JP2008075996A - Exhaust heat recovery boiler and its steam pressure control method - Google Patents

Exhaust heat recovery boiler and its steam pressure control method Download PDF

Info

Publication number
JP2008075996A
JP2008075996A JP2006257917A JP2006257917A JP2008075996A JP 2008075996 A JP2008075996 A JP 2008075996A JP 2006257917 A JP2006257917 A JP 2006257917A JP 2006257917 A JP2006257917 A JP 2006257917A JP 2008075996 A JP2008075996 A JP 2008075996A
Authority
JP
Japan
Prior art keywords
steam
pressure
heat recovery
recovery boiler
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006257917A
Other languages
Japanese (ja)
Other versions
JP4905941B2 (en
Inventor
Hajime Furubayashi
肇 古林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2006257917A priority Critical patent/JP4905941B2/en
Publication of JP2008075996A publication Critical patent/JP2008075996A/en
Application granted granted Critical
Publication of JP4905941B2 publication Critical patent/JP4905941B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust heat recovery boiler and its steam pressure control method capable of preventing an increase in low pressure side steam pressure, only by adjusting opening of a high pressure side steam blowoff valve, when the low pressure side steam pressure increases to a preset value or more. <P>SOLUTION: Steam pipes 15 and 16 are arranged for respectively supplying steam of acquired respective pressures to respective steam turbines via respective steam drums 13 and 4, by generating two or more of steam pressures generated by an exhaust heat recovery boiler. The blowoff valve 17 is arranged for blowing off the steam from the higher pressure side steam drum 13 to the atmosphere only in the corresponding turbine steam pipe 15. The opening of the blowoff valve 17 is adjusted so that the steam pressure from the steam drum 13 does not become the preset value or more. When the low pressure side steam pressure increases to a specific value or more, the pressure preset value of the high pressure side steam blowoff valve 17 is reduced in response to its pressure increase quantity, and a high pressure side steam blowoff quantity is increased, and the opening of the blowoff valve 17 is adjusted so as to prevent an increase in the low pressure side steam pressure. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はガスタービン等の排熱を利用し、高圧蒸気ドラムと低圧蒸気ドラムで蒸気を発生する排熱回収ボイラに係わり、低圧蒸気大気放散弁を必要とせずに低圧蒸気圧力の異常上昇を防止するのに好適な、さらに安全弁が動作することを防止するのに好適な排熱回収ボイラの制御装置及びその運用方法に関する。   The present invention relates to an exhaust heat recovery boiler that uses exhaust heat from a gas turbine or the like and generates steam with a high-pressure steam drum and a low-pressure steam drum, and prevents an abnormal increase in low-pressure steam pressure without the need for a low-pressure steam atmosphere release valve. More particularly, the present invention relates to a control apparatus for an exhaust heat recovery boiler suitable for preventing the safety valve from operating and a method for operating the control apparatus.

本発明が対象とする排熱回収ボイラの系統を図4に示す。
ガスタービン等からの高温の排ガスは煙道18を流れるが、煙道18には低圧節炭器2、低圧蒸発器5、高圧節炭器11及び高圧蒸発器14などが下流側から順に設置されている。
FIG. 4 shows a waste heat recovery boiler system targeted by the present invention.
High-temperature exhaust gas from a gas turbine or the like flows through a flue 18, and a low-pressure economizer 2, a low-pressure evaporator 5, a high-pressure economizer 11, a high-pressure evaporator 14, and the like are installed in that order from the downstream side. ing.

復水ポンプ1から供給された給水は低圧給水調節弁3で流量調節された後、低圧蒸気ドラム4と低圧蒸発器5へ順次供給される。
低圧蒸気ドラム4で分離された低圧蒸気は低圧蒸気管6を経て、低圧蒸気タービン(図示せず)に送られる。なお、ボイラ起動時は発生蒸気を低圧蒸気大気放散弁8を経由して大気に逃がす系統と低圧蒸気タービンバイパス弁7を経由し復水器19に回収する系統から成る。
The feed water supplied from the condensate pump 1 is adjusted in flow rate by the low-pressure feed water control valve 3, and then sequentially supplied to the low-pressure steam drum 4 and the low-pressure evaporator 5.
The low-pressure steam separated by the low-pressure steam drum 4 is sent to a low-pressure steam turbine (not shown) through a low-pressure steam pipe 6. It is to be noted that when the boiler is started, it consists of a system for releasing the generated steam to the atmosphere via the low-pressure steam atmosphere release valve 8 and a system for collecting it in the condenser 19 via the low-pressure steam turbine bypass valve 7.

また、給水は低圧節炭器2の出口から連絡管9を通り、高圧給水ポンプ10で昇圧され、高圧節炭器11を通り、高圧給水調節弁12で流量調節された後、高圧蒸気ドラム13と高圧蒸発器14へ順次供給される。高圧蒸気ドラム13で分離された高圧蒸気は高圧蒸気管15を経て高圧蒸気タービンに送られる。なお起動時は発生蒸気を高圧蒸気大気放散弁17を経由して大気に逃がす系統と高圧蒸気タービンバイパス弁16を経由して復水器19に回収する系統から成る。   Further, the feed water passes through the connecting pipe 9 from the outlet of the low pressure economizer 2, is pressurized by the high pressure feed pump 10, passes through the high pressure economizer 11, and the flow rate is adjusted by the high pressure feed water control valve 12, and then the high pressure steam drum 13 And sequentially supplied to the high-pressure evaporator 14. The high-pressure steam separated by the high-pressure steam drum 13 is sent to the high-pressure steam turbine through the high-pressure steam pipe 15. At the time of start-up, the system consists of a system for releasing the generated steam to the atmosphere via the high-pressure steam atmosphere release valve 17 and a system for collecting it in the condenser 19 via the high-pressure steam turbine bypass valve 16.

従来技術の排熱回収ボイラの制御方法を図3に基づき説明する。
図3(a)に示す高圧蒸気大気放散弁17(図4)の制御は、高圧蒸気ドラム圧力発信器30からの実際の圧力信号と信号発生器32で与えられた高圧蒸気圧力設定値を減算器31で比較し、その差を比例積分器33で比例積分して得られた信号で弁開度を制御することで行われる。なお、信号発生器32で与えられた放散弁17の高圧蒸気圧力設定値は復水器19(図4)の真空上昇後、高圧蒸気タービンバイパス弁16と切替わるために、バイパス弁16の圧力設定値と同じ値とし、固定値である。
また復水器19の真空上昇は復水器19に設けられた真空ポンプで、ボイラ起動前にし完了させている。
A control method of the prior art exhaust heat recovery boiler will be described with reference to FIG.
The control of the high-pressure steam atmospheric release valve 17 (FIG. 4) shown in FIG. 3A subtracts the actual pressure signal from the high-pressure steam drum pressure transmitter 30 and the high-pressure steam pressure set value given by the signal generator 32. This is done by controlling the valve opening degree with a signal obtained by comparing the difference by the unit 31 and proportionally integrating the difference by the proportional integrator 33. The high-pressure steam pressure set value of the diffusion valve 17 given by the signal generator 32 is switched to the high-pressure steam turbine bypass valve 16 after the vacuum of the condenser 19 (FIG. 4) rises. The value is the same as the set value and is a fixed value.
The vacuum rise of the condenser 19 is completed by a vacuum pump provided in the condenser 19 before the boiler is started.

また、図3(b)に示す低圧蒸気大気放散弁8の制御も前記高圧蒸気大気放散弁17と同様、低圧蒸気ドラム圧力発信器34からの実際の圧力信号と信号発生器40で与えられた低圧蒸気圧力設定値を減算器39で比較し、その差を比例積分器41で比例積分して得られた信号で弁開度を制御する。なお、信号発生器40で与える設定値は復水器19の前記真空上昇後、低圧蒸気タービンバイパス弁7と切替るために、その圧力設定値と同じ値とし、固定値である。   The control of the low-pressure steam atmosphere release valve 8 shown in FIG. 3B is also given by the signal generator 40 and the actual pressure signal from the low-pressure steam drum pressure transmitter 34 as with the high-pressure steam atmosphere release valve 17. The low pressure steam pressure set value is compared by the subtractor 39, and the valve opening degree is controlled by a signal obtained by proportionally integrating the difference by the proportional integrator 41. Note that the set value given by the signal generator 40 is the same value as the pressure set value in order to switch to the low pressure steam turbine bypass valve 7 after the vacuum of the condenser 19 is increased, and is a fixed value.

また、特開平6−117279号公報には、図5に示されるように本発明と同様蒸気大気放散弁を設置した排熱回収ボイラの制御方法に関する発明が開示されており、蒸気が大気放散され始めると、ガスタービンの燃料を絞ることに関する発明が記載されているが、1台の蒸気大気放散弁で複数の系統の蒸気圧力制御を行うことに関する説明はない。   Japanese Patent Laid-Open No. 6-117279 discloses an invention relating to a method for controlling an exhaust heat recovery boiler in which a steam atmosphere diffusion valve is installed as in the present invention as shown in FIG. At the beginning, an invention related to throttle of fuel in a gas turbine is described, but there is no explanation about performing steam pressure control of a plurality of systems with a single steam atmosphere release valve.

さらに、特開2001−263004号公報には、ボイラからタービンに上記を供給する主蒸気管に通常閉じている大気放出弁を設けておき、タービンがトリップしたときにはタービンの復水量に相当する流量を主蒸気管から放出するように大気放出弁の弁開度を設定しておく構成が開示されている。   Furthermore, JP 2001-263004 A provides an air release valve that is normally closed to the main steam pipe that supplies the above to the turbine from the boiler, and when the turbine trips, the flow rate corresponding to the condensate amount of the turbine is set. A configuration is disclosed in which the opening degree of the atmospheric release valve is set so as to release from the main steam pipe.

また、特開2001−108201号公報には、高圧ドラムと低圧ドラムを高圧ボイラ蒸気と低圧ボイラ蒸気を合流させる構成の多重圧排熱回収ボイラにおいて、高圧ボイラ側の蒸気量の変化により低圧ボイラのドラム内の圧力が変動しないように低圧ボイラの出口配管に圧力調整弁又は復水器へのバイパス弁を設けた構成が開示されている。   Japanese Patent Laid-Open No. 2001-108201 discloses a multi-pressure exhaust heat recovery boiler configured to merge a high pressure boiler and a low pressure drum with a high pressure boiler steam and a low pressure boiler steam. The structure which provided the pressure regulation valve or the bypass valve to the condenser in the exit piping of a low-pressure boiler so that an internal pressure may not be disclosed is disclosed.

そこで低圧ボイラ側の蒸気を圧力調整弁を介して高圧ボイラ側の蒸気に合流させることにより低圧ドラム内の圧力の変動が検出されると、圧力変動を抑えるように低圧ボイラの出口圧力調整弁の開度を制御し、また復水器へのバイパス弁からの圧力変動が検知されると、バイパス弁の開度を制御することが開示されている。また主に圧力調整弁で圧力を一定に保ち、更に低圧ドラム内の圧力が上昇すると、バイパスより蒸気を復水器に排出して圧力を一定に保つことが記載されている。
特開平6−117279号公報 特開2001−263004号公報 特開2001−108201号公報
Therefore, when the pressure fluctuation in the low-pressure drum is detected by joining the steam on the low-pressure boiler side with the steam on the high-pressure boiler side via the pressure regulating valve, the outlet pressure regulating valve of the low-pressure boiler is controlled to suppress the pressure fluctuation. It is disclosed that the opening degree of the bypass valve is controlled when the opening degree is controlled and a pressure fluctuation from the bypass valve to the condenser is detected. Further, it is described that the pressure is mainly maintained by a pressure regulating valve, and when the pressure in the low-pressure drum further increases, steam is discharged from the bypass to the condenser to keep the pressure constant.
JP-A-6-117279 JP 2001-263004 A JP 2001-108201 A

上記特許文献1の従来技術では高圧蒸気大気放散弁と低圧蒸気大気放散弁を設け、高圧蒸気圧力が設定値以上に上昇した時は高圧蒸気大気放散弁で、低圧蒸気圧力が設定値以上に上昇した時は低圧蒸気大気放散弁の開度をそれぞれ調節し、蒸気を大気放散することによって圧力制御を行っていたため、2台の大気放散弁を設置する必要があり不経済な設計となっていた。   In the prior art of Patent Document 1 above, a high-pressure steam atmospheric diffusion valve and a low-pressure steam atmospheric diffusion valve are provided. When the high-pressure steam pressure rises above the set value, the low-pressure steam pressure rises above the set value. At that time, the pressure control was performed by adjusting the opening of the low-pressure steam atmosphere release valve and releasing the steam to the atmosphere, so it was necessary to install two atmosphere release valves and it was an uneconomical design. .

上記特許文献2の従来技術では、タービンがトリップしたときには大気放出弁を開放してタービンの復水量に相当する流量を主蒸気管から外部に放出することが開示されているが、このボイラには単一の汽水分離ドラムしか設置されていない。   In the prior art of Patent Document 2 above, it is disclosed that when the turbine trips, the atmospheric discharge valve is opened to discharge a flow rate corresponding to the condensate amount of the turbine to the outside from the main steam pipe. Only a single brackish water separation drum is installed.

上記特許文献3の従来技術では、高圧ドラムと低圧ドラムを最適なサイズにし、高圧ドラム側の蒸気量の変動により低圧ドラム内の圧力変動を防止することを目的とし、そのために低圧ボイラの出口配管に圧力調整弁又は復水器へのバイパス弁を設けた構成が開示されているが、高圧蒸気と低圧蒸気を合流させる構成の多重圧排熱回収ボイラであり、そもそも高圧タービン蒸気供給系統と低圧タービン蒸気供給系統にそれぞれ大気放散弁を設置する必要性がないボイラ構成に関する発明である。   In the prior art disclosed in Patent Document 3, the high pressure drum and the low pressure drum are optimally sized, and the purpose is to prevent pressure fluctuations in the low pressure drum due to fluctuations in the amount of steam on the high pressure drum side. Is a multi-pressure exhaust heat recovery boiler configured to join high-pressure steam and low-pressure steam, and originally has a high-pressure turbine steam supply system and a low-pressure turbine. It is an invention related to a boiler configuration that does not require the installation of an atmospheric release valve in each steam supply system.

本発明の課題は、より高圧側の蒸気大気放散弁でより高圧側の蒸気圧力を制御するとともに、より低圧側の蒸気圧力が設定値以上に上昇した場合も同じ高圧側の蒸気大気放散弁の開度を調節して、より低圧側の蒸気大気放散弁を設置しなくても、より低圧側の蒸気圧力の上昇を防止できる蒸気圧力制御装置を備えた排熱回収ボイラとその蒸気圧力制御方法とその運用方法を提供することにある。   The object of the present invention is to control the steam pressure on the higher pressure side with the higher pressure side steam atmosphere release valve, and also when the steam pressure on the lower pressure side rises above the set value, Exhaust heat recovery boiler equipped with a steam pressure control device capable of preventing an increase in the steam pressure on the lower pressure side without adjusting the opening and installing a steam atmospheric diffusion valve on the lower pressure side, and its steam pressure control method And to provide a method for its operation.

本発明は上記課題を解決するために、次の解決手段を採用した。
請求項1記載の発明は、ガスタービンからの排ガスが導入される排ガス流路内に、高圧、中圧および低圧の3つの蒸気圧の蒸気、または高圧および低圧の2つの蒸気圧の蒸気を発生する複数の蒸気発生系統を設け、前記各蒸気発生系統で発生した各圧力の蒸気をそれぞれ蒸気ドラムを介して各蒸気タービンに供給する各蒸気供給系統と、前記各蒸気供給系統から各圧力の蒸気を、それぞれ対応する蒸気バイパス弁を介して分岐させた後に、前記各蒸気タービンで仕事をした後の蒸気を前記蒸気発生系統に供給する復水にするための復水器へバイパスして流す各蒸気バイパス系統を設け、前記各蒸気発生系統のうち、より高圧側の蒸気発生系統に対応する蒸気ドラム又は蒸気供給系統にのみ、前記蒸気発生系統からの蒸気を大気に放出する蒸気大気放出弁を設け、さらに、より高圧側の蒸気発生系統に対応する蒸気ドラムの蒸気圧力が設定値以上とならないように前記蒸気大気放出弁の開度を調整すると共に、より低圧側の蒸気圧力が設定値以上に上昇した場合、その圧力上昇分に応じて、より高圧側の蒸気大気放出弁の圧力設定値を下げる蒸気圧力制御装置を設けた排熱回収ボイラである。
The present invention employs the following means for solving the above problems.
According to the first aspect of the present invention, steam of three vapor pressures of high pressure, medium pressure and low pressure, or steam of two vapor pressures of high pressure and low pressure is generated in the exhaust gas flow path into which the exhaust gas from the gas turbine is introduced. A plurality of steam generation systems, each steam supply system supplying steam at each pressure generated in each steam generation system to each steam turbine via a steam drum, and steam at each pressure from each steam supply system Each of which is branched through a corresponding steam bypass valve, and then the steam after working in each of the steam turbines is bypassed to flow into a condenser for condensate supplied to the steam generation system. Steam that provides a steam bypass system and releases steam from the steam generation system to the atmosphere only in the steam drum or steam supply system corresponding to the higher pressure side steam generation system among the steam generation systems. An air release valve is provided, and the opening of the steam atmosphere release valve is adjusted so that the steam pressure of the steam drum corresponding to the steam generation system on the higher pressure side does not exceed the set value, and the steam pressure on the lower pressure side Is a waste heat recovery boiler provided with a steam pressure control device that lowers the pressure setting value of the higher-pressure side steam release valve when the pressure rises above a set value.

請求項2記載の発明は、前記蒸気発生系統が高圧及び低圧からなる場合には、前記蒸気大気放出弁は高圧蒸気ドラム又は高圧蒸気タービンへの高圧蒸気供給系統にのみ設けられ、前記蒸気発生系統が高圧、中圧及び低圧からなる場合には、前記蒸気大気放出弁は高圧蒸気ドラム又は高圧蒸気タービンへの東圧蒸気供給系統および/または中圧蒸気ドラムまたは中圧蒸気タービンへの高圧蒸気供給系統にのみ設けられる請求項1記載の排熱回収ボイラである。   In the invention according to claim 2, when the steam generation system comprises high pressure and low pressure, the steam atmosphere release valve is provided only in a high pressure steam supply system to a high pressure steam drum or a high pressure steam turbine, and the steam generation system Is composed of high-pressure, medium-pressure and low-pressure, the steam atmosphere release valve is a high-pressure steam supply system to the high-pressure steam drum or high-pressure steam turbine and / or high-pressure steam supply to the medium-pressure steam drum or medium-pressure steam turbine. It is an exhaust-heat recovery boiler of Claim 1 provided only in a system | strain.

請求項3記載の発明は、請求項1記載の排熱回収ボイラの蒸気圧力制御方法において、より高圧側の蒸気供給系統の蒸気圧力の実測値と設定値の偏差に基づき得られる出力値と、より低圧側の蒸気供給系統の蒸気圧力の実測値と設定値の偏差に基づき得られる出力値とを比較して、より高い方の出力値に基づき、より高圧側の蒸気大気放出弁の開度を調整する排熱回収ボイラの蒸気圧力制御方法である。
請求項4記載の発明は、排熱回収ボイラの起動時に作動させる請求項3記載の排熱回収ボイラの蒸気圧力制御方法である。
The invention according to claim 3 is the steam pressure control method of the exhaust heat recovery boiler according to claim 1, wherein the output value obtained based on the deviation between the measured value and the set value of the steam pressure of the steam supply system on the higher pressure side, Compare the measured value of the steam pressure of the steam supply system on the lower pressure side with the output value obtained based on the deviation of the set value, and based on the higher output value, the opening degree of the higher pressure steam atmosphere release valve It is the steam pressure control method of the waste heat recovery boiler which adjusts.
The invention according to claim 4 is the steam pressure control method of the exhaust heat recovery boiler according to claim 3, which is operated when the exhaust heat recovery boiler is started.

(作用)
請求項1〜4記載の発明によれば、より低圧側の蒸気ドラムからの蒸気圧力が設定値以下の時は、より高圧側の蒸気ドラムからの蒸気圧力だけを設定値以下となるように、より高圧側の蒸気大気放散弁の開度を調節するが、低圧蒸気圧力が設定値以上に上昇した場合のみ、その圧力上昇分に応じ、より高圧側の蒸気大気放散弁の開度を上げる方向に作用するため、より高圧側のタービン蒸気からの大気放散量も増加する。その結果、例えば、図4に示す煙道18の中で高圧蒸発器14と高圧節炭器11での給水と排ガスの熱交換量が増加し、そのガス流れの後流に設置された低圧蒸発器5での熱交換量がその分減少するため低圧蒸気圧力もそれに見合って低下する。
(Function)
According to the inventions of claims 1 to 4, when the steam pressure from the lower pressure side steam drum is equal to or lower than the set value, only the steam pressure from the higher pressure side steam drum is equal to or lower than the set value. The opening of the higher-pressure side steam atmosphere release valve is adjusted, but only when the low-pressure steam pressure rises above the set value, the opening direction of the higher-pressure side steam atmosphere release valve is increased according to the pressure increase. Therefore, the amount of atmospheric emissions from turbine steam on the higher pressure side also increases. As a result, for example, the amount of heat exchange between the water supply and the exhaust gas in the high-pressure evaporator 14 and the high-pressure economizer 11 in the flue 18 shown in FIG. 4 increases, and the low-pressure evaporation installed downstream of the gas flow. Since the amount of heat exchange in the vessel 5 is reduced accordingly, the low-pressure steam pressure is lowered accordingly.

このように、本発明は、より高圧側の蒸気圧力が設定値以上とならないようにより高圧側の蒸気大気放散弁の開度を調節すると共に、より低圧側の蒸気圧力が規定値以上に上昇した場合、その圧力上昇分に応じてより高圧側の蒸気大気放散弁の圧力設定値を下げて、より高圧側の蒸気大気放散量を増やし、より低圧側の蒸気圧力の上昇を防ぐようにより高圧側の蒸気大気放散弁の開度を調整するものである。   As described above, the present invention adjusts the opening of the high-pressure side steam atmospheric diffusion valve so that the higher-pressure side steam pressure does not exceed the set value, and the lower-pressure side steam pressure rises above the specified value. In this case, lower the pressure setting value of the high-pressure side steam atmospheric diffusion valve according to the pressure increase, increase the high-pressure side vapor atmospheric emission amount, and prevent the low-pressure side steam pressure from increasing, This adjusts the opening of the steam atmosphere release valve.

本発明によれば、たとえば、プラント起動時に復水器の真空度を上昇させるための補助蒸気源が無く、排熱回収ボイラから発生した蒸気をタービンバイパス系統経由で復水器へ回収出来ず、排熱回収ボイラ出口で大気へ放散する運用を行う場合においても、高圧蒸気大気放散弁1台で、より高圧側のタービン蒸気圧力とより低圧側のタービン蒸気圧力の両方の上昇を防止することが可能となり、従来技術のように高圧側のタービン蒸気供給系統と、低圧側のタービン蒸気供給系統にそれぞれに大気放散弁を設置する必要がなくなるため経済的な設計が可能となる。   According to the present invention, for example, there is no auxiliary steam source for increasing the vacuum degree of the condenser at the time of starting the plant, and steam generated from the exhaust heat recovery boiler cannot be recovered to the condenser via the turbine bypass system, Even when the operation of dissipating to the atmosphere at the exhaust heat recovery boiler outlet is performed, it is possible to prevent both the higher-pressure-side turbine steam pressure and the lower-pressure-side turbine steam pressure from rising with one high-pressure steam-air diffusion valve. As a result, it is not necessary to install an atmospheric release valve in each of the high-pressure side turbine steam supply system and the low-pressure side turbine steam supply system as in the prior art, so that an economical design is possible.

本発明の実施例を図1および図2により説明する。
図1に示す構成の高圧側タービン蒸気系と低圧側タービン蒸気系を備えたタービン蒸気系統において、高圧蒸気大気放散弁17の制御は、高圧蒸気圧力発信器30からの実際の圧力信号と信号発生器32で与えられた高圧蒸気圧力設定値を減算器31で比較し、その差を比例積分器33で比例積分して得られた信号で高圧蒸気大気放散弁17の開度を調節する。
An embodiment of the present invention will be described with reference to FIGS.
In the turbine steam system having the high-pressure turbine steam system and the low-pressure turbine steam system configured as shown in FIG. 1, the control of the high-pressure steam atmosphere release valve 17 is performed by generating an actual pressure signal and signal from the high-pressure steam pressure transmitter 30. The high pressure steam pressure set value given by the device 32 is compared by the subtractor 31, and the opening degree of the high pressure steam atmosphere diffusion valve 17 is adjusted by a signal obtained by proportionally integrating the difference by the proportional integrator 33.

一方、低圧蒸気圧力発信器34からの実際の圧力信号と信号発生器36で与えられた低圧蒸気圧力設定値を減算器35で比較し、その差を比例積分器37で比例積分して得られた信号を高圧蒸気圧力制御側の比例積分器33からの出力信号と高値選択器38で比較し、これら2つの出力信号の内の高い方の出力信号を選択して出力し、高圧蒸気大気放散弁17の開度を調節する。   On the other hand, the actual pressure signal from the low pressure steam pressure transmitter 34 and the low pressure steam pressure set value given by the signal generator 36 are compared by the subtractor 35 and the difference is obtained by proportional integration by the proportional integrator 37. The high-pressure selector 38 compares the output signal from the proportional integrator 33 on the high-pressure steam pressure control side with the high-value selector 38, selects and outputs the higher one of these two output signals, and releases high-pressure steam to the atmosphere. The opening degree of the valve 17 is adjusted.

ここで実際の低圧蒸気圧力34が圧力設定値36よりも低いときは、高値選択器38は高い方の信号として比例積分器33の出力信号を選択するため、高圧蒸気大気放散弁17は、高圧蒸気圧力だけのフィードバック制御により高圧蒸気大気放散弁17の開度調節を行う。   Here, when the actual low-pressure steam pressure 34 is lower than the pressure set value 36, the high-value selector 38 selects the output signal of the proportional integrator 33 as the higher signal, so that the high-pressure steam atmosphere release valve 17 The degree of opening of the high-pressure steam atmosphere release valve 17 is adjusted by feedback control of only the steam pressure.

実際の低圧蒸気圧力34が設定値36を超えて上昇すると比例積分器37の出力信号が増加し、比例積分器33側の出力よりも高くなり、高値選択器38で高値として選択され、低圧蒸気圧力の上昇分だけ高圧蒸気大気放散弁17の開度を大きくする方向に動作し、その結果高圧蒸気大気放散量が増加する。   When the actual low pressure steam pressure 34 exceeds the set value 36, the output signal of the proportional integrator 37 increases and becomes higher than the output on the proportional integrator 33 side, and is selected as a high value by the high value selector 38. The opening of the high-pressure steam atmospheric diffusion valve 17 is increased by an amount corresponding to the pressure increase, and as a result, the amount of high-pressure steam atmospheric emission increases.

前記したように高圧蒸気大気放散量が増加すると図4に示す煙道18の中で高圧蒸発器14と高圧節炭器11の中を通過する給水とガスタービン等からの排ガスとの熱交換量が増加するため、高圧蒸発器14出口の排ガス温度が低下する。そのためガス流れの後流に設置された低圧蒸発器5入口排ガス温度も低くなり、低圧蒸発器5での熱交換量が、その分減少するため低圧蒸気圧力もそれに見合って低下する。   As described above, when the amount of high-pressure steam released from the atmosphere increases, the amount of heat exchange between the feed water passing through the high-pressure evaporator 14 and the high-pressure economizer 11 in the flue 18 shown in FIG. Increases, the exhaust gas temperature at the outlet of the high-pressure evaporator 14 decreases. Therefore, the exhaust gas temperature at the inlet of the low-pressure evaporator 5 installed downstream of the gas flow is also lowered, and the amount of heat exchange in the low-pressure evaporator 5 is reduced accordingly, so the low-pressure steam pressure is lowered accordingly.

前記の高圧蒸気大気放散量が増加することにより低圧蒸気圧力が低下するメカニズムを図5により説明する。
図5の横軸は煙道18内に設置された図4の高圧蒸発器14から低圧節炭器2とガス流れの上流から下流に向かって配置の通り示したものであり、縦軸は排ガス温度と流体温度を示す。
The mechanism by which the low-pressure steam pressure decreases as the amount of high-pressure steam released to the atmosphere increases will be described with reference to FIG.
The horizontal axis of FIG. 5 shows the arrangement from the high-pressure evaporator 14 of FIG. 4 installed in the flue 18 to the low-pressure economizer 2 from the upstream side to the downstream side of the gas flow. Indicates temperature and fluid temperature.

ここで実線で示した排ガス温度と流体温度は実際の低圧蒸気圧力が低圧蒸気圧力設定値よりも低い場合を示す。ガスタービン等からの排ガスは高圧蒸発器14、高圧節炭器11、低圧蒸発器5及び低圧節炭器2の各バンクで給水(流体)と熱交換されるためガス流れの後流になるほど排ガス温度は順次低下している。一方、高圧蒸発器14と低圧蒸発器5の内部の流体温度は蒸気圧力の飽和時の温度であり、この排ガス温度と流体温度の差(ΔT)が各バンクにおける熱吸収量となる。   Here, the exhaust gas temperature and the fluid temperature indicated by solid lines indicate the case where the actual low pressure steam pressure is lower than the low pressure steam pressure set value. The exhaust gas from the gas turbine and the like is exchanged with the feed water (fluid) in each bank of the high-pressure evaporator 14, the high-pressure economizer 11, the low-pressure evaporator 5, and the low-pressure economizer 2, so that the exhaust gas becomes downstream of the gas flow. The temperature is decreasing gradually. On the other hand, the fluid temperature inside the high-pressure evaporator 14 and the low-pressure evaporator 5 is the temperature when the steam pressure is saturated, and the difference (ΔT) between the exhaust gas temperature and the fluid temperature becomes the heat absorption amount in each bank.

点線で示した線は高圧蒸気大気放散量が増加した場合の排ガス温度と流体温度をそれぞれ示す。
高圧蒸気大気放散弁17の開度が増加し、大気放散量が増加すると高圧蒸気圧力が低下することで高圧蒸発器14の内部流体温度も高圧蒸気圧力の低下分に対応した温度に低下する。高圧蒸発器14の内部流体温度が低下すると排ガスとの熱交換が増加するため高圧蒸発器14を通過した排ガス温度の低下は大きくなり、そのガス流れ後流に設置された低圧蒸発器5の入口の排ガス温度も低下するため低圧蒸発器5の内部での排ガスとの熱交換量が低下するため低圧蒸気圧力もそれに見合って低下するものである。
Dotted lines indicate the exhaust gas temperature and the fluid temperature when the high-pressure steam atmospheric emission increases.
When the opening of the high-pressure steam atmospheric diffusion valve 17 increases and the amount of atmospheric emission increases, the high-pressure steam pressure decreases, so that the internal fluid temperature of the high-pressure evaporator 14 also decreases to a temperature corresponding to the decrease in the high-pressure steam pressure. When the internal fluid temperature of the high-pressure evaporator 14 decreases, the heat exchange with the exhaust gas increases, so the decrease in the exhaust gas temperature that has passed through the high-pressure evaporator 14 increases, and the inlet of the low-pressure evaporator 5 installed downstream of the gas flow. As the exhaust gas temperature also decreases, the amount of heat exchange with the exhaust gas inside the low pressure evaporator 5 decreases, so the low pressure steam pressure also decreases accordingly.

上記実施例では、高圧蒸気ドラム13と低圧蒸気ドラム4からなる複圧式排熱収ボイラを例に説明しているが、高圧、中圧、低圧蒸気ドラムからなる3重圧式排熱回収ボイラにおいても中圧又は低圧蒸気ドラム圧力が規定値以上に異常上昇した場合、本発明と同様の方法で、それらの圧力上昇分に応じ高圧蒸気大気放散弁17の開度を上げる方向に作用するため、高圧蒸気大気放散弁17の1台で高圧、中圧、低圧蒸気圧力が異常に上昇することを防ぐことが可能である。つまり中圧、低圧大気放散弁を不設置とすることが可能となる。また、高圧用の大気放散弁17の容量によっては、中圧用の大気放散弁を設けることができる。   In the above embodiment, a double pressure exhaust heat recovery boiler composed of a high pressure steam drum 13 and a low pressure steam drum 4 has been described as an example, but also in a triple pressure exhaust heat recovery boiler composed of a high pressure, medium pressure, and low pressure steam drum. When the medium pressure or low pressure steam drum pressure abnormally rises above a specified value, it acts in the direction of increasing the opening of the high pressure steam atmosphere release valve 17 in accordance with the amount of the pressure rise in the same manner as the present invention. It is possible to prevent the high pressure, medium pressure, and low pressure steam pressure from rising abnormally with one of the steam atmosphere release valves 17. In other words, it becomes possible to make the intermediate pressure and low pressure atmospheric diffusion valves not installed. Further, depending on the capacity of the high-pressure atmospheric diffusion valve 17, an intermediate-pressure atmospheric diffusion valve can be provided.

なお、三重圧のタービン蒸気供給系統の場合には、高圧用の大気放散弁17のみとすることもできるが、この場合は、経済性は高いが制御の余裕代が小さくなる。   In the case of a triple-pressure turbine steam supply system, only the high-pressure atmospheric gas release valve 17 can be used, but in this case, the economic margin is high but the margin for control is small.

発電プラントの場合は通常排熱回収ボイラが複数台設置されかつ補助ボイラを有するためプラント起動時は補助ボイラ又は他の運転中の排熱回収ボイラから必ず補助蒸気の供給が可能な設計となっているが、イニシャルコストを抑える目的で補助ボイラの容量低減等でプラント起動時、補助蒸気の供給が行えない状態でプラント起動を要求されるケースがあるが、本発明はこのような場合にも対応でき、産業上の利用可能性が高い。   In the case of a power plant, usually a plurality of exhaust heat recovery boilers are installed and an auxiliary boiler is provided. Therefore, when the plant is started, auxiliary steam can be supplied from the auxiliary boiler or other exhaust heat recovery boiler during operation. However, in order to reduce initial cost, there is a case where the startup of the plant is requested in a state where the auxiliary steam cannot be supplied at the time of startup of the plant due to reduction of the capacity of the auxiliary boiler. Yes, it has high industrial applicability.

本発明の実施例の排熱回収ボイラの蒸気供給系統図である。It is a vapor | steam supply system figure of the waste heat recovery boiler of the Example of this invention. 本発明の実施例の排熱回収ボイラ蒸気圧力制御装置を示す図である。It is a figure which shows the waste heat recovery boiler steam pressure control apparatus of the Example of this invention. 従来技術の排熱回収ボイラ制御装置を示す図である。It is a figure which shows the waste heat recovery boiler control apparatus of a prior art. 従来技術の排熱回収ボイラの蒸気供給系統図である。It is a vapor | steam supply system figure of the waste heat recovery boiler of a prior art. 排熱回収ボイラの煙道内での排ガス温度と流体温度の変化を示す図である。It is a figure which shows the change of the exhaust gas temperature and the fluid temperature in the flue of an exhaust heat recovery boiler.

符号の説明Explanation of symbols

1 復水ポンプ 2 低圧節炭器
3 低圧給水調節弁 4 低圧蒸気ドラム
5 低圧蒸発器 6 低圧蒸気管
7 低圧蒸気タービンバイパス弁 8 低圧蒸気大気放散弁
9 連絡管 10 高圧給水ポンプ
11 高圧節炭器 12 高圧給水調節弁
13 高圧蒸気ドラム 14 高圧蒸発器
15 高圧蒸気管 16 高圧蒸気タービンバイパス弁
17 高圧蒸気大気放散弁 18 煙道
19 復水器 30 高圧蒸気圧力発信器
31,35,39 減算器 32,36,40 信号発生器
33,37,41 比例積分器 34 低圧蒸気圧力発信器
38 高値選択器
DESCRIPTION OF SYMBOLS 1 Condensate pump 2 Low-pressure economizer 3 Low-pressure feed water control valve 4 Low-pressure steam drum 5 Low-pressure evaporator 6 Low-pressure steam pipe 7 Low-pressure steam turbine bypass valve 8 Low-pressure steam atmosphere release valve 9 Connecting pipe 10 High-pressure feed pump 11 High-pressure economizer 12 High Pressure Water Supply Control Valve 13 High Pressure Steam Drum 14 High Pressure Evaporator 15 High Pressure Steam Pipe 16 High Pressure Steam Turbine Bypass Valve 17 High Pressure Steam Atmospheric Emission Valve 18 Flue 19 Condenser 30 High Pressure Steam Pressure Transmitter 31, 35, 39 Subtractor 32 , 36, 40 Signal generator 33, 37, 41 Proportional integrator 34 Low pressure steam pressure transmitter 38 High value selector

Claims (4)

ガスタービンからの排ガスが導入される排ガス流路内に、高圧、中圧および低圧の3つの蒸気圧の蒸気、または高圧および低圧の2つの蒸気圧の蒸気を発生する複数の蒸気発生系統を設け、
前記各蒸気発生系統で発生した各圧力の蒸気をそれぞれ蒸気ドラムを介して各蒸気タービンに供給する各蒸気供給系統と、
前記各蒸気供給系統から各圧力の蒸気を、それぞれ対応する蒸気バイパス弁を介して分岐させた後に、前記各蒸気タービンで仕事をした後の蒸気を前記蒸気発生系統に供給する復水にするための復水器へバイパスして流す各蒸気バイパス系統を設け、
前記各蒸気発生系統のうち、より高圧側の蒸気発生系統に対応する蒸気ドラム又は蒸気供給系統にのみ、前記蒸気発生系統からの蒸気を大気に放出する蒸気大気放出弁を設け、
より高圧側の蒸気発生系統に対応する蒸気ドラムの蒸気圧力が設定値以上とならないように前記蒸気大気放出弁の開度を調整すると共に、さらに、より低圧側の蒸気圧力が設定値以上に上昇した場合、その圧力上昇分に応じて、より高圧側の蒸気大気放出弁の圧力設定値を下げる蒸気圧力制御装置を設けた
ことを特徴とする排熱回収ボイラ。
A plurality of steam generation systems for generating steam of three steam pressures of high pressure, medium pressure and low pressure, or steam of two steam pressures of high pressure and low pressure are provided in the exhaust gas flow path into which the exhaust gas from the gas turbine is introduced. ,
Each steam supply system for supplying steam at each pressure generated in each steam generation system to each steam turbine via a steam drum,
In order to convert the steam at each pressure from each steam supply system via a corresponding steam bypass valve into condensate for supplying the steam after working in each steam turbine to the steam generation system Each steam bypass system that bypasses and flows to the condenser
Of each of the steam generation systems, only a steam drum or a steam supply system corresponding to a higher pressure side steam generation system is provided with a steam atmosphere release valve that releases steam from the steam generation system to the atmosphere,
Adjust the opening of the steam release valve so that the steam pressure of the steam drum corresponding to the steam generation system on the higher pressure side does not exceed the set value, and the steam pressure on the lower pressure side increases to the set value or more. In this case, the exhaust heat recovery boiler is provided with a steam pressure control device that lowers the pressure setting value of the steam atmosphere discharge valve on the higher pressure side in accordance with the pressure increase.
前記蒸気発生系統が高圧及び低圧からなる場合には、前記蒸気大気放出弁は高圧蒸気ドラム又は高圧蒸気タービンへの高圧蒸気供給系統にのみ設けられ、
前記蒸気発生系統が高圧、中圧及び低圧からなる場合には、前記蒸気大気放出弁は高圧蒸気ドラム又は高圧蒸気タービンへの東圧蒸気供給系統および/または中圧蒸気ドラムまたは中圧蒸気タービンへの高圧蒸気供給系統にのみ設けられる
ことを特徴とする請求項1記載の排熱回収ボイラ。
When the steam generation system consists of high pressure and low pressure, the steam atmosphere release valve is provided only in the high pressure steam supply system to the high pressure steam drum or the high pressure steam turbine,
When the steam generation system is composed of high pressure, medium pressure and low pressure, the steam atmospheric discharge valve is connected to the east pressure steam supply system to the high pressure steam drum or high pressure steam turbine and / or to the medium pressure steam drum or medium pressure steam turbine. The exhaust heat recovery boiler according to claim 1, wherein the exhaust heat recovery boiler is provided only in the high-pressure steam supply system.
請求項1記載の排熱回収ボイラの蒸気圧力制御方法において、
より高圧側の蒸気供給系統の蒸気圧力の実測値と設定値の偏差に基づき得られる出力値と、より低圧側の蒸気供給系統の蒸気圧力の実測値と設定値の偏差に基づき得られる出力値とを比較して、より高い方の出力値に基づき、より高圧側の蒸気大気放出弁の開度を調整することを特徴とする排熱回収ボイラの蒸気圧力制御方法。
In the steam pressure control method of the exhaust heat recovery boiler according to claim 1,
Output value obtained based on deviation between measured value and set value of steam pressure in higher pressure side steam supply system, and output value obtained based on deviation between measured value and set value of steam pressure in lower pressure side steam supply system And adjusting the opening degree of the higher-pressure side steam release valve on the basis of the higher output value, the steam pressure control method for the exhaust heat recovery boiler, characterized in that
排熱回収ボイラの起動時に作動させることを特徴とする請求項3記載の排熱回収ボイラの蒸気圧力制御方法。   The steam pressure control method for an exhaust heat recovery boiler according to claim 3, wherein the exhaust pressure recovery boiler is operated when the exhaust heat recovery boiler is started.
JP2006257917A 2006-09-22 2006-09-22 Waste heat recovery boiler and its steam pressure control method Expired - Fee Related JP4905941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006257917A JP4905941B2 (en) 2006-09-22 2006-09-22 Waste heat recovery boiler and its steam pressure control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006257917A JP4905941B2 (en) 2006-09-22 2006-09-22 Waste heat recovery boiler and its steam pressure control method

Publications (2)

Publication Number Publication Date
JP2008075996A true JP2008075996A (en) 2008-04-03
JP4905941B2 JP4905941B2 (en) 2012-03-28

Family

ID=39348256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006257917A Expired - Fee Related JP4905941B2 (en) 2006-09-22 2006-09-22 Waste heat recovery boiler and its steam pressure control method

Country Status (1)

Country Link
JP (1) JP4905941B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102095193A (en) * 2010-12-30 2011-06-15 中国恩菲工程技术有限公司 System for controlling pressure of waste heat boiler drum
JP2011196604A (en) * 2010-03-19 2011-10-06 Tokyo Electric Power Co Inc:The Diffusion valve control device and steam control system
CN115466813A (en) * 2022-08-25 2022-12-13 中天钢铁集团(南通)有限公司 Automatic control method of steam drum pressure regulating valve
CN118067394A (en) * 2024-02-23 2024-05-24 杭州汽轮新能源有限公司 Back pressure steam turbine test bed system and intelligent control method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197901A (en) * 1985-02-28 1986-09-02 三菱重工業株式会社 Generating set for exhaust gas boiler
JPS62276302A (en) * 1986-05-23 1987-12-01 石川島播磨重工業株式会社 Method of controlling flow rate of main steam of waste-heat boiler
JPH06117279A (en) * 1992-09-30 1994-04-26 Kobe Steel Ltd Control of steam release in steam power generating equipment
JPH09210301A (en) * 1996-02-01 1997-08-12 Babcock Hitachi Kk Emergency protective apparatus for fluidized bed boiler
JPH10184393A (en) * 1996-12-27 1998-07-14 Ishikawajima Harima Heavy Ind Co Ltd Control method for gas turbine generator
JP2001108201A (en) * 1999-10-04 2001-04-20 Mitsubishi Heavy Ind Ltd Multiple pressure waste heat boiler
JP2001263004A (en) * 2000-03-16 2001-09-26 Babcock Hitachi Kk Boiler turbine steam line system
JP2007092721A (en) * 2005-09-30 2007-04-12 Hitachi Ltd Multiple-axle combined cycle power generation facility

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197901A (en) * 1985-02-28 1986-09-02 三菱重工業株式会社 Generating set for exhaust gas boiler
JPS62276302A (en) * 1986-05-23 1987-12-01 石川島播磨重工業株式会社 Method of controlling flow rate of main steam of waste-heat boiler
JPH06117279A (en) * 1992-09-30 1994-04-26 Kobe Steel Ltd Control of steam release in steam power generating equipment
JPH09210301A (en) * 1996-02-01 1997-08-12 Babcock Hitachi Kk Emergency protective apparatus for fluidized bed boiler
JPH10184393A (en) * 1996-12-27 1998-07-14 Ishikawajima Harima Heavy Ind Co Ltd Control method for gas turbine generator
JP2001108201A (en) * 1999-10-04 2001-04-20 Mitsubishi Heavy Ind Ltd Multiple pressure waste heat boiler
JP2001263004A (en) * 2000-03-16 2001-09-26 Babcock Hitachi Kk Boiler turbine steam line system
JP2007092721A (en) * 2005-09-30 2007-04-12 Hitachi Ltd Multiple-axle combined cycle power generation facility

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196604A (en) * 2010-03-19 2011-10-06 Tokyo Electric Power Co Inc:The Diffusion valve control device and steam control system
CN102095193A (en) * 2010-12-30 2011-06-15 中国恩菲工程技术有限公司 System for controlling pressure of waste heat boiler drum
CN115466813A (en) * 2022-08-25 2022-12-13 中天钢铁集团(南通)有限公司 Automatic control method of steam drum pressure regulating valve
CN115466813B (en) * 2022-08-25 2024-01-16 中天钢铁集团(南通)有限公司 Automatic control method of drum pressure regulating valve
CN118067394A (en) * 2024-02-23 2024-05-24 杭州汽轮新能源有限公司 Back pressure steam turbine test bed system and intelligent control method

Also Published As

Publication number Publication date
JP4905941B2 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
JP3481983B2 (en) How to start a steam turbine
JP2005534883A (en) Waste heat steam generator
JP4885199B2 (en) Gas turbine operation control apparatus and method
JP4913087B2 (en) Control device for combined power plant
JP2006118391A (en) Control device for extracted air boosting facility in integrated gasification combined cycle plant
JP4764255B2 (en) Small once-through boiler power generation system and operation control method thereof
JP4905941B2 (en) Waste heat recovery boiler and its steam pressure control method
JP4898409B2 (en) Steam supply equipment
JP5783458B2 (en) Increased output operation method in steam power plant
JP4117517B2 (en) Coal gasification combined power plant and its operation control device.
JPH08246814A (en) Combined cycle generation plant using refuse incinerator
JP4718333B2 (en) Once-through exhaust heat recovery boiler
JP5901194B2 (en) Gas turbine cooling system and gas turbine cooling method
JP2012140910A (en) Combined cycle power generation plant and gas turbine system, and gas turbine fuel gas heating system
JP2006063886A (en) Thermal power plant
JPH11148603A (en) Controller for coal/residual oil gassifying combined power generation plant
JP4842071B2 (en) Operation method of once-through exhaust heat recovery boiler and operation method of power generation equipment
JP2005214047A (en) Combined cycle power generation plant and method of operating the same
JP2007255389A (en) Auxiliary steam supply device
JPH0783006A (en) Discharged heat recovering device for compound refuse power generation plant
JP2949287B2 (en) Auxiliary steam extraction method for waste heat recovery boiler
JPH11159305A (en) Pressurized fluidized bed combined generating plant
WO2020031716A1 (en) Combined cycle power plant
JP6975058B2 (en) Pressure drain recovery system
WO1999015765A1 (en) Cooling steam control method for combined cycle power generation plants

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4905941

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees