JP2949287B2 - Auxiliary steam extraction method for waste heat recovery boiler - Google Patents

Auxiliary steam extraction method for waste heat recovery boiler

Info

Publication number
JP2949287B2
JP2949287B2 JP63250370A JP25037088A JP2949287B2 JP 2949287 B2 JP2949287 B2 JP 2949287B2 JP 63250370 A JP63250370 A JP 63250370A JP 25037088 A JP25037088 A JP 25037088A JP 2949287 B2 JP2949287 B2 JP 2949287B2
Authority
JP
Japan
Prior art keywords
steam
pressure
heat recovery
recovery boiler
exhaust heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63250370A
Other languages
Japanese (ja)
Other versions
JPH0297801A (en
Inventor
利則 重中
巌 日下
弘師 吉崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP63250370A priority Critical patent/JP2949287B2/en
Publication of JPH0297801A publication Critical patent/JPH0297801A/en
Application granted granted Critical
Publication of JP2949287B2 publication Critical patent/JP2949287B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、複合発電プラントにおける排熱回収ボイラ
に係り、特に発生蒸気を補助蒸気系へ供給する排熱回収
ボイラの抽気方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to an exhaust heat recovery boiler in a combined cycle power plant, and more particularly to a method of extracting air from an exhaust heat recovery boiler that supplies generated steam to an auxiliary steam system. .

〔従来の技術〕[Conventional technology]

高効率発電の一環として、最近、複合発電プラントの
建設が進められている。このプラントは、ガスタービン
によって発電するとともに、ガスタービンから排出され
た排ガスの保有熱を排熱回収ボイラで回収し、その排熱
回収ボイラで発生した蒸気により蒸気タービンを駆動し
て発電させるシステムになっている。
As part of high-efficiency power generation, construction of a combined cycle power plant has recently been promoted. This plant generates electricity using a gas turbine, collects the heat of the exhaust gas discharged from the gas turbine with an exhaust heat recovery boiler, and drives a steam turbine with the steam generated by the exhaust heat recovery boiler to generate power. Has become.

このプラントは前述のような高効率発電に加えガスタ
ービンの特長である急速起動の容易性、高い負荷応答性
などの特長も有しており、近年の電力需要形態に即した
中間負荷運用に好適な発電プラントである。また、この
発電プラントは、ガスタービンと排熱回収ボイラと蒸気
タービンの組合わせで出力は約12万kwであるので、それ
ら複数の装置を組合わせて、高出力の発電プラントを構
成する。
In addition to the high-efficiency power generation described above, this plant has the features of gas turbines, such as easy start-up and high load responsiveness, making it suitable for intermediate load operation in accordance with recent power demand patterns. Power plant. In addition, this power plant has a power output of about 120,000 kw in combination of a gas turbine, an exhaust heat recovery boiler, and a steam turbine. Therefore, a high output power plant is configured by combining a plurality of these devices.

第10図は、この複合プラントの概略系統図である。 FIG. 10 is a schematic system diagram of this combined plant.

ガスタービン4からの排ガスGは、排熱回収ボイラ5
の排ガス通路6に導入される。この排ガス通路6には、
過熱器12,高圧ドラム8,高圧蒸発器10、及び高圧節炭器
7、が配置される。
The exhaust gas G from the gas turbine 4 is supplied to an exhaust heat recovery boiler 5
Into the exhaust gas passage 6. In this exhaust gas passage 6,
A superheater 12, a high-pressure drum 8, a high-pressure evaporator 10, and a high-pressure economizer 7 are arranged.

一方、被加熱流体である給水WFは、復水ポンプ17より
給水管18を経て高圧節炭器7に供給され、所定の温度ま
でに予熱された後、高圧ドラム8へ供給される。
On the other hand, water W F is a heated fluid is supplied to the high pressure economizer 7 through the water supply pipe 18 from the condensate pump 17, after being preheated up to a predetermined temperature, is supplied to the high pressure drum 8.

高圧ドラム8へ供給された給水は、高圧ドラム8の高
圧下降管9を経て高圧蒸発器10で一部が蒸気となり残り
は給水で高圧ドラム8に戻る。高圧ドラム8内で分離さ
れた蒸気はドラム蒸気出口管11を経て、過熱器12へ送ら
れ、ここでさらに昇温された後、高圧主蒸気管13より蒸
気タービン14へ供給され、蒸気タービン14により発電機
15を駆動して発電を行なう。
A part of the water supplied to the high-pressure drum 8 passes through the high-pressure downcomer 9 of the high-pressure drum 8 and becomes a part of steam in the high-pressure evaporator 10, and the rest returns to the high-pressure drum 8 by water supply. The steam separated in the high-pressure drum 8 is sent to a superheater 12 via a drum steam outlet pipe 11, where the temperature is further increased, and then supplied to a steam turbine 14 from a high-pressure main steam pipe 13, and the steam turbine 14 By generator
Drive 15 to generate electricity.

また、第11図に示す如く、プラント起動時または停止
時には蒸気タービン14のグランドシール用の蒸気を必要
とするため、補助蒸気ヘッダー21から蒸気が補助蒸気管
20およびグランドシール蒸気母管22を経由して、蒸気タ
ービン14へ供給される。なお、補助蒸気ヘッダー21への
蒸気供給源としては、通常、補助ボイラ23が使用される
が、複合発電プラントの場合、排熱回収ボイラ5が複数
設置されるため、排熱回収ボイラ5の高圧主蒸気管13か
らの蒸気も、高圧主蒸気抽気管19を経由して供給され
る。
Also, as shown in FIG. 11, when starting or stopping the plant, steam for the gland seal of the steam turbine 14 is required, so that the steam is supplied from the auxiliary steam header 21 to the auxiliary steam pipe.
The steam is supplied to the steam turbine 14 via the 20 and the gland seal steam pipe 22. The auxiliary boiler 23 is usually used as a steam supply source to the auxiliary steam header 21, but in the case of a combined cycle power plant, a plurality of exhaust heat recovery boilers 5 are installed. The steam from the main steam pipe 13 is also supplied via the high-pressure main steam extraction pipe 19.

一方、ガスタービン排ガスG中の窒素酸化物(以下NO
xと略す)を除去するため、通常、排熱回収ボイラ5の
中に、脱硝装置31が、第10図に示す如く、高圧蒸発器10
の後流側あるいは、高圧蒸発器10の間に設置される。
On the other hand, nitrogen oxides (hereinafter referred to as NO
In general, a denitration device 31 is provided in the exhaust heat recovery boiler 5 to remove the high pressure evaporator 10 as shown in FIG.
It is installed on the downstream side or between the high-pressure evaporators 10.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

このように、補助蒸気として排熱回収ボイラ5からの
発生蒸気を利用する場合、蒸気を抽気することによって
高圧ドラム8の圧力が低下し、蒸発量が増加することか
ら、蒸気を多く抽気した場合以下のような問題が生ず
る。すなわち、 (1)高圧ドラム8圧力が低下すると、蒸発量が増加し
ドラムの内部に設置されている気水分離器の分離性能が
低下し、蒸気中の水滴が増加し蒸気タービンのタービン
ブレードを損傷する。また、気水分離器の分離性能が低
下することに対応して、気水分離器の数を増加させる
と、ドラムが必要以上に大きくなり非常に不経済であ
る。
As described above, when the steam generated from the exhaust heat recovery boiler 5 is used as the auxiliary steam, when the steam is extracted, the pressure of the high-pressure drum 8 decreases, and the amount of evaporation increases. The following problems arise. (1) When the pressure of the high-pressure drum 8 decreases, the amount of evaporation increases, the separation performance of the steam separator installed inside the drum decreases, water droplets in the steam increase, and the turbine blades of the steam turbine Damage. Further, if the number of steam-water separators is increased in response to the decrease in the separation performance of the steam-water separator, the drum becomes unnecessarily large, which is very uneconomical.

(2)蒸発量が増加するため、高圧蒸発器出口連絡管24
やドラム蒸気出口管11の中の蒸気流速が増加し、振動が
発生する。また、蒸発量の増加に対応して上記の管径を
大きくすることは非常に不経済である。
(2) Since the amount of evaporation increases, the high-pressure evaporator outlet connection pipe 24
And the steam flow rate in the drum steam outlet pipe 11 increases, and vibration occurs. In addition, it is very uneconomical to increase the diameter of the tube in response to an increase in the amount of evaporation.

(3)高圧ドラム8圧力が低下した場合、蒸発量が増加
し高圧蒸発器内の流体温度が下がり、それと熱交換する
ガスタービンの排ガスの保有熱が必要以上に奪われ、脱
硝装置31入口のガス温度が低下し、脱硝反応の反応速度
が低下し排出NOxが増加する。
(3) When the pressure of the high-pressure drum 8 decreases, the amount of evaporation increases, the fluid temperature in the high-pressure evaporator decreases, and the heat retained by the exhaust gas of the gas turbine that exchanges heat with it is taken away more than necessary. The gas temperature decreases, the reaction rate of the denitration reaction decreases, and the exhausted NOx increases.

本発明の目的は、上記した従来技術の欠点を解消し、
補助蒸気用として排熱回収ボイラからの発生蒸気を運転
性能を低下させずに抽気する方法を提供することにあ
る。
An object of the present invention is to eliminate the above-mentioned disadvantages of the prior art,
An object of the present invention is to provide a method for extracting steam generated from an exhaust heat recovery boiler for auxiliary steam without lowering the operation performance.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的は,排ガスから脱硝と熱回収をして蒸気を発
生しその蒸気を蒸気タービンと補助蒸気系統へ供給する
系統を備えた複数の排熱回収ボイラを有し、前記複数の
排熱回収ボイラの何れか1つの排熱回収ボイラのドラム
圧力を検知してその信号により前記補助蒸気系統へ蒸気
を供給する排熱回収ボイラを選択するようにした排熱回
収ボイラの補助蒸気抽気方法により達成される。
The above object has a plurality of exhaust heat recovery boilers provided with a system for generating steam by performing denitration and heat recovery from exhaust gas and supplying the generated steam to a steam turbine and an auxiliary steam system. The auxiliary steam extraction method of the exhaust heat recovery boiler detects the drum pressure of any one of the exhaust heat recovery boilers and selects the exhaust heat recovery boiler that supplies steam to the auxiliary steam system according to the signal. You.

前記ドラム圧力の信号に代えて、蒸気または給水の配
管内流量あるいは配管内流速の信号、脱硝装置入口ガス
温度の信号、蒸気タービン入口圧力の信号のうちの何れ
かを検知して用いるようにしてもよい。
Instead of the drum pressure signal, a signal of steam or feed water flow rate in the pipe or flow rate in the pipe, a signal of the denitration apparatus inlet gas temperature, and a signal of the steam turbine inlet pressure are detected and used. Is also good.

〔作用〕[Action]

本発明は、複数の排熱回収ボイラの何れか1つの排熱
回収ボイラのドラム圧力,蒸気又は給水の配管内流量あ
るいは配管内流速の信号,脱硝装置入口ガス温度の,蒸
気タービン入口圧力の信号を検知してその信号により前
記補助蒸気系統へ蒸気を供給する排熱回収ボイラを選択
することにより,上記した従来技術の欠点を解消し、補
助蒸気用として排熱回収ボイラからの発生蒸気を運転性
能を低下させずに抽気することが出来る。
The present invention relates to a signal of a drum pressure, a flow rate of steam or feed water in a pipe or a flow rate in a pipe, a signal of an inlet gas temperature of a denitration apparatus, and a signal of a steam turbine inlet pressure of any one of a plurality of exhaust heat recovery boilers. The above-mentioned drawbacks of the prior art are eliminated by operating the steam generated from the exhaust heat recovery boiler for auxiliary steam by selecting the exhaust heat recovery boiler that supplies steam to the auxiliary steam system according to the detected signal. Bleed can be performed without deteriorating performance.

〔実施例〕〔Example〕

以下、本発明の各実施例を図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の第1実施例に係る複合発電プラント
の概略系統図である。図中の符号1Aから24までは従来の
ものと同一である。第1図の説明の前に、排熱回収ボイ
ラ5からの発生蒸気を抽気した場合の、高圧ドラム8圧
力、蒸発量および脱硝装置入ロガス温度の特性を説明す
る。
FIG. 1 is a schematic system diagram of a combined cycle power plant according to a first embodiment of the present invention. The reference numerals 1A to 24 in the figure are the same as those of the related art. Prior to the description of FIG. 1, the characteristics of the pressure of the high-pressure drum 8, the amount of evaporation, and the temperature of the gas entering the denitration apparatus when the steam generated from the exhaust heat recovery boiler 5 is extracted will be described.

第2図に、ガスタービン4は同一負荷であっても、蒸
気抽気量を増加すると高圧ドラム8圧力は低下し、それ
に伴なって蒸発量が増加、脱硝装置31の入口ガス温度が
低下する関係を示す。
FIG. 2 shows that even when the gas turbine 4 has the same load, the pressure of the high-pressure drum 8 decreases as the steam extraction amount increases, the evaporation amount increases accordingly, and the inlet gas temperature of the denitration device 31 decreases. Is shown.

第3図は、蒸気抽気量と高圧ドラム8圧力および気水
分離器の処理可能蒸気量の関係を示したもので、高圧ド
ラム8圧力が低下すると蒸発量の増加により気水分離器
の気水分離性能が低減し,高圧ドラム8圧力の下限が存
在する。すなわち、蒸気は高圧ドラム8圧力が、抽気無
しのときの圧力P0から圧力P1(許容圧力)まで低下する
まで抽気ができることになる。また、抽気可能量以上の
補助蒸気を必要とする場合は、抽気する排熱回収ボイラ
5の缶数を増すか補助ボイラ23を運転することで対応す
る必要がある。従って、本発明は第1図に示すように高
圧ドラム8圧力を圧力検知器27で検知して、圧力P1にな
るまでは、調節弁26Aを開することによってNo.1排熱回
収ボイラ5から蒸気を抽気し、それ以上に蒸気を必要と
する場合は、No.2,No.3という具合に抽気する排熱回収
ボイラを増すか、あるいは、補助ボイラ23を運転するよ
うにしたものである。ここで、排熱回収ボイラ5から抽
気するか、補助ボイラ23を運転するかは制御器25の中に
あらかじめ、運転している排熱回収ボイラ5を補助ボイ
ラ23より優先する等のプログラムを組んで決めておけば
よい。また、ガスタービン4の負荷によって、許容圧力
P1は異なるので、ガスタービン4の負荷と許容圧力P1
関係を求めて制御器25の中にプログラムで組んでおくこ
ともできる。このガスタービン負荷によってプログラム
を組むということは以下に示す第2から第4実施例につ
いても言えることである。
FIG. 3 shows the relationship between the amount of extracted steam, the pressure of the high-pressure drum 8 and the amount of steam that can be processed by the steam-water separator. The separation performance is reduced, and there is a lower limit of the high pressure drum 8 pressure. That is, the vapor pressure drum 8 pressure, so that it is bled to decrease the pressure P 0 in the case of no bleed until the pressure P 1 (permissible pressure). Further, when the auxiliary steam more than the bleedable amount is required, it is necessary to cope by increasing the number of cans of the exhaust heat recovery boiler 5 to be bleed or operating the auxiliary boiler 23. Accordingly, the present invention is a high pressure drum 8 pressure as shown in FIG. 1 is detected by the pressure detector 27, until a pressure P 1, No.1 by the control valve 26A opens the exhaust heat recovery boiler 5 If steam is extracted from, and more steam is required, increase the number of exhaust heat recovery boilers that extract in No.2, No.3, or operate the auxiliary boiler 23. is there. Here, whether to bleed air from the exhaust heat recovery boiler 5 or to operate the auxiliary boiler 23 is programmed in advance in the controller 25 such that the operating exhaust heat recovery boiler 5 is given priority over the auxiliary boiler 23. It should be decided in. Also, depending on the load of the gas turbine 4, the allowable pressure
P 1 can also be left in partnership with different since, programmed into the controller 25 seeking allowable pressure P 1 of the relationship between the load of the gas turbine 4. The fact that a program is formed based on the gas turbine load also applies to the following second to fourth embodiments.

第4図は、本発明の第2実施例を説明するための図で
ある。
FIG. 4 is a diagram for explaining a second embodiment of the present invention.

この実施例において、前記第1実施例と相違する点
は、第1実施例では高圧ドラム8圧力を検知して抽気蒸
気量を制御していたのに対し、第2実施例のものは、高
圧蒸発器出口連絡管24内の流量(流速)を流量計28で測
定して、それによって抽気蒸気量を制御するようにした
ところである。
This embodiment differs from the first embodiment in that the first embodiment detects the pressure of the high-pressure drum 8 to control the amount of extracted steam, whereas the second embodiment employs a high-pressure drum. The flow rate (flow rate) in the evaporator outlet communication pipe 24 is measured by the flow meter 28, and thereby the amount of extracted steam is controlled.

第5図は、抽気蒸気量と高圧蒸発器出口連絡管24内の
蒸気流量、流速の関係を示したもので、制眼流速V1とな
る蒸気流量W1まで抽気可能ということである。なお、こ
こで高圧蒸発器出口連絡管24内の流量のかわりに、ドラ
ム蒸気出口管11や高圧主蒸気管13や給水管18の中の流量
で制御することも可能である。
Figure 5 is a steam flow rate of extracted steam flow rate and the high-pressure evaporator outlet connection pipe 24, shows the relationship between the flow rate, is that possible extraction until the vapor flow rate W 1 as a Seime flow velocity V 1. Here, instead of the flow rate in the high-pressure evaporator outlet connection pipe 24, it is also possible to control the flow rate in the drum steam outlet pipe 11, the high-pressure main steam pipe 13, and the water supply pipe 18.

第6図は、本発明の第3実施例を説明するための図で
ある。この実施例において、前記第1ないし第2実施例
と相違する点は、第1ないし第2実施例においては、高
圧ドラム8圧力や高圧蒸発器出口連絡管24内の流量で抽
気蒸気量を制御していたのに対し、第3実施例では、脱
硝装置31入口ガス温度で抽気蒸気量を制御するようにし
たところである。
FIG. 6 is a diagram for explaining a third embodiment of the present invention. This embodiment differs from the first and second embodiments in that, in the first and second embodiments, the amount of extracted steam is controlled by the pressure of the high-pressure drum 8 and the flow rate in the high-pressure evaporator outlet communication pipe 24. On the other hand, in the third embodiment, the amount of extracted steam is controlled by the gas temperature at the inlet of the denitration device 31.

第7図は抽気蒸気量と脱硝装置31入口ガス温度の関係
を示したもので、NOx排出規制値を満足するための許容
ガス温度Tg1まで抽気可能ということである。
Figure 7 is shows the relationship between the extracted steam amount and the denitrification device 31 inlet gas temperature, is that the bleed until acceptable gas temperature Tg 1 to satisfy the NOx emission regulation value.

第8図は、本発明の第4実施例を説明するための図で
ある。第8図は、前記第1、第2および第3実施例と比
べ、排熱回収ボイラ5の高圧節炭器7のガス後流側に比
較的圧力の低い圧力系の低圧蒸発器33および低圧節炭器
30を設けたものである。復水ポンプ17からの給水wFは低
圧節炭器30へ供給され、そこで所定の温度まで予熱され
た後、低圧ドラム37に供給される。低圧ドラム37に供給
された給水は、前記高圧ドラム8と同様に、低圧下降管
32を経て低圧蒸発器33、低圧ドラム37の順で循環する。
低圧ドラム37内で分離された蒸気は低圧主蒸気管35を経
て、蒸気タービン14へ送られる。高圧系へは低圧節炭器
30出口給水の一部が分岐され高圧給水ポンプ34を経て、
高圧節炭器7へ供給される。それ以降は前記に示したと
おりである。
FIG. 8 is a view for explaining a fourth embodiment of the present invention. FIG. 8 shows a low-pressure evaporator 33 and a low-pressure evaporator 33 of a relatively low pressure system on the gas downstream side of the high-pressure economizer 7 of the exhaust heat recovery boiler 5 as compared with the first, second and third embodiments. Economizer
30 is provided. Water w F from condensate pump 17 is supplied to the low-pressure economizer 30, where it is preheated to a predetermined temperature, it is supplied to the low pressure drum 37. The water supplied to the low-pressure drum 37 is supplied to the low-pressure
The refrigerant circulates through a low-pressure evaporator 33 and a low-pressure drum 37 in this order via 32.
The steam separated in the low-pressure drum 37 is sent to the steam turbine 14 via the low-pressure main steam pipe 35. Low pressure economizer for high pressure system
Part of the 30 outlet water supply is branched and passes through the high pressure water supply pump 34,
It is supplied to the high-pressure economizer 7. After that, it is as described above.

前記第1、第2および第3の実施例は高圧系だけを有
した排熱回収ボイラ5について記していたが、もちろ
ん、高圧系と低圧系を有する排熱回収ボイラ5について
も言えることである。
In the first, second and third embodiments, the exhaust heat recovery boiler 5 having only the high pressure system has been described. Of course, the same applies to the exhaust heat recovery boiler 5 having the high pressure system and the low pressure system. .

第4の実施例において、前記第1実施例と相違する点
は、第1実施例においては、高圧ドラム8圧力で抽気蒸
気量を制御していたのに対し、低圧主蒸気管35の蒸気タ
ービン入口圧力36で抽気蒸気量を制御するようにしたと
ころである。もちろん蒸気タービン入口圧力36のかわり
に低圧ドラム37圧力で制御することもできる。
The fourth embodiment differs from the first embodiment in that the amount of extracted steam is controlled by the pressure of the high-pressure drum 8 in the first embodiment, whereas the steam turbine of the low-pressure main steam pipe 35 is different from that of the first embodiment. The amount of extracted steam is controlled by the inlet pressure 36. Of course, it is also possible to control with the low pressure drum 37 pressure instead of the steam turbine inlet pressure 36.

第9図は抽気蒸気量と低圧主蒸気管35の蒸気タービン
入口圧力36、低圧ドラム37圧力の関係を示したもので、
蒸気タービン入口圧力36を大気圧より高めに保つ最低圧
力P1まで抽気可能ということである。ここで大気圧より
高めの圧力を確保する理由は、負圧になると空気が侵入
し、腐蝕等の問題が生ずるためである。もちろん、蒸気
タービン入口圧力36の代わりに低圧ドラム37圧力で制御
することも可能である。
FIG. 9 shows the relationship between the amount of extracted steam and the pressure of the steam turbine inlet 36 of the low-pressure main steam pipe 35 and the pressure of the low-pressure drum 37.
Until the minimum pressure P 1 to maintain the steam turbine inlet pressure 36 higher than the atmospheric pressure is that bleed possible. The reason why the pressure higher than the atmospheric pressure is ensured here is that when the pressure becomes a negative pressure, air enters and a problem such as corrosion occurs. Of course, it is also possible to control with the low pressure drum 37 pressure instead of the steam turbine inlet pressure 36.

〔発明の効果〕〔The invention's effect〕

本発明によれば、補助蒸気として排熱回収ボイラの発
生蒸気を抽気して利用する場合、過剰抽気を防止できる
ので、排熱回収ボイラの正常運転が常に可能となる効果
がある。
According to the present invention, when the steam generated by the exhaust heat recovery boiler is extracted and used as auxiliary steam, excessive extraction can be prevented, so that there is an effect that the normal operation of the exhaust heat recovery boiler is always possible.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第1実施例に係る複合発電プラントの
概略系統図,第2図は蒸気抽気量と高圧ドラム圧力、蒸
発量および脱硝装置入口ガス温度の関係を表わす図表,
第3図は蒸気抽気量と高圧ドラム圧力および気水分離器
の処理可能蒸気量の関係を示す図表,第4図は本発明の
第2実施例に係る複合発電プラントの概略系統図,第5
図は蒸気抽気量と蒸気流量、流速の関係を示す図表,第
6図は本発明の第3実施例に係る複合発電プラントの概
略系統図,第7図は蒸気抽気量と脱硝装置入口ガス温度
の関係を示す図表,第8図は本発明の第4実施例に係る
複合発電プラント概略系統図,第9図は蒸気抽気量と低
圧主蒸気管の蒸気タービン入口圧力、低圧ドラム圧力の
関係を示す図表,第10図は従来の複合発電プラントの概
略系統図,第11図は従来の補助蒸気系統図である。 4……ガスタービン,5……排熱回収ボイラ,8……高圧ド
ラム,14……蒸気タービン,21…補助蒸気ヘッダー,23…
補助ボイラ,24……高圧蒸発器出口連絡管,27……圧力検
知器,28……流量計,31……脱硝装置,36……蒸気タービ
ン入口圧力,G……排ガス,
FIG. 1 is a schematic system diagram of a combined cycle power plant according to a first embodiment of the present invention, and FIG. 2 is a table showing a relationship among a steam extraction amount, a high-pressure drum pressure, an evaporation amount, and a gas temperature at an inlet of a denitration apparatus.
FIG. 3 is a chart showing the relationship between the amount of steam extracted, the high-pressure drum pressure, and the amount of steam that can be processed by the steam separator. FIG. 4 is a schematic system diagram of a combined cycle power plant according to a second embodiment of the present invention.
Fig. 6 is a table showing the relationship between the amount of steam bleed, steam flow rate, and flow velocity. Fig. 6 is a schematic system diagram of the combined cycle power plant according to the third embodiment of the present invention. FIG. 8 is a schematic diagram of a combined cycle power plant according to a fourth embodiment of the present invention, and FIG. 9 is a diagram showing the relationship between the amount of steam bleed, the inlet pressure of the steam turbine of the low-pressure main steam pipe, and the low-pressure drum pressure. FIG. 10 is a schematic diagram of a conventional combined cycle power plant, and FIG. 11 is a diagram of a conventional auxiliary steam system. 4… Gas turbine, 5… Waste heat recovery boiler, 8… High pressure drum, 14… Steam turbine, 21… Auxiliary steam header, 23…
Auxiliary boiler, 24… High pressure evaporator outlet connection pipe, 27… Pressure detector, 28… Flow meter, 31… Denitration equipment, 36 …… Steam turbine inlet pressure, G…

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】排ガスから脱硝と熱回収をして蒸気を発生
しその蒸気を蒸気タービンと補助蒸気系統へ供給する系
統を備えた複数の排熱回収ボイラを有し、前記複数の排
熱回収ボイラの何れか1つの排熱回収ボイラのドラム圧
力を検知してその信号により前記補助蒸気系統へ蒸気を
供給する排熱回収ボイラを選択するようにしたことを特
徴とする排熱回収ボイラの補助蒸気抽気方法。
1. A plurality of exhaust heat recovery boilers having a system for generating steam by performing denitration and heat recovery from exhaust gas and supplying the steam to a steam turbine and an auxiliary steam system. An auxiliary heat recovery boiler, wherein a drum pressure of any one of the exhaust heat recovery boilers of the boiler is detected and an exhaust heat recovery boiler for supplying steam to the auxiliary steam system is selected based on the detected signal. Steam extraction method.
【請求項2】前記ドラム圧力の信号に代えて、蒸気また
は給水の配管内流量あるいは配管内流速の信号とする請
求項1に記載の排熱回収ボイラの補助蒸気抽気方法。
2. The auxiliary steam extraction method for an exhaust heat recovery boiler according to claim 1, wherein the signal of the steam pressure or the flow rate of the steam or feed water in the pipe is used instead of the signal of the drum pressure.
【請求項3】前記ドラム圧力の信号に代えて、脱硝装置
入口ガス温度の信号とする請求項1に記載の排熱回収ボ
イラの補助蒸気抽気方法。
3. The auxiliary steam extraction method for an exhaust heat recovery boiler according to claim 1, wherein the signal of the gas temperature at the denitration device is used instead of the signal of the drum pressure.
【請求項4】前記ドラム圧力の信号に代えて、蒸気ター
ビン入口圧力の信号とする請求項1に記載の排熱回収ボ
イラの補助蒸気抽気方法。
4. The method according to claim 1, wherein a signal of a steam turbine inlet pressure is used instead of the drum pressure signal.
JP63250370A 1988-10-04 1988-10-04 Auxiliary steam extraction method for waste heat recovery boiler Expired - Fee Related JP2949287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63250370A JP2949287B2 (en) 1988-10-04 1988-10-04 Auxiliary steam extraction method for waste heat recovery boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63250370A JP2949287B2 (en) 1988-10-04 1988-10-04 Auxiliary steam extraction method for waste heat recovery boiler

Publications (2)

Publication Number Publication Date
JPH0297801A JPH0297801A (en) 1990-04-10
JP2949287B2 true JP2949287B2 (en) 1999-09-13

Family

ID=17206913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63250370A Expired - Fee Related JP2949287B2 (en) 1988-10-04 1988-10-04 Auxiliary steam extraction method for waste heat recovery boiler

Country Status (1)

Country Link
JP (1) JP2949287B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4776413B2 (en) * 2006-03-24 2011-09-21 中国電力株式会社 Auxiliary steam supply device
EP3092218B1 (en) 2014-01-07 2022-03-09 Novasep Process Solutions Process for the purification of aromatic aminoacids

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179310A (en) * 1981-04-28 1982-11-04 Mitsubishi Heavy Ind Ltd Boiler change-over system for additional switching-in and disconnection in combined plant
JPS5840506B2 (en) * 1977-11-08 1983-09-06 松下電器産業株式会社 Inkjet recording method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840506U (en) * 1981-09-11 1983-03-17 株式会社東芝 Combined cycle power plant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840506B2 (en) * 1977-11-08 1983-09-06 松下電器産業株式会社 Inkjet recording method
JPS57179310A (en) * 1981-04-28 1982-11-04 Mitsubishi Heavy Ind Ltd Boiler change-over system for additional switching-in and disconnection in combined plant

Also Published As

Publication number Publication date
JPH0297801A (en) 1990-04-10

Similar Documents

Publication Publication Date Title
JP3780884B2 (en) Steam turbine power plant
EP1205641B1 (en) Combined cycle gas turbine system
JP2001329806A (en) Combined cycle plant
JP2949287B2 (en) Auxiliary steam extraction method for waste heat recovery boiler
RU2144994C1 (en) Combined-cycle plant
JP3222035B2 (en) Double pressure type waste heat recovery boiler feeder
JP3745419B2 (en) Waste heat recovery boiler
JP3068972B2 (en) Combined cycle power plant
JP2008075996A (en) Exhaust heat recovery boiler and its steam pressure control method
JPH07217803A (en) Method and equipment for starting waste heat boiler with at least two separating pressure device
JP3133183B2 (en) Combined cycle power plant
JPH06241005A (en) Compound generating equipment
JP2531801B2 (en) Exhaust heat recovery heat exchanger controller
JP2791076B2 (en) Auxiliary steam supply device
JP2002371807A (en) Turbine equipment and steam converting device
JP2002106804A (en) Feedwater flow-rate controller of variable once- through boiler
JPS61213401A (en) Waste-heat recovery boiler
JP2923122B2 (en) Drain recovery equipment for nuclear power plants
JPS63253105A (en) Compound generating plant
JPH11148603A (en) Controller for coal/residual oil gassifying combined power generation plant
JPH06221504A (en) Waste heat recovery heat exchanger
JP2604117B2 (en) Double pressure type waste heat boiler water supply system
JP3300079B2 (en) Water supply system and exhaust heat recovery boiler for combined cycle plant
JP2951294B2 (en) How to stop the waste heat recovery boiler
JP2637194B2 (en) Combined plant startup bypass system and its operation method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees