JP2016035254A - Decompression energy recovery device in gas pipeline - Google Patents

Decompression energy recovery device in gas pipeline Download PDF

Info

Publication number
JP2016035254A
JP2016035254A JP2014159081A JP2014159081A JP2016035254A JP 2016035254 A JP2016035254 A JP 2016035254A JP 2014159081 A JP2014159081 A JP 2014159081A JP 2014159081 A JP2014159081 A JP 2014159081A JP 2016035254 A JP2016035254 A JP 2016035254A
Authority
JP
Japan
Prior art keywords
gas
expansion turbine
back pressure
temperature
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014159081A
Other languages
Japanese (ja)
Other versions
JP6407612B2 (en
Inventor
義男 飯田
Yoshio Iida
義男 飯田
正裕 荒川
Masahiro Arakawa
正裕 荒川
正俊 山岸
Masatoshi Yamagishi
正俊 山岸
恭輔 大熊
Kyosuke Okuma
恭輔 大熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Tokyo Gas Engineering Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Tokyo Gas Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Tokyo Gas Engineering Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2014159081A priority Critical patent/JP6407612B2/en
Publication of JP2016035254A publication Critical patent/JP2016035254A/en
Application granted granted Critical
Publication of JP6407612B2 publication Critical patent/JP6407612B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to continue stable supply of gas while a secondary pressure of a governor is free from the influence of energy recovery, and to ensure setting of a temperature of the gas decompressed in an expansion turbine and returned to a secondary pipeline to be not less than a set temperature (0°C).SOLUTION: A decompression energy recovery device 1 comprises: an expansion turbine 10; a first gas line 11 connecting a primary pipeline P1 to an inlet of the expansion turbine 10; a second gas line 12 connecting an outlet of the expansion turbine 10 to a secondary pipeline P2; and a cold recovery heat exchanger portion 13 recovering cold of gas the temperature of which falls by energy recovery by the expansion turbine 10. A back pressure regulating valve 14 is provided downstream of the cold recovery heat exchanger portion 13 in the second gas line 12 for detecting the gas temperature and regulating a back pressure of the expansion turbine 10, and the gas temperature in the second gas line 12 is set to be not less than a set temperature (for example, 0°C) by regulating the back pressure by the back pressure regulating valve 14.SELECTED DRAWING: Figure 1

Description

本発明は、ガバナを備えたガスパイプラインの減圧エネルギーを膨張タービンによって回収する減圧エネルギー回収装置に関する。   The present invention relates to a decompression energy recovery apparatus that recovers decompression energy of a gas pipeline including a governor using an expansion turbine.

パイプラインによるガス供給系統では、高圧ガスをパイプラインに設けたガバナ(整圧装置)によって多段階の中圧ガスに減圧し、最下流では低圧ガスに減圧して需要先に供給するのが一般的である。パイプラインに設けたガバナは、その上流側(一次側)パイプラインの圧力(一次圧)を下流側(二次側)パイプラインの圧力(二次圧)に減圧するものであるが、ガバナによる一次圧から二次圧への減圧は圧力エネルギーの損失になっている。   In a gas supply system using a pipeline, it is common to reduce high-pressure gas to multi-stage medium-pressure gas using a governor (pressure regulator) installed in the pipeline, and to reduce pressure to the low-pressure gas at the most downstream and supply it to the customer. Is. The governor provided in the pipeline is for reducing the pressure (primary pressure) of the upstream (primary) pipeline to the pressure (secondary pressure) of the downstream (secondary) pipeline. Depressurization from the primary pressure to the secondary pressure results in a loss of pressure energy.

これに対して、ガバナにおける一次圧を膨張タービンによって減圧し、減圧時に損失するエネルギーを発電や冷熱利用として回収する装置が知られている(下記特許文献1参照)。この従来技術は、一次圧を二次圧に減圧するために膨張タービンとガバナを並列して設け、膨張タービンは一次側パイプラインからのガスが膨張する際に回転駆動され、減圧損失エネルギーを動力として回収して発電などを行い、膨張タービンの運転中に膨張タービンの流量限界を超えるとガバナを開いて過剰分を二次側パイプラインに流すようにしている。   On the other hand, an apparatus is known in which the primary pressure in the governor is reduced by an expansion turbine, and energy lost at the time of pressure reduction is recovered as power generation or cold use (see Patent Document 1 below). In this prior art, an expansion turbine and a governor are provided in parallel to reduce the primary pressure to the secondary pressure, and the expansion turbine is rotationally driven when the gas from the primary pipeline expands, and uses the decompression loss energy as power. As a result, power is generated, and when the flow limit of the expansion turbine is exceeded during operation of the expansion turbine, the governor is opened so that the excess amount flows into the secondary pipeline.

またこの従来技術は、膨張タービンの上流側と下流側に、熱交換によってガスを加熱する前加熱手段と後加熱手段を設けており、膨張タービンによるエネルギー回収で温度が低下するガスの温度を前加熱手段で予め上昇させておくことで膨張タービンからのエネルギー回収を高効率で行い、後加熱手段を用いて膨張タービンによって低温になったガスから冷熱を回収して冷房などに有効利用している。ここでの前加熱手段には、例えばコージェネレーションシステムからの排熱や工場排熱など比較的低温の熱源の排熱利用によって加温された温水が供給されている。   In addition, this prior art is provided with pre-heating means and post-heating means for heating the gas by heat exchange on the upstream side and downstream side of the expansion turbine. The energy is recovered from the expansion turbine with high efficiency by raising the temperature in advance with the heating means, and the cold heat is recovered from the gas that has become low temperature by the expansion turbine using the post-heating means, and is effectively used for cooling or the like. . The preheating means here is supplied with warm water heated by using the exhaust heat of a relatively low temperature heat source such as exhaust heat from a cogeneration system or factory exhaust heat.

特開平7−217800号公報JP 7-217800 A

ガバナにおける一次側パイプラインのガス圧を膨張タービンで減圧して二次側パイプラインに戻す際には、二次側パイプラインに戻すガスの温度を0℃以上にすることが必須の要件として求められている。また、膨張タービンによってエネルギー回収を行う場合にもガバナの二次圧がエネルギー回収の影響を受けること無く、安定したガス供給を継続できることが求められる。   When the gas pressure of the primary pipeline in the governor is reduced by the expansion turbine and returned to the secondary pipeline, the temperature of the gas to be returned to the secondary pipeline is required to be 0 ° C. or more as an essential requirement. It has been. In addition, when energy recovery is performed by an expansion turbine, it is required that the secondary pressure of the governor can be continuously supplied without being affected by energy recovery.

この際、膨張タービンのエネルギー回収で温度低下したガスを十分な冷熱需要で加熱することができれば、ガス温度を0℃以上にして二次側パイプラインに戻すという要求に対応することができる。しかしながら、冷熱需要が低い場合には、膨張タービンの出口側ガス温度を十分に加熱できず、このような要求に対応できなくなる問題が生じる。   At this time, if the gas whose temperature has been lowered due to the energy recovery of the expansion turbine can be heated with sufficient cold demand, it can meet the demand of returning the gas temperature to 0 ° C. or higher and returning it to the secondary pipeline. However, when the demand for cold heat is low, the gas temperature on the outlet side of the expansion turbine cannot be sufficiently heated, and there arises a problem that such a request cannot be met.

これに対しては、従来技術のように、膨張タービンの上流側に前加熱手段を設けて、膨張タービンに入るガスを予め加熱することが考えられる。しかしながら、このような前加熱手段にコージェネレーションシステムからの排熱や工場排熱などを利用する場合には安定した熱供給を受けられない問題があり、またこの前加熱手段に燃焼ボイラなどを用いる場合にはエネルギーを回収する膨張タービンの稼働で逆にエネルギーを消費することになり、省エネ効果が低減するだけで無くCO2発生の抑制効果も低減することになる。また、二次側パイプラインに戻すガスの温度調整を膨張タービンの上流側にある前加熱手段に頼ることになり、膨張タービンの負荷変動時に対して応答性の良い温度調整を行いにくい問題がある。 For this, as in the prior art, it is conceivable to provide preheating means upstream of the expansion turbine to preheat the gas entering the expansion turbine. However, when exhaust heat from a cogeneration system or factory exhaust heat is used for such preheating means, there is a problem that a stable heat supply cannot be received, and a combustion boiler or the like is used for this preheating means. In this case, energy is consumed by the operation of the expansion turbine that recovers energy, which not only reduces the energy saving effect but also reduces the CO 2 generation suppressing effect. In addition, the temperature adjustment of the gas to be returned to the secondary pipeline depends on the pre-heating means on the upstream side of the expansion turbine, and there is a problem that it is difficult to adjust the temperature with good responsiveness when the load of the expansion turbine changes. .

また、一次圧を膨張タービンで減圧してガバナの二次側パイプラインに戻す場合に、一次側パイプラインのガス流量が急激に変化したり一次圧が上昇したりすると、膨張タービン単体では応答性のよい圧力調整ができない。このため、二次側パイプラインへの送出圧力を規定の圧力に素早く制御することができない問題が生じる。   In addition, when the primary pressure is reduced by the expansion turbine and returned to the secondary pipeline of the governor, if the gas flow rate in the primary pipeline suddenly changes or the primary pressure rises, the response of the expansion turbine alone The pressure cannot be adjusted properly. For this reason, there arises a problem that the delivery pressure to the secondary pipeline cannot be quickly controlled to a specified pressure.

また、膨張タービンのエネルギー回収で温度低下したガスの冷熱を後加熱手段で回収して有効利用する場合、冷熱需要が少ないと、後加熱手段で温度低下したガスを十分に加熱することができず、後加熱手段の冷熱回収循環水を凍結させてしまう問題が生じる。前加熱手段によるガスの加熱を必要最小限に抑えて、後加熱手段における冷熱回収循環水の凍結を避けながら、膨張タービンによるエネルギー回収を行うことが求められる。   In addition, when the cold heat of the gas whose temperature has been lowered by the energy recovery of the expansion turbine is recovered and effectively used by the post-heating means, the gas whose temperature has been lowered by the post-heating means cannot be sufficiently heated if the cold demand is small. The problem of freezing the cold recovery circulating water of the post-heating means arises. It is required to recover the energy by the expansion turbine while suppressing the heating of the gas by the preheating means to the minimum necessary and avoiding the freezing of the cold recovery circulating water in the postheating means.

本発明は、このような問題に対処することを課題の一例とするものである。すなわち、ガスパイプラインにおけるガバナの減圧エネルギーを膨張タービンによって回収する装置において、ガバナの二次圧がエネルギー回収の影響を受けること無く、安定したガス供給の継続を可能にすること、膨張タービンで減圧して二次側パイプラインに戻すガスの温度を確実に0℃以上にすること、二次側パイプラインに戻すガスの温度と圧力を規定の値に制御すること、膨張タービンのエネルギー回収で温度低下したガスの冷熱を回収して有効利用する際に、膨張タービンに入るガスの加熱を必要最小限に抑えて、冷熱回収循環水の凍結を避けながら膨張タービンを十分に稼働させることができること、などが本発明の目的である。   This invention makes it an example of a subject to cope with such a problem. That is, in an apparatus that recovers the decompression energy of the governor in the gas pipeline by the expansion turbine, the secondary pressure of the governor is not affected by the energy recovery, enabling stable gas supply to be continued, and the decompression by the expansion turbine. Ensure that the temperature of the gas returned to the secondary pipeline is 0 ° C or higher, control the temperature and pressure of the gas returned to the secondary pipeline to the specified values, and reduce the temperature by recovering the energy of the expansion turbine When recovering the cold heat of the used gas and effectively using it, the heating of the gas entering the expansion turbine can be kept to the minimum necessary, and the expansion turbine can be operated sufficiently while avoiding freezing of the cold heat recovery circulating water, etc. Is the object of the present invention.

このような目的を達成するために、本発明によるガスパイプラインにおける減圧エネルギー回収装置は、以下の構成を具備するものである。   In order to achieve such an object, a reduced pressure energy recovery apparatus in a gas pipeline according to the present invention has the following configuration.

ガバナを備えたガスパイプラインの減圧エネルギーを回収する減圧エネルギー回収装置において、膨張タービンと、ガバナ上流の一次側パイプラインと前記膨張タービンの入口を繋ぐ第1ガスラインと、前記膨張タービンの出口とガバナ下流の二次側パイプラインを繋ぐ第2ガスラインと、前記第2ガスラインに設けられ前記膨張タービンによるエネルギー回収によって温度低下したガスの冷熱を回収する冷熱回収用熱交換部とを備え、前記第2ガスラインにおける前記冷熱回収用熱交換部の下流側に、ガス温度と前記膨張タービンの背圧の一方又は両方を検出して絞りを調整する背圧調整弁を設け、前記ガス温度又は前記背圧が低下した場合に前記背圧を上昇させるように前記背圧調整弁を制御すること特徴とするガスパイプラインにおける減圧エネルギー回収装置。   In a decompression energy recovery device for recovering decompression energy of a gas pipeline including a governor, an expansion turbine, a first gas line connecting a primary pipeline upstream of a governor and an inlet of the expansion turbine, an outlet of the expansion turbine, and a governor A second gas line connecting downstream secondary pipelines, and a heat recovery unit for recovering cold heat that is provided in the second gas line and recovers cold heat of the gas whose temperature has been lowered by energy recovery by the expansion turbine, A back pressure adjusting valve that detects one or both of the gas temperature and the back pressure of the expansion turbine and adjusts the throttle is provided on the downstream side of the cold heat recovery heat exchanger in the second gas line, and the gas temperature or the In the gas pipeline, the back pressure regulating valve is controlled so as to increase the back pressure when the back pressure decreases. Vacuum energy recovery devices.

第2ガスラインにおける冷熱回収用熱交換部の下流側に、ガス温度と膨張タービンの背圧の一方又は両方を検出して絞りを調整する背圧調整弁を設け、ガス温度又は背圧が低下した場合に背圧を上昇させるように背圧調整弁を制御したので、冷熱需要が低い場合にも背圧調整弁の調整によって二次側パイプラインに戻すガスの温度を確実に0℃以上にすることができる。また、膨張タービンの背圧の変動を背圧調整弁の制御で吸収することができるので、二次側パイプラインに戻すガス圧を安定化することができ、エネルギー回収の影響を受けること無く、安定したガス供給を継続させることができる。   A back pressure adjustment valve that adjusts the throttle by detecting one or both of the gas temperature and the back pressure of the expansion turbine is provided on the downstream side of the heat exchanger for cooling heat recovery in the second gas line to reduce the gas temperature or back pressure. Since the back pressure adjustment valve is controlled to increase the back pressure in the case of low temperature, the temperature of the gas returned to the secondary pipeline by making adjustments to the back pressure adjustment valve is surely kept at 0 ° C or higher even when the cold demand is low can do. In addition, since the fluctuation of the back pressure of the expansion turbine can be absorbed by the control of the back pressure adjustment valve, the gas pressure returned to the secondary side pipeline can be stabilized, without being affected by energy recovery, A stable gas supply can be continued.

本発明の実施形態に係るガスパイプラインにおける減圧エネルギー回収装置の一構成例を示した説明図である。It is explanatory drawing which showed one structural example of the pressure reduction energy recovery apparatus in the gas pipeline which concerns on embodiment of this invention. 本発明の実施形態に係るガスパイプラインにおける減圧エネルギー回収装置の他の構成例を示した説明図である。It is explanatory drawing which showed the other structural example of the pressure reduction energy recovery apparatus in the gas pipeline which concerns on embodiment of this invention. 本発明の実施形態に係るガスパイプラインにおける減圧エネルギー回収装置の他の構成例を示した説明図である。It is explanatory drawing which showed the other structural example of the pressure reduction energy recovery apparatus in the gas pipeline which concerns on embodiment of this invention.

以下、本発明の実施形態を図面を参照して説明する。図1は、本発明の実施形態に係るガスパイプラインにおける減圧エネルギー回収装置の一構成例を示した説明図である。本発明の実施形態に係る減圧エネルギー回収装置1は、ガス供給系統を構成するガスパイプラインに併設され、ガバナGの減圧エネルギーを動力や発電などとして回収するものである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram showing a configuration example of a decompression energy recovery device in a gas pipeline according to an embodiment of the present invention. The decompression energy recovery apparatus 1 according to the embodiment of the present invention is provided alongside a gas pipeline constituting a gas supply system, and recovers the decompression energy of the governor G as motive power or power generation.

減圧エネルギー回収装置1は、膨張タービン10と、ガバナG上流の一次側パイプラインP1と膨張タービン10の入口を繋ぐ第1ガスライン11と、膨張タービン10の出口とガバナG下流の二次側パイプラインP2を繋ぐ第2ガスライン12と、第2ガスライン12に設けられ膨張タービン10によるエネルギー回収によって温度低下したガスの冷熱を回収する冷熱回収用熱交換部13を備えている。   The decompression energy recovery apparatus 1 includes an expansion turbine 10, a first gas line 11 connecting the primary pipeline P <b> 1 upstream of the governor G and the inlet of the expansion turbine 10, an outlet of the expansion turbine 10, and a secondary pipe downstream of the governor G. A second gas line 12 connecting the line P2 and a cold heat recovery heat exchanging unit 13 that is provided in the second gas line 12 and recovers the cold heat of the gas whose temperature is lowered by the energy recovery by the expansion turbine 10 are provided.

膨張タービン10は、一次側パイプラインP1からのガスが膨張して減圧する際に回転駆動され、減圧エネルギーを動力として回収し発電などを行うものである。膨張タービン10によって回収されるエネルギーは、その入口と出口の圧力差で規定され、膨張タービン10の入口を一次側パイプラインP1に直結して出口を二次側パイプラインP2に直結している場合には、一次圧と二次圧の圧力差で規定されるエネルギーが膨張タービン10によって回収される。   The expansion turbine 10 is rotationally driven when the gas from the primary pipeline P1 expands and depressurizes, and collects the depressurized energy as power to generate power. The energy recovered by the expansion turbine 10 is defined by the pressure difference between the inlet and the outlet. When the inlet of the expansion turbine 10 is directly connected to the primary pipeline P1 and the outlet is directly connected to the secondary pipeline P2. The energy defined by the pressure difference between the primary pressure and the secondary pressure is recovered by the expansion turbine 10.

第1ガスライン11と第2ガスライン12は、一次側パイプラインP1又は二次側パイプラインP2の口径以下の任意口径のガス管によって構成される。第1ガスライン11と第2ガスライン12は複数のガス管を接続して構成することができ、その途中に必要に応じて弁やフィルタなどを介在させることができる。   The 1st gas line 11 and the 2nd gas line 12 are comprised by the gas pipe of the arbitrary diameter below the diameter of the primary side pipeline P1 or the secondary side pipeline P2. The first gas line 11 and the second gas line 12 can be configured by connecting a plurality of gas pipes, and a valve, a filter, or the like can be interposed in the middle as needed.

膨張タービン10は、エネルギー回収に伴ってガスの温度を低下させる。冷熱回収用熱交換部13は、第2ガスライン12を流れる温度低下したガスとの熱交換で、ガス温度を上昇させると同時に冷熱を冷熱需要先Cに供給する。冷熱回収用熱交換部13は、冷熱回収用の循環水が流れる循環流路13Aを備えており、この循環流路13Aを流れる循環水と冷熱需要先を循環する温水とが熱交換部13Bで熱交換する。   The expansion turbine 10 reduces the temperature of gas with energy recovery. The heat recovery unit 13 for recovering cold heat raises the gas temperature by heat exchange with the gas whose temperature has decreased in the second gas line 12 and simultaneously supplies cold to the cold demand customer C. The heat recovery unit 13 for cold heat recovery is provided with a circulation channel 13A through which the circulating water for cold energy recovery flows. The circulating water flowing through the circulation channel 13A and the hot water circulating through the cold demand destination are the heat exchange unit 13B. Exchange heat.

本発明の実施形態に係る減圧エネルギー回収装置1は、このような構成に加えて、第2ガスライン12に、背圧調整弁14、ガス温度検出手段15、背圧検出手段16を備えている。背圧調整弁14は、第2ガスライン12における冷熱回収用熱交換部13の下流側に設けられる。この背圧調整弁14は、第2ガスライン12における冷熱回収用熱交換部13の下流におけるガス温度をガス温度検出手段15で検出し、また、第2ガスライン12における膨張タービン10の背圧を背圧検出手段16で検出して、ガス温度検出手段15で検出されたガス温度が設定温度(例えば0℃)以下にならないように背圧調整弁14を調整する。   In addition to such a configuration, the reduced pressure energy recovery device 1 according to the embodiment of the present invention includes a back pressure adjusting valve 14, a gas temperature detecting means 15, and a back pressure detecting means 16 in the second gas line 12. . The back pressure adjustment valve 14 is provided on the downstream side of the cold heat recovery heat exchange section 13 in the second gas line 12. The back pressure adjusting valve 14 detects the gas temperature downstream of the heat recovery unit 13 for recovering cold heat in the second gas line 12 with the gas temperature detecting means 15, and the back pressure of the expansion turbine 10 in the second gas line 12. Is detected by the back pressure detecting means 16 and the back pressure adjusting valve 14 is adjusted so that the gas temperature detected by the gas temperature detecting means 15 does not become lower than a set temperature (for example, 0 ° C.).

このような構成を備える減圧エネルギー回収装置1によると、冷熱需要先Cの需要が低く、第2ガスライン12を流れるガスの温度を十分に上昇させることができない場合には、背圧調整弁14を絞る方向に制御して膨張タービン10の稼働を抑制する。これによって、膨張タービン10によって回収されるエネルギー量が少なくなりガス温度の低下が抑えられる。このような膨張タービン10の背圧調整を行うと、必然的に膨張タービン10による発電量が低下することになる。ここでは、膨張タービン10の稼働による発電出力は補助的な電力供給であり、二次側パイプラインP2の二次圧を安定させることを優先している。   According to the decompression energy recovery apparatus 1 having such a configuration, when the demand of the cold demand customer C is low and the temperature of the gas flowing through the second gas line 12 cannot be sufficiently increased, the back pressure regulating valve 14 The operation of the expansion turbine 10 is suppressed by controlling in the direction of narrowing. As a result, the amount of energy recovered by the expansion turbine 10 is reduced, and a decrease in gas temperature is suppressed. When such back pressure adjustment of the expansion turbine 10 is performed, the amount of power generated by the expansion turbine 10 inevitably decreases. Here, the power generation output due to the operation of the expansion turbine 10 is auxiliary power supply, and priority is given to stabilizing the secondary pressure of the secondary pipeline P2.

また、膨張タービン10の負荷変動などで膨張タービン10の背圧が上昇した場合にも背圧調整弁14を絞る方向に制御して二次側パイプラインP2に戻すガス圧を適正値まで下げる。このような背圧調整弁14の制御によって、二次側パイプラインP2に戻すガスの温度を確実に0℃以上にすることができると共に、二次側パイプラインP2に戻すガス圧を安定させることができ、ガバナGの安定した運転を維持して安定したガス供給が実現できる。   Further, even when the back pressure of the expansion turbine 10 rises due to a load fluctuation of the expansion turbine 10 or the like, the gas pressure returned to the secondary pipeline P2 is controlled to a proper value by controlling the back pressure regulating valve 14 to be throttled. By controlling the back pressure adjustment valve 14 as described above, the temperature of the gas returned to the secondary pipeline P2 can be surely set to 0 ° C. or more, and the gas pressure returned to the secondary pipeline P2 can be stabilized. And stable gas supply can be realized while maintaining stable operation of the governor G.

また、冷熱負荷が急激に変化した場合は、それによって変化するガス温度を直接検出して、ガス温度の低下に直結する膨張タービン10の仕事量を背圧調整弁14の調整によって制御するので、ガス温度を高い応答性で制御することが可能になる。   In addition, when the cooling load is suddenly changed, the gas temperature changing thereby is directly detected, and the work amount of the expansion turbine 10 directly connected to the decrease in the gas temperature is controlled by adjusting the back pressure adjustment valve 14, It becomes possible to control the gas temperature with high responsiveness.

図2は、本発明の実施形態に係るガスパイプラインにおける減圧エネルギー回収装置の他の構成例を示した説明図である。前述した図1における説明と共通する部位には同一符号を付して重複説明を省略する。この構成例に係る減圧エネルギー回収装置1(1A)は、図1に示した例に膨張タービン10へのガス流入量制御の構成が付加されている。   FIG. 2 is an explanatory view showing another configuration example of the decompression energy recovery apparatus in the gas pipeline according to the embodiment of the present invention. Parts common to the description in FIG. 1 described above are denoted by the same reference numerals, and redundant description is omitted. In the reduced pressure energy recovery apparatus 1 (1A) according to this configuration example, a configuration for controlling the amount of gas flowing into the expansion turbine 10 is added to the example shown in FIG.

具体的には、第1ガスライン11にガス流量を検出するガス流量検出手段17を設け、このガス流量検出手段17の検出流量によって膨張タービン10の入口に設けた入口弁10Vの絞りを制御する。ここでは先ず、入口弁制御部18がガス流量検出手段17の検出流量によって入口弁10Vを制御し、検出流量が上昇した場合に膨張タービン10へのガス流入量を抑制するように入口弁10Vを絞る制御を行う。   Specifically, a gas flow rate detection means 17 for detecting a gas flow rate is provided in the first gas line 11, and the throttle of the inlet valve 10V provided at the inlet of the expansion turbine 10 is controlled by the detected flow rate of the gas flow rate detection means 17. . Here, first, the inlet valve control unit 18 controls the inlet valve 10V by the detected flow rate of the gas flow rate detection means 17, and the inlet valve 10V is controlled so as to suppress the gas inflow amount to the expansion turbine 10 when the detected flow rate increases. Control to narrow down.

図1に示した構成例は、冷熱需要が多く第2ガスライン12のガス温度を十分に上昇させることができる場合には、背圧調整弁14を開放し膨張タービン10の背圧をガバナGの二次圧まで下げて膨張タービン10を稼働させることができる。このような状況で一次側パイプラインP1のガス流量に急激な変化が生じたり一次圧の上昇などが生じたりすると、膨張タービン10単体の回収エネルギーを制御するだけでは第2ガスライン12のガス圧(膨張タービン10の背圧)を素早く安定化させることが難しい。   In the configuration example shown in FIG. 1, when there is a large amount of cold demand and the gas temperature of the second gas line 12 can be sufficiently increased, the back pressure regulating valve 14 is opened and the back pressure of the expansion turbine 10 is controlled by the governor G. The expansion turbine 10 can be operated with a secondary pressure of In such a situation, if a sudden change in the gas flow rate in the primary pipeline P1 or a rise in the primary pressure occurs, the gas pressure in the second gas line 12 can be controlled only by controlling the recovery energy of the expansion turbine 10 alone. It is difficult to quickly stabilize (back pressure of the expansion turbine 10).

このような状況に対処するために、図2に示した構成例は、第1ガスライン11にガス流量を検出するガス流量検出手段17を設け、膨張タービン10の入口に、ガス流量検出手段17の検出流量によって制御され検出流量が上昇した場合に膨張タービン10へのガス流入量を抑制する入口弁10Vを設けている。このような構成によると、第1ガスライン11のガス流量の上昇に対して素早く膨張タービン10へのガス流量を抑制し、第2ガスライン12のガス圧変動を安定させることができる。   In order to cope with such a situation, the configuration example shown in FIG. 2 is provided with the gas flow rate detecting means 17 for detecting the gas flow rate in the first gas line 11, and the gas flow rate detecting means 17 at the inlet of the expansion turbine 10. An inlet valve 10V is provided that suppresses the amount of gas flowing into the expansion turbine 10 when the detected flow rate is increased. According to such a configuration, the gas flow rate to the expansion turbine 10 can be quickly suppressed with respect to the increase in the gas flow rate of the first gas line 11, and the gas pressure fluctuations of the second gas line 12 can be stabilized.

入口弁10Vの制御には、更に、第2ガスライン12に設けた背圧検出手段16によるフィードバック制御を加えることができる。この場合、入口弁制御部18は、ガス流量検出手段17の検出流量による制御に加えて背圧検出手段16の検出背圧による制御を行い、検出背圧が上昇した場合に入口弁10Vを絞って膨張タービン10へのガス流入量を抑える。ここでの背圧検出手段16は第2ガスライン12における背圧調整弁14の上流側に設置している。このように第2ガスライン12のガス圧変動(膨張タービン10の背圧変動)をフィードバックして膨張タービン10へのガス流入量を制御することで、第2ガスライン12のガス圧をより安定にすることができる。   Feedback control by back pressure detection means 16 provided in the second gas line 12 can be further added to the control of the inlet valve 10V. In this case, the inlet valve control unit 18 performs control based on the detected back pressure of the back pressure detecting means 16 in addition to the control based on the detected flow rate of the gas flow rate detecting means 17, and throttles the inlet valve 10V when the detected back pressure increases. Thus, the amount of gas flowing into the expansion turbine 10 is suppressed. Here, the back pressure detecting means 16 is installed on the upstream side of the back pressure regulating valve 14 in the second gas line 12. As described above, the gas pressure in the second gas line 12 is controlled by feeding back the gas pressure fluctuation in the second gas line 12 (back pressure fluctuation in the expansion turbine 10) and controlling the amount of gas flowing into the expansion turbine 10. Can be.

入口弁制御部18は、ガス流量検出手段17の検出流量による入口弁10Vの制御と背圧検出手段16の検出圧による入口弁10Vの制御をそれぞれ単独で行うことができる。第1ガスライン11のガス流量やガス圧力の変動が比較的小さい場合には、このような単独制御で第2ガスライン12の圧力を安定化させることができる。   The inlet valve control unit 18 can independently control the inlet valve 10V based on the detected flow rate of the gas flow rate detecting means 17 and the inlet valve 10V based on the detected pressure of the back pressure detecting means 16. When fluctuations in the gas flow rate and gas pressure in the first gas line 11 are relatively small, the pressure in the second gas line 12 can be stabilized by such single control.

図2に示した例は、背圧調整弁14の調整によって膨張タービン10の稼働を制御する構成に入口弁10Vの制御を付加する例を示しているが、背圧調整弁14の制御を省いて、入口弁10Vの制御を単独で行うことも可能である。冷熱需要先Cの需要が高く第2ガスライン12におけるガス温度を常時0℃以上に維持できる場合には、ガス温度による背圧調整弁14の制御を省いて入口弁10Vの制御のみで第2ガスライン12のガス圧を安定にすることができる。   The example shown in FIG. 2 shows an example in which the control of the inlet valve 10V is added to the configuration for controlling the operation of the expansion turbine 10 by adjusting the back pressure adjusting valve 14, but the control of the back pressure adjusting valve 14 is omitted. In addition, the control of the inlet valve 10V can be performed independently. When the demand of the cold energy customer C is high and the gas temperature in the second gas line 12 can always be maintained at 0 ° C. or higher, the control of the back pressure adjusting valve 14 by the gas temperature is omitted and the second control is performed only by controlling the inlet valve 10V. The gas pressure in the gas line 12 can be stabilized.

図3は、本発明の実施形態に係るガスパイプラインにおける減圧エネルギー回収装置の他の構成例を示した説明図である。前述した図1及び図2における説明と共通する部位には同一符号を付して重複説明を省略する。この構成例に係る減圧エネルギー回収装置1(1B)は、図2に示した例に冷熱回収用熱交換部13における循環水の凍結防止に係る構成が付加させている。   FIG. 3 is an explanatory view showing another configuration example of the decompression energy recovery device in the gas pipeline according to the embodiment of the present invention. The parts common to the description in FIG. 1 and FIG. 2 described above are denoted by the same reference numerals, and redundant description is omitted. In the reduced pressure energy recovery apparatus 1 (1B) according to this configuration example, the configuration related to prevention of freezing of circulating water in the heat exchange unit 13 for cold energy recovery is added to the example shown in FIG.

この例では、第1ガスライン11に膨張タービン10に流入するガスを予加熱する予加熱用熱交換部20を設けている。予加熱用熱交換部20は、第1ガスライン11を流れるガスとの熱交換でガス温度を上昇させる。予加熱用熱交換部20は、予加熱用の循環水が流れる循環流路20Aを備えており、この循環流路20Aを流れる循環水と熱源Hを循環する温水とが熱交換部20Bで熱交換する。ここでの熱源Hは、コージェネレーションシステムからの排熱や工場排熱などを利用することができる。   In this example, a preheating heat exchanging unit 20 that preheats the gas flowing into the expansion turbine 10 is provided in the first gas line 11. The preheating heat exchanging unit 20 increases the gas temperature through heat exchange with the gas flowing through the first gas line 11. The preheating heat exchange unit 20 includes a circulation channel 20A through which preheating circulation water flows, and the circulating water flowing through the circulation channel 20A and the hot water circulating through the heat source H are heated by the heat exchange unit 20B. Exchange. The heat source H here can utilize exhaust heat from a cogeneration system, factory exhaust heat, or the like.

そして、予加熱用熱交換部20の循環流路20Aと冷熱回収用熱交換部13の循環流路13Aは循環水間熱交換部21で熱交換されており、予加熱用熱交換部20の熱源Hによって冷熱回収用熱交換部13の循環水を加熱している。これによると、冬期などで膨張タービン10に流入するガスの温度が低い場合にも流入するガスの温度を予加熱用熱交換部20の加熱で上昇させて、膨張タービン10のエネルギー回収量をある程度確保しながら第2ガスライン12のガス温度の低下を抑えることができる。   The circulation flow path 20A of the preheating heat exchange section 20 and the circulation flow path 13A of the cold heat recovery heat exchange section 13 are heat-exchanged by the circulating water heat exchange section 21, and the preheating heat exchange section 20 The circulating water of the heat exchanger 13 for collecting cold heat is heated by the heat source H. According to this, even when the temperature of the gas flowing into the expansion turbine 10 is low in winter or the like, the temperature of the flowing gas is raised by the heating of the heat exchanger 20 for preheating, so that the energy recovery amount of the expansion turbine 10 is increased to some extent. While ensuring, the fall of the gas temperature of the 2nd gas line 12 can be suppressed.

また、膨張タービン10のエネルギー回収量を増やして膨張タービン10の出口ガス温度が低くなった場合にも、循環水間熱交換部21からの熱で冷熱回収用熱交換部13の循環水が凍結するのを防ぐことができる。これにより冷熱回収用熱交換部13によって円滑に冷熱を回収することが可能になる。更に、循環水間熱交換部21の採用によって、冷熱回収用熱交換部13の加温能力を高めることができるので、予加熱用熱交換部20の熱交換能力(伝熱面積)を必要最小限に抑えることが可能になる。また、循環水間熱交換部21を設けることで、冷熱需要先Cの冷熱負荷が無い又は少ないときにも、熱源Hからの熱を冷熱回収用熱交換部13に送ることで、膨張タービン10を定格運転させることができる。このため膨張タービン10の稼働率が向上する。   Further, even when the energy recovery amount of the expansion turbine 10 is increased and the outlet gas temperature of the expansion turbine 10 becomes low, the circulating water in the heat recovery unit 13 for cold heat recovery is frozen by the heat from the circulating water heat exchange unit 21. Can be prevented. Thus, the cold heat can be collected smoothly by the cold heat collecting heat exchanging unit 13. Furthermore, the heat exchange capacity (heat transfer area) of the preheating heat exchange section 20 can be minimized because the heating capacity of the cold heat recovery heat exchange section 13 can be increased by adopting the circulating water heat exchange section 21. It becomes possible to limit to the limit. In addition, by providing the circulating water heat exchanger 21, the expansion turbine 10 can be configured to send the heat from the heat source H to the cold recovery heat exchanger 13 even when there is no or little cold load of the cold demand customer C. Can be rated. For this reason, the operation rate of the expansion turbine 10 improves.

図3に示した構成例において、第1ガスライン11のガス流量やガス圧が安定している場合には、入口弁10V及び入口弁10Vを制御するための構成を省くことができる。また、予加熱用熱交換部20によるガスの加熱や予加熱用熱交換部20の循環水と冷熱回収用熱交換部13の循環水との熱交換で第2ガスライン12のガス温度を常時0℃以上に上昇させることができる場合には、ガス温度検出や背圧検出によって背圧調整弁14を制御する構成を省くことができる。   In the configuration example shown in FIG. 3, when the gas flow rate and gas pressure of the first gas line 11 are stable, the configuration for controlling the inlet valve 10V and the inlet valve 10V can be omitted. Further, the gas temperature of the second gas line 12 is constantly set by heating the gas by the preheating heat exchanging unit 20 or exchanging heat between the circulating water of the preheating heat exchanging unit 20 and the circulating water of the cold heat recovery heat exchanging unit 13. In the case where the temperature can be raised to 0 ° C. or higher, the configuration for controlling the back pressure adjusting valve 14 by detecting the gas temperature or detecting the back pressure can be omitted.

第1ガスライン11のガス流量やガス圧が安定していて、予加熱用熱交換部20によるガスの加熱や予加熱用熱交換部20の循環水と冷熱回収用熱交換部13の循環水との熱交換で第2ガスライン12のガス温度を常時0℃以上に上昇させることができる場合には、入口弁10V及び入口弁10Vを制御するための構成とガス温度検出や背圧検出によって背圧調整弁14を制御する構成の両方を省くことができる。   The gas flow rate and gas pressure of the first gas line 11 are stable, the heating of the gas by the preheating heat exchanger 20 and the circulating water of the preheating heat exchanger 20 and the circulating water of the cold heat recovery heat exchanger 13 are performed. When the gas temperature of the second gas line 12 can be constantly raised to 0 ° C. or higher by heat exchange with the gas, the configuration for controlling the inlet valve 10V and the inlet valve 10V and the detection of the gas temperature and the back pressure are used. Both of the configurations for controlling the back pressure regulating valve 14 can be omitted.

以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。また、上述の各実施の形態は、その目的及び構成等に特に矛盾や問題がない限り、互いの技術を流用して組み合わせることが可能である。   As described above, the embodiments of the present invention have been described in detail with reference to the drawings. However, the specific configuration is not limited to these embodiments, and the design can be changed without departing from the scope of the present invention. Is included in the present invention. In addition, the above-described embodiments can be combined by utilizing each other's technology as long as there is no particular contradiction or problem in the purpose and configuration.

1,1A,1B:減圧エネルギー回収装置,
10:膨張タービン,10V:入口弁,
11:第1ガスライン,12:第2ガスライン,
13:冷熱回収用熱交換部,13A:循環流路,13B:熱交換部,
14:背圧調整弁,15:ガス温度検出手段,16:背圧検出手段,
17:ガス流量検出手段,18:入口弁制御部,
20:予加熱用熱交換部,20A:循環流路,20B:熱交換部,
21:循環水間熱交換部,
P1:一次側パイプライン,P2:二次側パイプライン,G:ガバナ,
C:冷熱需要先,H:熱源
1, 1A, 1B: Depressurized energy recovery device,
10: expansion turbine, 10V: inlet valve,
11: 1st gas line, 12: 2nd gas line,
13: heat exchange part for cold energy recovery, 13A: circulation channel, 13B: heat exchange part,
14: Back pressure adjusting valve, 15: Gas temperature detecting means, 16: Back pressure detecting means,
17: Gas flow rate detection means, 18: Inlet valve control unit,
20: Preheating heat exchange section, 20A: Circulation flow path, 20B: Heat exchange section,
21: Heat exchanger between circulating water,
P1: Primary pipeline, P2: Secondary pipeline, G: Governor,
C: Customer for cold energy, H: Heat source

Claims (3)

ガバナを備えたガスパイプラインの減圧エネルギーを回収する減圧エネルギー回収装置において、
膨張タービンと、ガバナ上流の一次側パイプラインと前記膨張タービンの入口を繋ぐ第1ガスラインと、前記膨張タービンの出口とガバナ下流の二次側パイプラインを繋ぐ第2ガスラインと、前記第2ガスラインに設けられ前記膨張タービンによるエネルギー回収によって温度低下したガスの冷熱を回収する冷熱回収用熱交換部とを備え、
前記第2ガスラインにおける前記冷熱回収用熱交換部の下流側に、ガス温度を検出して前記膨張タービンの背圧を調整する背圧調整弁を設け、
前記背圧調整弁による背圧調整によって前記第2ガスラインのガス温度を設定温度以上にすることを特徴とするガスパイプラインにおける減圧エネルギー回収装置。
In a decompression energy recovery device that recovers decompression energy of a gas pipeline equipped with a governor,
An expansion turbine, a first gas line connecting a primary pipeline upstream of a governor and an inlet of the expansion turbine, a second gas line connecting an outlet of the expansion turbine and a secondary pipeline downstream of the governor, and the second A heat exchange part for recovering cold energy, which is provided in the gas line and recovers the cold energy of the gas whose temperature is lowered by the energy recovery by the expansion turbine,
A back pressure adjusting valve that detects the gas temperature and adjusts the back pressure of the expansion turbine is provided on the downstream side of the cold heat recovery heat exchanger in the second gas line,
An apparatus for recovering reduced pressure energy in a gas pipeline, wherein a gas temperature in the second gas line is set to a set temperature or higher by back pressure adjustment by the back pressure adjustment valve.
前記第1ガスラインにおいて前記膨張タービンに流入するガスを予加熱する予加熱用熱交換部を設け、
前記予加熱用熱交換部の熱源によって前記冷熱回収用熱交換部の循環水を加熱することを特徴とする請求項1に記載されたガスパイプラインにおける減圧エネルギー回収装置。
Providing a preheating heat exchange section for preheating the gas flowing into the expansion turbine in the first gas line;
2. The reduced pressure energy recovery apparatus for a gas pipeline according to claim 1, wherein the circulating water of the cold heat recovery heat exchanger is heated by a heat source of the preheating heat exchanger.
前記予加熱用熱交換部の循環水と前記冷熱回収用熱交換部の循環水との間で熱交換する循環水間熱交換部を設けたことを特徴とする請求項2記載のガスパイプラインにおける減圧エネルギー回収装置。   3. The gas pipeline according to claim 2, wherein a heat exchanger between the circulating water for exchanging heat between the circulating water of the preheating heat exchanger and the circulating water of the cold recovery heat exchanger is provided. Depressurized energy recovery device.
JP2014159081A 2014-08-04 2014-08-04 Decompression energy recovery device in gas pipeline Active JP6407612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014159081A JP6407612B2 (en) 2014-08-04 2014-08-04 Decompression energy recovery device in gas pipeline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014159081A JP6407612B2 (en) 2014-08-04 2014-08-04 Decompression energy recovery device in gas pipeline

Publications (2)

Publication Number Publication Date
JP2016035254A true JP2016035254A (en) 2016-03-17
JP6407612B2 JP6407612B2 (en) 2018-10-17

Family

ID=55523241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014159081A Active JP6407612B2 (en) 2014-08-04 2014-08-04 Decompression energy recovery device in gas pipeline

Country Status (1)

Country Link
JP (1) JP6407612B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107882604A (en) * 2017-12-07 2018-04-06 刘强 Pressure energy reclaimer and pipeline pressure energy recovery system
CN114251144A (en) * 2020-09-24 2022-03-29 阿特拉斯·科普柯空气动力股份有限公司 Method and device for expanding a fluid
WO2023181560A1 (en) * 2022-03-23 2023-09-28 株式会社日立製作所 Pipeline management system and control method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07217800A (en) * 1994-01-31 1995-08-15 Osaka Gas Co Ltd City gas pressure regulating device incorporating energy recovery device
JPH08121699A (en) * 1994-10-18 1996-05-17 Osaka Gas Co Ltd Pressure governor device for high pressure gas
JP2010261416A (en) * 2009-05-11 2010-11-18 Tokyo Gas Co Ltd Energy storage device and differential pressure power generation system using the same
JP2011208617A (en) * 2010-03-30 2011-10-20 Osaka Gas Co Ltd Turbine device and cold energy power generation system equipped with turbine device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07217800A (en) * 1994-01-31 1995-08-15 Osaka Gas Co Ltd City gas pressure regulating device incorporating energy recovery device
JPH08121699A (en) * 1994-10-18 1996-05-17 Osaka Gas Co Ltd Pressure governor device for high pressure gas
JP2010261416A (en) * 2009-05-11 2010-11-18 Tokyo Gas Co Ltd Energy storage device and differential pressure power generation system using the same
JP2011208617A (en) * 2010-03-30 2011-10-20 Osaka Gas Co Ltd Turbine device and cold energy power generation system equipped with turbine device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107882604A (en) * 2017-12-07 2018-04-06 刘强 Pressure energy reclaimer and pipeline pressure energy recovery system
CN114251144A (en) * 2020-09-24 2022-03-29 阿特拉斯·科普柯空气动力股份有限公司 Method and device for expanding a fluid
WO2023181560A1 (en) * 2022-03-23 2023-09-28 株式会社日立製作所 Pipeline management system and control method thereof

Also Published As

Publication number Publication date
JP6407612B2 (en) 2018-10-17

Similar Documents

Publication Publication Date Title
JP5832102B2 (en) Boiler plant and operation method thereof
JP5228789B2 (en) Water heater
US10167743B2 (en) Method for controlling a steam generator and control circuit for a steam generator
JP6407612B2 (en) Decompression energy recovery device in gas pipeline
JP2007071416A (en) Reheat steam system of boiler, and control method of reheat steam temperature
JP2010163892A (en) Steam turbine facility, and method of operating feed water pump drive turbine
JP2012102711A (en) Temperature reducing device steam heat recovery facilities
US10883378B2 (en) Combined cycle plant and method for controlling operation of combine cycle plant
KR100821960B1 (en) Local heating system for energy saving in cogeneration
JP2014084847A (en) Combined cycle plant, its stopping method, and its control method
JP2013011252A (en) Power plant and its operating method
JP2008180188A (en) Multi-pressure condenser
JP4415189B2 (en) Thermal power plant
JP4718333B2 (en) Once-through exhaust heat recovery boiler
JP5792087B2 (en) Steam supply system and control method thereof
EP2993398B1 (en) Flue-gas treatment apparatus and its method of operation
JP4984302B2 (en) Water pressure control system and water pressure control method
JP5086108B2 (en) Superheated steam equipment
WO2020255692A1 (en) Power generation plant and method for storing excess energy in power generation plant
JP6999858B2 (en) How to operate gas turbine equipment with gaseous fuel
JP7332274B2 (en) heat source system
CN206739627U (en) More condenser boiler water supply systems
JP2005214047A (en) Combined cycle power generation plant and method of operating the same
CN101968216A (en) System for automatically adjusting temperature of smoke at outlet of waste heat boiler
JP2008075996A (en) Exhaust heat recovery boiler and its steam pressure control method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20151222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180919

R150 Certificate of patent or registration of utility model

Ref document number: 6407612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250