の解決を図ったも
のである。高温1111Ttおよび低温側T2の水素濃
度と圧力の関係は第3図に示す2本の曲線で表わされる
。水素放出を考える。現在合金温度TIのA点で平衡に
達したとする。この平衡圧力をpeとする。温度T2で
は同じ水素放出における圧力はPとなる。これらの差Δ
P=l Pe−P Iが水素の放出速度を決定している
The present invention aims to solve the problem by utilizing the characteristics shown by the isothermal dissociation pressure curve of the hydrogen storage alloy shown in FIG. The relationship between hydrogen concentration and pressure at the high temperature 1111Tt and at the low temperature T2 is represented by two curves shown in FIG. Consider hydrogen release. Assume that equilibrium has now been reached at point A of the alloy temperature TI. Let this equilibrium pressure be pe. At temperature T2, the pressure at the same hydrogen release is P. These differences Δ
P=l Pe-P I determines the rate of hydrogen release.

しかしながら、平衡圧力peは水素の放出とともに第3
図の平衡解離圧曲線に沿ってB点まで低下する。または
水素放出に伴う吸熱によって合金温度が低下し、第3図
の0点まで圧力が低下する。
However, the equilibrium pressure pe increases with the release of hydrogen.
The equilibrium dissociation pressure decreases to point B along the equilibrium dissociation pressure curve in the figure. Alternatively, the alloy temperature decreases due to heat absorption accompanying hydrogen release, and the pressure decreases to the 0 point in FIG. 3.

一般に水素吸蔵合金は伝熱が悪く、熱媒によってT2を
T1に急激に回復させることはできない。
In general, hydrogen storage alloys have poor heat transfer, and T2 cannot be rapidly restored to T1 using a heating medium.

すなわち、ΔPが小さくなってくる。That is, ΔP becomes smaller.

★D F 11峠々−ビ1ノ1側nぼ自ルー中し→停り
トうに調節弁を作動させることによって、結果としてΔ
Pを一定に保つのである。これにより、水素吸蔵合金の
放出速度を一定に保つことができる。
★D F 11 Pass - By operating the control valve to stop, the result is Δ
This keeps P constant. Thereby, the release rate of the hydrogen storage alloy can be kept constant.

吸蔵側についても同様のことが言える。The same can be said about the storage side.

詳細な説明を第1図により説明する。A detailed explanation will be given with reference to FIG.

放出側合金容器lに高温熱源3と熱媒輸送管5が接続さ
れている。熱媒は、高温熱源3より熱媒輸送管5に供給
され、放出合金容器1の合金と熱交換する。吸蔵側合金
容器2には低温熱源4が熱媒輸送管6によって接続され
ている。熱媒は低温熱源4より熱媒輸送管6に供給され
、吸蔵側合金容器2内の合金と熱交換する。2つの合金
容器1.2は水素配管7によって接続されている。
A high temperature heat source 3 and a heat medium transport pipe 5 are connected to the discharge side alloy container l. The heat medium is supplied from the high temperature heat source 3 to the heat medium transport pipe 5 and exchanges heat with the alloy in the release alloy container 1 . A low-temperature heat source 4 is connected to the storage-side alloy container 2 through a heat medium transport pipe 6. The heat medium is supplied from the low-temperature heat source 4 to the heat medium transport pipe 6, and exchanges heat with the alloy in the storage-side alloy container 2. The two alloy vessels 1.2 are connected by a hydrogen pipe 7.

水素配管7には、放出側合金容器lに近い方から順に調
節弁9.圧力計11.水素タービン8、圧力計12.調
節弁10が取付けられている。また、水素タービン8よ
りも放出側にある圧力計11の出力は、調節計13に接
続され、調節計13の出力は放出側の調節弁9に接続さ
れている一人表クービン8上nも偶@訓17訊ス庄hi
+l2の出力は、調節計14に接続され、調節計14の
出力は吸蔵側の調節弁lOに接続されている。
In the hydrogen pipe 7, there are control valves 9. Pressure gauge 11. Hydrogen turbine 8, pressure gauge 12. A control valve 10 is attached. In addition, the output of the pressure gauge 11 located on the discharge side of the hydrogen turbine 8 is connected to the controller 13, and the output of the controller 13 is also connected to the pressure gauge 11 on the discharge side, which is connected to the control valve 9 on the discharge side. @Kun 17 question Shohi
The output of +l2 is connected to the controller 14, and the output of the controller 14 is connected to the storage side control valve lO.

タービン入側圧力は調節計13と調節弁9によって、一
定に保たれる。またタービン出側圧力は調節計14と調
節弁10によってタービン入側圧力の設定値よりも低い
一定の圧力に保たれる。
The turbine inlet pressure is kept constant by a regulator 13 and a control valve 9. Further, the turbine outlet pressure is maintained at a constant pressure lower than the set value of the turbine inlet pressure by the regulator 14 and the control valve 10.

このとき放出側の合金の平衡圧力は、高温熱媒の温度に
おいてタービン入側圧力よりも高く、また吸蔵側の合金
の平衡圧力は低温熱媒の温度において、タービン出側圧
力よりも低くなるように1合金および熱媒の温度を設定
する必要がある。
At this time, the equilibrium pressure of the alloy on the discharge side is higher than the pressure on the turbine inlet side at the temperature of the high temperature heating medium, and the equilibrium pressure of the alloy on the storage side is lower than the pressure on the turbine outlet side at the temperature of the low temperature heating medium. It is necessary to set the temperature of the alloy and heating medium to 1.

合金容器内の合金平衡圧力は、水素の放出、吸蔵に伴い
低下あるいは上昇する。また、外的要因として熱媒の温
度変化によっても変化する。
The alloy equilibrium pressure within the alloy container decreases or increases as hydrogen is released or absorbed. It also changes due to changes in the temperature of the heating medium as an external factor.

放出側合金の平衡圧力が低下すると、平衡圧力Peと合
金周辺の圧力Pとの差ΔPは小さくなり、水素放出反応
速度は小さくなる。従って、放出側合金容器lから吸蔵
側合金容器2への水素移動速度は小さくなる。タービン
出側圧力が一定であればタービン入側圧力は減少する。
When the equilibrium pressure of the release-side alloy decreases, the difference ΔP between the equilibrium pressure Pe and the pressure P around the alloy decreases, and the hydrogen release reaction rate decreases. Therefore, the speed of hydrogen transfer from the discharge-side alloy container 1 to the storage-side alloy container 2 becomes small. If the turbine outlet pressure is constant, the turbine inlet pressure will decrease.

このような圧力および流量の変化に対し本発明では次の
ように対処し、圧力および流量を一定に保つ。
The present invention deals with such changes in pressure and flow rate as follows to keep the pressure and flow rate constant.

すなわち、タービン入側圧力の減少を圧力計11により
検知し、これを調節計13に入力し、調節弁9を開の方
向に動作させる。放出側に流量計を用いて、流量を調節
弁によってフィードバック制御した場合には、この流量
の減少を流量計15で検知し、これを調節計13に入力
し、調節弁9を開方向に動作させる。調節弁9が開方向
に動作すれば放出側合金容器内の圧力は低下するので、
合金の平衡圧力との差ΔPは太き(なり、水素の放出速
度は大きくなる。この結果水素流量が増加しタービン入
側圧力も回復する。放出側合金の平衡圧力が上昇し、流
量が増加した場合に調節弁9は閉方向に働き圧力、流量
は一定に保たれる。
That is, a decrease in the turbine inlet pressure is detected by the pressure gauge 11, this is input to the controller 13, and the regulating valve 9 is operated in the opening direction. When a flow meter is used on the discharge side and the flow rate is feedback-controlled by a control valve, this decrease in flow rate is detected by the flow meter 15 and inputted to the controller 13, which causes the control valve 9 to move in the opening direction. let When the control valve 9 moves in the opening direction, the pressure inside the discharge side alloy container decreases, so
The difference ΔP from the equilibrium pressure of the alloy becomes large (becomes large), and the hydrogen release rate increases. As a result, the hydrogen flow rate increases and the turbine inlet pressure also recovers. The equilibrium pressure of the alloy on the release side rises, and the flow rate increases. In this case, the control valve 9 operates in the closing direction, and the pressure and flow rate are kept constant.

一方、吸蔵側の合金平衡圧力が上昇するとΔPは小さ(
なり、水素吸蔵反応速度は小さくなる。
On the other hand, when the alloy equilibrium pressure on the storage side increases, ΔP becomes small (
Therefore, the hydrogen storage reaction rate decreases.

水素流量は小さくなり、タービン入側圧力が一定ならば
タービン出側圧力は上昇する。
The hydrogen flow rate becomes smaller, and if the turbine inlet pressure is constant, the turbine outlet pressure increases.

この変化を圧力計12が検知し、この出力を調節計14
が受は調節弁10を開方向に動作させる。吸蔵側に流量
計を用いて、流量と調節弁によってフィードバック制御
した場合には、この流量の減少を流量計15で検知し、
これを調節計14に入力し、調節弁IOを開方向に動作
させる。調節弁lOが開方向に動作すると吸蔵側合金周
辺の圧力は上昇しΔPは大きくなり流量が大きくなる。
The pressure gauge 12 detects this change, and the output is sent to the controller 14.
The receiver operates the control valve 10 in the opening direction. When a flow meter is used on the storage side and feedback control is performed using the flow rate and a control valve, this decrease in flow rate is detected by the flow meter 15,
This is input to the controller 14, and the control valve IO is operated in the opening direction. When the control valve lO operates in the opening direction, the pressure around the storage side alloy increases, ΔP increases, and the flow rate increases.

この結果タービン出側圧力も低下して流置、圧力は一定
に保たれる。
As a result, the turbine outlet pressure also decreases and the pressure is kept constant.

吸蔵側合金の平衡圧力が低下し、流量が増加した場合に
は調節弁lOは閉方向に作動しタービン出側圧力、流量
は一定に保たれる。
When the equilibrium pressure of the storage-side alloy decreases and the flow rate increases, the control valve lO operates in the closing direction, and the turbine outlet pressure and flow rate are kept constant.

以上のようにフィードバック制御によりタービン前後圧
力が一定に保たれればタービンを通過する水素量も一定
となり安定したタービンの運転が可能となる。
As described above, if the pressure before and after the turbine is kept constant by feedback control, the amount of hydrogen passing through the turbine will also be constant, allowing stable operation of the turbine.

以上説明したように本発明によればタービンの両側の水
素配管にそれぞれ圧力制御装置を設けるか、どちらか一
方に流Jl ail m装置を設けることにより、水素
吸蔵合金の水素放出/吸蔵速度を制御し、タービン前後
の圧力上よび流量を一定に保つことができる。
As explained above, according to the present invention, the hydrogen release/storage rate of the hydrogen storage alloy is controlled by providing a pressure control device in each of the hydrogen pipes on both sides of the turbine, or by providing a flow control device in either side of the turbine. However, the pressure and flow rate before and after the turbine can be kept constant.

なお1通常の蒸気タービンと本発明のタービンとの差異
を説明する0通常の蒸気タービンの制御の場合は、第7
図(a)に示すように、特に低圧側に注目するとコンデ
ンサ20の能力(コンデンス速度)は一定で、それを越
えた分の水蒸気は外部に放出している。これに対し、本
発明のタービン(第7図(b))では圧力を制御するこ
とによって水素の放出/吸蔵速度自体をコントロールし
ている。第7図(a)、(b)はこれを対比して示した
ものである。
Note 1: Explaining the difference between a normal steam turbine and the turbine of the present invention 0: In the case of controlling a normal steam turbine, the seventh
As shown in Figure (a), if we pay particular attention to the low pressure side, the capacity (condensation speed) of the condenser 20 is constant, and the water vapor in excess of this is discharged to the outside. In contrast, in the turbine of the present invention (FIG. 7(b)), the hydrogen release/storage rate itself is controlled by controlling the pressure. FIGS. 7(a) and 7(b) show this in comparison.

[実施例J 本発明を実施した装置を第1図に、そのときの流@およ
びタービン前後の圧力を第2図に示す。
[Example J Fig. 1 shows an apparatus in which the present invention was implemented, and Fig. 2 shows the flow @ and the pressure before and after the turbine.

用いた合金は、 M m N i 4.37A I20
.23F e O’−4−0を各合金容器に650kg
装入し、放出側、吸蔵側の熱媒温度はそれぞれ75℃、
25℃、流量は20ONrr?/hrである。制御圧力
は、タービン入側で6.Oatm−aで、出側で1.6
atm−a、圧力計はひずみゲージ式のものを用いた。
The alloy used was M m N i 4.37A I20
.. 650 kg of 23F e O'-4-0 in each alloy container
The temperature of the heating medium on the charging, discharge side, and storage side is 75℃, respectively.
25℃, flow rate 20ONrr? /hr. The control pressure is 6. on the turbine inlet side. Oatm-a, 1.6 on the exit side
Atm-a, a strain gauge type pressure gauge was used.

調節計はP I fJHill (p (比例帯)=1
00%、■ (積分時間)=4sec)によってフィー
ドバック制御した。
The controller is P I fJHill (p (proportional band) = 1
00%, (integration time) = 4 sec).

初期条件は、放出側に水素を7ONrn’、吸蔵側に2
ONffrl吸蔵しておき、合金が均一温度になるまで
充分に恒温にした後制御した。
The initial conditions are 7ONrn' hydrogen on the release side and 2ONrn' on the storage side.
ONffrl was occluded, and the temperature was sufficiently constant until the alloy reached a uniform temperature, and then the temperature was controlled.

第2図に示したようにタービン入側、出側の圧力および
水素流量はある期間一定に保つことができた。
As shown in Figure 2, the pressure and hydrogen flow rate at the turbine inlet and outlet sides could be kept constant for a certain period of time.

タービン前後の設定圧力は6.0と1.6atm−aに
限らず、タービン入側圧力は高温熱媒温度における放出
側合金の平衡圧力よりも低く設定し、タービン出側圧力
はタービン入側圧力よりも低(、かつ低温熱媒温度にお
ける吸蔵側合金の平衡圧力よりも高く設定してあれば何
れでもよい。
The set pressure before and after the turbine is not limited to 6.0 and 1.6 atm-a, but the turbine inlet pressure is set lower than the equilibrium pressure of the discharge side alloy at the high temperature heat medium temperature, and the turbine outlet pressure is set to be lower than the turbine inlet pressure. (and higher than the equilibrium pressure of the storage-side alloy at the low-temperature heat medium temperature).

また、応用例として第4図に示す実施例に対して第5図
、第6図に示すように、圧力計Pの代りに水素流量計F
を流量調節弁に組合わせ、流量により制御しても同様な
効果が得られる。
In addition, as an application example, as shown in FIGS. 5 and 6 for the embodiment shown in FIG.
A similar effect can be obtained by combining the flow rate control valve with a flow rate control valve and controlling the flow rate.

また、放出側圧力計の代りに流量計を用いた場合には、
流量を6.4 Nrr?/ffl1n 、吸蔵側圧力を
1.6atm−aに設定して、吸蔵側圧力計の代りに流
量計を用いた場合には、流量を6.4Nrn’/min
 、放出側圧力を6.Oatm−aに設定して、水素の
移動を行っても実験誤差範囲で第2図と同様の結果を得
た。
Also, if a flow meter is used instead of the discharge side pressure gauge,
Flow rate 6.4 Nrr? /ffl1n, when the absorption side pressure is set to 1.6 atm-a and a flow meter is used instead of the absorption side pressure gauge, the flow rate is 6.4Nrn'/min.
, release side pressure 6. Even when hydrogen was transferred using the Oatm-a setting, results similar to those shown in FIG. 2 were obtained within the experimental error range.

[発明の効果] 本発明は、水素吸蔵合金を用いてタービンを駆動する場
合に、タービン前後に圧力調節機構又は流量調節機構を
設け、圧力または流量をフィードバック制御することに
よってタービン前後の圧力および水素流量を一定に保つ
ことができ、タービンを効率よく安定して運転すること
ができる。
[Effects of the Invention] When driving a turbine using a hydrogen storage alloy, the present invention provides a pressure adjustment mechanism or a flow rate adjustment mechanism before and after the turbine, and feedback controls the pressure or flow rate to adjust the pressure and hydrogen before and after the turbine. The flow rate can be kept constant and the turbine can be operated efficiently and stably.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例のフローシート、第2図は実施
例の作動を示すグラフ、第3図は本発明の原理説明図、
第4図〜第6図は本発明の実施例のフローシート、第7
図は通常の蒸気タービンと本発明のタービンのシステム
を比較したフローシートである。 1・・・放出側合金容器 2・・・吸蔵側合金容器3・
・・高温熱源供給機 4・・・低温熱源供給機5・・・
高温熱媒配管  6・・・低温熱媒配管7・・・水素配
管    8・・・水素タービン9・・・放出側調節弁
  10・・・吸蔵側調節弁11・・・タービン入側圧
力計 12・・・タービン出側圧力計 13・・・タービン入側圧力調節計 14・・・タービン出側圧力調節計 15・・・水素ガス流量計
Fig. 1 is a flow sheet of an embodiment of the present invention, Fig. 2 is a graph showing the operation of the embodiment, Fig. 3 is a diagram explaining the principle of the present invention,
4 to 6 are flow sheets of embodiments of the present invention, and FIG.
The figure is a flow sheet comparing a conventional steam turbine system and a turbine system of the present invention. 1... Release side alloy container 2... Storage side alloy container 3.
...High temperature heat source supply machine 4...Low temperature heat source supply machine 5...
High temperature heat medium piping 6...Low temperature heat medium pipe 7...Hydrogen pipe 8...Hydrogen turbine 9...Discharge side control valve 10...Storage side control valve 11...Turbine inlet side pressure gauge 12 ...Turbine outlet pressure gauge 13...Turbine inlet pressure regulator 14...Turbine outlet pressure regulator 15...Hydrogen gas flow meter

Claims (1)

【特許請求の範囲】 1 一対の水素吸蔵合金を収納した合金容器間で水素を
移動させ、該移動路に配設したタービンを作動させる方
法において、タービン入側の圧力が一定になるようにタ
ービン入側の調節弁をフィードバック制御し、かつ、タ
ービン出側圧力が一定になるようにタービン出側調節弁
をフィードバック制御することを特徴とする水素吸蔵合
金容器間の水素ガス移動方法。 2 一対の水素吸蔵合金を収納した容器合金間で水素を
移動させ、合金容器の配管途中でタービンを作動させる
装置において、タービンの入側および出側配管に圧力計
または流量計と、調節弁とをそれぞれ設けたことを特徴
とする水素吸蔵合金容器間の水素ガス移動装置。
[Claims] 1. In a method of moving hydrogen between a pair of alloy containers storing hydrogen storage alloys and operating a turbine disposed in the transfer path, the turbine is A method for transferring hydrogen gas between hydrogen storage alloy containers, characterized in that an inlet side control valve is feedback-controlled, and a turbine outlet side control valve is feedback-controlled so that the turbine outlet pressure is constant. 2. In a device that moves hydrogen between a pair of alloy containers housing a pair of hydrogen storage alloys and operates a turbine in the middle of the piping of the alloy container, a pressure gauge or a flow meter and a control valve are installed on the inlet and outlet piping of the turbine. A hydrogen gas transfer device between hydrogen storage alloy containers, characterized in that each hydrogen storage alloy container is provided with the following.
JP24634989A 1989-09-25 1989-09-25 Method and device for moving hydrogen gas between containers of hydrogen storage alloy Pending JPH03111668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24634989A JPH03111668A (en) 1989-09-25 1989-09-25 Method and device for moving hydrogen gas between containers of hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24634989A JPH03111668A (en) 1989-09-25 1989-09-25 Method and device for moving hydrogen gas between containers of hydrogen storage alloy

Publications (1)

Publication Number Publication Date
JPH03111668A true JPH03111668A (en) 1991-05-13

Family

ID=17147238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24634989A Pending JPH03111668A (en) 1989-09-25 1989-09-25 Method and device for moving hydrogen gas between containers of hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JPH03111668A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261416A (en) * 2009-05-11 2010-11-18 Tokyo Gas Co Ltd Energy storage device and differential pressure power generation system using the same
KR101120869B1 (en) * 2009-09-30 2012-02-27 김제봉 A Collection Box For Hygienic Bands

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261416A (en) * 2009-05-11 2010-11-18 Tokyo Gas Co Ltd Energy storage device and differential pressure power generation system using the same
KR101120869B1 (en) * 2009-09-30 2012-02-27 김제봉 A Collection Box For Hygienic Bands

Similar Documents

Publication Publication Date Title
JP5786449B2 (en) Heat pump steam generator
JPH03111668A (en) Method and device for moving hydrogen gas between containers of hydrogen storage alloy
JP2000161084A (en) Fuel heating device
JP3488021B2 (en) LNG decompression heating controller
JPS61145305A (en) Control device for turbine plant using hot water
JPS61152916A (en) Binary cycle power generation plant
JPH0932512A (en) Steam supply device of steam turbine gland seal
US4593528A (en) Rapid transient response chemical energy power plant apparatus and method
JPH0228797B2 (en)
CN110767333A (en) Oxygen control device and method for lead-based coolant reactor and reactor system
DK142921B (en) CONTROLS AND CONTROLS FOR AN INTEGRATED VAPOR SYSTEM WITH STEAM TURBINES AND A LARGE SIDE ORDERED Vapor CONSUMPTION ISA FOR CHEMICAL PROCESSING PLANTS
RU2063521C1 (en) Steam turbine control method
JPS5948696A (en) Steam distributing device of reactor plant
JPS60166720A (en) Lng power plant
JPS61202090A (en) Heat accumulator
JPS60206912A (en) Flush preventive method for condensate in rankin cycle system
JPH0345317B2 (en)
JP2826084B2 (en) LNG vacuum heating system
JPH01300022A (en) Compressed air driven generating device
JPS6139494B2 (en)
JPS59221408A (en) Control method of cold power plant
JPS6350301A (en) Method for occluding and discharging hydrogen
JP2567013B2 (en) Exhaust heat utilization system
JPH0821402B2 (en) Fuel cell
JPH0440527B2 (en)