JPH06294305A - Exhaust heat recovery boiler - Google Patents

Exhaust heat recovery boiler

Info

Publication number
JPH06294305A
JPH06294305A JP8215493A JP8215493A JPH06294305A JP H06294305 A JPH06294305 A JP H06294305A JP 8215493 A JP8215493 A JP 8215493A JP 8215493 A JP8215493 A JP 8215493A JP H06294305 A JPH06294305 A JP H06294305A
Authority
JP
Japan
Prior art keywords
reheater
heat recovery
recovery boiler
exhaust heat
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8215493A
Other languages
Japanese (ja)
Inventor
Kimito Ito
藤 公 人 伊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8215493A priority Critical patent/JPH06294305A/en
Publication of JPH06294305A publication Critical patent/JPH06294305A/en
Pending legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To prevent generation of over heat stress on a reheater pipe side at the time of starting, in an exhaust heat recovery boiler provided with a reheater. CONSTITUTION:In an exhaust heat recovery boiler provided with a reheater, which is provided with a baffle plate 31 in order to allow no gas turbine exhaust gas to bypass the thermal transferring surface of an exhaust heat recovery boiler, the amount of fuel supplied into a gas turbine 2 is controlled in response to condition of a temperature distribution on the pipe wall surface of a reheater pipe side 32.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガスタービンからの排
ガスによって蒸気を発生させる再熱器付排熱回収ボイラ
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust heat recovery boiler with a reheater that produces steam by the exhaust gas from a gas turbine.

【0002】[0002]

【従来の技術】排熱回収式コンバインド発電プラントで
は、近年ガスタービン入口ガス温度の高温化に伴ない、
ガスタービン排ガス温度も600℃前後と高くなり、プ
ラント効率を高めるために再熱3圧力形の蒸気サイクル
が採用されつつある。
2. Description of the Related Art In an exhaust heat recovery type combined power generation plant, as the gas temperature at the gas turbine inlet has recently become higher,
The exhaust gas temperature of the gas turbine also rises to around 600 ° C., and a reheat triple pressure steam cycle is being adopted to improve plant efficiency.

【0003】図5に上記再熱3圧力形排熱回収式コンバ
インドサイクル発電プラントの構成の一例を示す。図中
符号1は空気圧縮機であって、その空気圧縮機1で加圧
された空気が燃焼器2に供給され、その燃焼器2に供給
された燃料の燃焼によって高圧高温となったガスがガス
タービン3に導入される。そして、上記ガスタービン3
で仕事を行なった高温排ガスが排熱回収ボイラ4に導入
される。
FIG. 5 shows an example of the construction of the reheat 3 pressure type exhaust heat recovery type combined cycle power generation plant. In the figure, reference numeral 1 is an air compressor. The air compressed by the air compressor 1 is supplied to a combustor 2, and the gas that has become high pressure and high temperature due to combustion of the fuel supplied to the combustor 2 It is introduced into the gas turbine 3. And the gas turbine 3
The high-temperature exhaust gas that has performed the work is introduced into the exhaust heat recovery boiler 4.

【0004】上記排熱回収ボイラ4内には、高温排ガス
の導入側から順次、高圧第2過熱器5、再熱器6、高圧
第1過熱器7、高圧蒸発器8、中圧過熱器9、低圧過熱
器10、高圧第2節炭器11、中圧蒸発器12、中圧節
炭器13、高圧第1節炭器14、低圧蒸発器12、中圧
節炭器13、高圧第1節炭器14、低圧蒸発器15、及
び低圧節炭器16が配設されており、上記排熱回収ボイ
ラ4に導入された高温排ガスは、上記過熱器等の熱交換
器で順次熱交換した後、煙突(図示せず)から大気中に
放出される。
In the exhaust heat recovery boiler 4, the high-pressure second superheater 5, the reheater 6, the high-pressure first superheater 7, the high-pressure evaporator 8, and the intermediate-pressure superheater 9 are sequentially installed from the side where the high-temperature exhaust gas is introduced. , Low-pressure superheater 10, high-pressure second economizer 11, medium-pressure evaporator 12, medium-pressure economizer 13, high-pressure first economizer 14, low-pressure evaporator 12, medium-pressure economizer 13, high-pressure first A economizer 14, a low-pressure evaporator 15, and a low-pressure economizer 16 are provided, and the high-temperature exhaust gas introduced into the exhaust heat recovery boiler 4 is sequentially heat-exchanged with a heat exchanger such as the superheater. After that, it is released into the atmosphere from a chimney (not shown).

【0005】一方、復水器17で復水された復水は、復
水ポンプ18によって排熱回収ボイラ4の低圧節炭器1
6に供給される。低圧節炭器16へ供給された給水は排
ガスとの熱交換により加熱された後、その一部が高圧給
水ポンプ19によって高圧第1節炭器14、高圧第2節
炭器11、高圧蒸発器8、高圧第1過熱器7及び高圧第
2過熱器5で順次加熱され、高温高圧の過熱蒸気となっ
て高圧蒸気タービン20に供給される。そして、上記高
圧蒸気タービン20で仕事を行なった蒸気は再熱器6に
導入される。
On the other hand, the condensate condensed in the condenser 17 is returned to the low pressure economizer 1 of the exhaust heat recovery boiler 4 by the condensate pump 18.
6 is supplied. The feed water supplied to the low-pressure economizer 16 is heated by heat exchange with the exhaust gas, and then a part of the water is supplied to the high-pressure feed pump 19, the high-pressure first economizer 14, the high-pressure second economizer 11, and the high-pressure evaporator. 8, the high-pressure first superheater 7 and the high-pressure second superheater 5 are sequentially heated to form high-temperature high-pressure superheated steam, which is supplied to the high-pressure steam turbine 20. Then, the steam that has worked in the high-pressure steam turbine 20 is introduced into the reheater 6.

【0006】また、前記低圧節炭器16で加熱された給
水の他の一部は中圧給水ポンプ21によって中圧節炭器
13を経て中圧蒸発器12に供給され、そこで発生した
蒸気も中圧過熱器9を経て上記再熱器6に導入される。
そして、この再熱器6で再熱された蒸気が中圧蒸気ター
ビン22に導入され、この中空蒸気タービン22で仕事
を行なった蒸気は低圧蒸気タービン23に供給される。
Further, another part of the feed water heated by the low pressure economizer 16 is supplied to the intermediate pressure evaporator 12 via the intermediate pressure economizer 13 by the intermediate pressure feed pump 21, and the steam generated there is also generated. It is introduced into the reheater 6 through the medium pressure superheater 9.
Then, the steam reheated by the reheater 6 is introduced into the intermediate pressure steam turbine 22, and the steam that has worked in the hollow steam turbine 22 is supplied to the low pressure steam turbine 23.

【0007】また、前記低圧節炭器16に供給されそこ
で排ガスとの熱交換により加熱された給水の一部は、低
圧蒸発器15の低圧ドラム24に流入し、上記低圧蒸発
器15で加熱され、そこで発生した蒸気は低圧ドラム2
4及び低圧加熱器10を経た後、前記中圧蒸気タービン
22からの蒸気とともに低圧蒸気タービン23に供給さ
れる。
A part of the feed water supplied to the low pressure economizer 16 and heated there by exchanging heat with the exhaust gas flows into the low pressure drum 24 of the low pressure evaporator 15 and is heated in the low pressure evaporator 15. , The steam generated there is low-pressure drum 2
4 and the low-pressure heater 10, and then supplied to the low-pressure steam turbine 23 together with the steam from the intermediate-pressure steam turbine 22.

【0008】そして、上記低圧蒸気タービン23に供給
された蒸気はそこで仕事を行ない、高圧蒸気タービン2
0及び中圧蒸気タービン22とともに発電機25を回転
駆動し、低圧蒸気タービン23で仕事を行なった排気は
復水器17に流入しそこで復水される。
The steam supplied to the low-pressure steam turbine 23 performs work there, and the high-pressure steam turbine 2
The exhaust gas, which rotates the generator 25 together with the zero and medium pressure steam turbines 22 and performs work in the low pressure steam turbine 23, flows into the condenser 17 and is condensed therein.

【0009】[0009]

【発明が解決しようとする課題】ところで、高圧の主蒸
気が蒸気タービンに入れられるまでの蒸気タービン起動
時においては、低圧蒸発器15で発生した蒸気は低圧ド
ラム24から低圧過熱器10を経た後、低圧バイパスラ
イン26を通って復水器17に戻される。また、中圧給
水ポンプ21で昇圧された後中圧節炭器13を経て中圧
蒸発器12の中圧ドラム27に供給された給水は、中圧
蒸発器12で加熱されて蒸発し、そこで発生した蒸気は
中圧ドラム27へ戻った後、高圧第1過熱器7、高圧第
2過熱器5を通り、さらに高圧バイパスライン30を通
って復水器17に戻される。
By the way, when the steam turbine is started until the high-pressure main steam is introduced into the steam turbine, the steam generated in the low-pressure evaporator 15 passes through the low-pressure drum 24 and the low-pressure superheater 10. , Is returned to the condenser 17 through the low pressure bypass line 26. Further, the feed water, which has been pressurized by the medium pressure water supply pump 21 and then supplied to the medium pressure drum 27 of the medium pressure evaporator 12 through the medium pressure economizer 13, is heated in the medium pressure evaporator 12 to be vaporized there. The generated steam returns to the intermediate-pressure drum 27, then passes through the high-pressure first superheater 7, the high-pressure second superheater 5, and further returns to the condenser 17 through the high-pressure bypass line 30.

【0010】しかして、上記蒸気タービンの起動時に
は、再熱器には蒸気は流れない。このため、再熱器6は
管外の熱伝達が支配的となる。
However, when the steam turbine is started, no steam flows in the reheater. For this reason, in the reheater 6, heat transfer outside the tube is dominant.

【0011】ところで、再熱器6は上部管寄せ、下部管
寄せ及び伝熱管パネルより構成されており、また各熱交
換器の外周部にはガスタービン排ガスが排熱回収ボイラ
の伝熱面をバイパスしないようにガス流動域にバッフル
プレート31が設けられているため、上部管寄せでは直
接排ガスに触れる下面とその下面からの熱伝導により温
度が上昇する上面とで温度差が生じ、下に凸に変形しよ
うとする。また下部管寄せでは、直接排ガスが触れると
上面とその上面からの熱伝導により温度が上昇する下面
との間に温度差が生じ、上に凸に変形しようとする。
By the way, the reheater 6 is composed of an upper pipe drawer, a lower pipe drawer, and a heat transfer pipe panel, and the gas turbine exhaust gas is provided on the heat transfer surface of the exhaust heat recovery boiler at the outer peripheral portion of each heat exchanger. Since the baffle plate 31 is provided in the gas flow region so as not to bypass, in the upper header, there is a temperature difference between the lower surface that directly contacts the exhaust gas and the upper surface where the temperature rises due to heat conduction from the lower surface, causing a downward convex. Try to transform into. Further, in the lower pipe draw, when the exhaust gas is directly contacted, a temperature difference occurs between the upper surface and the lower surface where the temperature rises due to heat conduction from the upper surface, and the upper surface tends to deform upward.

【0012】一方、伝熱管を構成する伝熱管群は同一伝
熱管パネルでは熱伸びの差は殆どないため、伝熱管群に
よって上部管寄せ及び下部管寄せの変形は拘束されるこ
とになる。したがって、起動時の排ガス温度上昇が急激
な場合には、上部管寄せ上面及び下部管寄せ下面には過
大な圧縮応力が発生し、また上部管寄せ下面及び下部管
寄せ上面には過大な引張応力が発生する。
On the other hand, in the heat transfer tube group which constitutes the heat transfer tube, there is almost no difference in thermal expansion in the same heat transfer tube panel, so that the deformation of the upper tube draw and the lower tube draw is restrained by the heat transfer tube group. Therefore, if the exhaust gas temperature rises rapidly at startup, excessive compressive stress will be generated on the upper and lower lower surfaces, and excessive tensile stress will be generated on the lower and lower upper surfaces. Occurs.

【0013】図6に、下部管寄せを例に上記起動時にお
ける排熱回収ボイラ入口ガス温度と再熱器管寄せ上下面
の温度差の関係を示す。すなわち、起動時にはガスター
ビン負荷の上昇に伴ない、排熱回収ボイラ入口ガス温度
が上昇し、ガス温度が最大となった後に再熱器下部管寄
せ上下面の温度差が最大となり、再熱器下部管寄せに生
じる熱応力も最大となる。しかして、起動時の排ガス温
度上昇が急激な場合には、再熱器下部管寄せ温度差が過
大となり、再熱器下部管寄せには過大な熱応力が発生す
る。
FIG. 6 shows the relationship between the temperature of the exhaust heat recovery boiler inlet gas and the temperature difference between the upper and lower surfaces of the reheater pipe at the time of startup, taking the lower pipe as an example. That is, at the time of start-up, the exhaust heat recovery boiler inlet gas temperature rises as the gas turbine load increases, and after the gas temperature reaches its maximum, the temperature difference between the upper and lower surfaces of the reheater lower pipe is maximized, and the reheater The thermal stress generated in the lower header is also maximum. Then, when the temperature of the exhaust gas rises rapidly at the time of startup, the temperature difference between the lower parts of the reheater lower pipe becomes excessive, and excessive thermal stress is generated in the lower part of the reheater pipe.

【0014】なお、図6は起動時の排熱回収ボイラ入口
ガス温度と再熱器下部管寄せ上下面の温度差の関係を示
したが、排熱回収ボイラ入口ガス温度と再熱器上部管寄
せ上下面間の温度差の関係についても同様である。
Although FIG. 6 shows the relationship between the exhaust heat recovery boiler inlet gas temperature and the temperature difference between the upper and lower surfaces of the reheater lower pipe at startup, the exhaust heat recovery boiler inlet gas temperature and the reheater upper pipe are shown. The same applies to the relationship of the temperature difference between the upper and lower surfaces.

【0015】本発明は、このような点に鑑み、再熱器付
の排熱回収ボイラにおいて、起動時に再熱器管寄せに過
大な熱応力を発生させないようにした排熱回収ボイラを
得ることを目的とする。
In view of the above, the present invention provides an exhaust heat recovery boiler equipped with a reheater, in which excessive heat stress is not generated in the reheater header when starting. With the goal.

【0016】[0016]

【課題を解決するための手段】第1の発明は、ガスター
ビン排ガスが排熱回収ボイラの伝熱面をバイパスしない
ようにガス流動域にバッフルプレートを設けた再熱器付
排熱回収ボイラにおいて、再熱器管寄せの管壁における
温度分布に対応してガスタービンへの燃料投入量を制御
するようにしたことを特徴とする。
A first aspect of the present invention is an exhaust heat recovery boiler with a reheater provided with a baffle plate in a gas flow region so that a gas turbine exhaust gas does not bypass a heat transfer surface of the exhaust heat recovery boiler. The amount of fuel input to the gas turbine is controlled in accordance with the temperature distribution on the pipe wall of the reheater header.

【0017】また第2の発明は、再熱器管寄せの管壁に
おける温度分布に対応して上記再熱器に供給される再熱
器冷却用の蒸気流量を制御するようにしたことを特徴と
する。
The second aspect of the invention is characterized in that the flow rate of the steam for cooling the reheater supplied to the reheater is controlled in accordance with the temperature distribution on the pipe wall of the reheater header. And

【0018】[0018]

【作用】起動時にガスタービン排ガス温度が急激に上昇
し、再熱器管寄せの管壁面の温度分布が変わりその上面
及び下面間の温度差が所定以上になると、ガスタービン
燃料投入量が減少するように制御され、或いは再熱器へ
供給される再熱器冷却用の蒸気流量が増加され、再熱器
管寄せに過大な熱応力が生じることが防止される。
[Operation] When the temperature of the gas turbine exhaust gas rises sharply at startup and the temperature distribution on the wall surface of the reheater header changes and the temperature difference between the upper and lower surfaces exceeds a predetermined value, the gas turbine fuel input decreases. In this way, the steam flow rate for cooling the reheater supplied to the reheater is increased, and excessive heat stress is prevented from occurring in the reheater header.

【0019】[0019]

【実施例】以下、図1乃至図4を参照して本発明の実施
例について説明する。なお、図中図5と同一部分には同
一符号を付しその詳細な説明は省略する。
Embodiments of the present invention will be described below with reference to FIGS. In the figure, the same parts as those in FIG. 5 are designated by the same reference numerals, and detailed description thereof will be omitted.

【0020】図1は複圧式の再熱器付排熱回収コンバイ
ンドサイクル発電プラントの構成図であり、図2は図1
の制御装置部の拡大図である。
FIG. 1 is a block diagram of an exhaust heat recovery combined cycle power plant with a double pressure type reheater, and FIG. 2 is FIG.
FIG. 3 is an enlarged view of the control device section of FIG.

【0021】ところで、再熱器下部管寄せ32の上面に
は、管寄せ上面のメタル温度を測定する温度検出器33
aが設けられており、また上記下部管寄せ32の下面に
は管寄せ下面のメタル温度を測定する温度検出器33b
が設けられている。上記両温度検出器33a,33bで
検出された温度検出信号はそれぞれ比較器34に入力さ
れ、そこで両温度検出器33a,33bからの温度検出
信号の比較が行なわれ,その差分すなわち下部管寄せ3
2の上下面の温度差が出力される。そして、この比較器
34からの出力は関数発生器35に入力され、この関数
発生器35からの出力が演算器36を介して制御信号と
して、ガスタービンの燃焼器2に燃料を供給するガスタ
ービン燃料供給ライン37に設けられている制御弁38
に入力される。
By the way, on the upper surface of the reheater lower pipe header 32, a temperature detector 33 for measuring the metal temperature on the upper face of the pipe header.
and a temperature detector 33b for measuring the metal temperature of the lower surface of the lower pipe 32.
Is provided. The temperature detection signals detected by both the temperature detectors 33a and 33b are input to a comparator 34, respectively, where the temperature detection signals from both the temperature detectors 33a and 33b are compared, and the difference between them, that is, the lower pressure difference 3
The temperature difference between the upper and lower surfaces of 2 is output. The output from the comparator 34 is input to the function generator 35, and the output from the function generator 35 supplies a fuel to the combustor 2 of the gas turbine as a control signal via the calculator 36. Control valve 38 provided in the fuel supply line 37
Entered in.

【0022】しかして、プラント起動時に排熱回収ボイ
ラ入口ガス温度が上昇すると、この時点では再熱器下部
管寄せ32には蒸気が流れていないため、上記入口ガス
温度の上昇に伴ない、下部管寄せ32の上下温度差が大
きくなる。
However, when the temperature of the exhaust heat recovery boiler inlet gas rises at the time of starting the plant, since steam is not flowing in the reheater lower part header 32 at this time, the lower part of the lower part of the reheater lower inlet pipe temperature 32 The temperature difference between the upper and lower sides of the pipe header 32 becomes large.

【0023】このようにして温度差が大きくなると、比
較器34からの出力が大きくなり、この出力すなわち上
下面の温度差が設定温度に達すると、関数発生器35及
び演算器36を介して制御信号が制御弁38に加えら
れ、制御弁38が閉方向に制御され、ガスタービン燃料
投入量が減少され、再熱器下部管寄せの上下面温度差が
過大とならないようにガスタービン燃料投入量が制御さ
れる。
When the temperature difference increases in this way, the output from the comparator 34 also increases. When this output, that is, the temperature difference between the upper and lower surfaces reaches the set temperature, control is performed via the function generator 35 and the calculator 36. A signal is applied to the control valve 38, the control valve 38 is controlled in the closing direction, the gas turbine fuel input amount is reduced, and the gas turbine fuel input amount is controlled so that the upper and lower surface temperature difference of the reheater lower pipe header is not excessive. Is controlled.

【0024】したがって、再熱器下部管寄せ32に過大
な熱応力が発生することが防止される。
Therefore, it is possible to prevent excessive thermal stress from being generated in the reheater lower pipe header 32.

【0025】なお、上記実施例では下部管寄せの上下面
の温度差により制御するものを示したが、上部管寄せ上
下面の温度差によって制御するようにしてもよい。
In the above embodiment, the control is performed by the temperature difference between the upper and lower surfaces of the lower pipe contact, but it may be controlled by the temperature difference between the upper and lower surfaces of the upper pipe contact.

【0026】図3に、排熱回収ボイラ入口ガス温度及び
再熱器下部管寄せの上下面温度差の変化状態を示す。
FIG. 3 shows changes in the temperature difference between the inlet gas of the exhaust heat recovery boiler and the temperature difference between the upper and lower surfaces of the reheater lower pipe.

【0027】図4は本発明の他の実施例を示す図であ
り、再熱器6へ蒸気供給導管40に補助蒸気供給ライン
41が接続されており、その補助蒸気供給ライン41に
設けられている制御弁42の制御により、他軸の排熱回
収ボイラ(図示せず)から供給される再熱器冷却用の補
助蒸気流量が制御されるようにしてある。そして、蒸気
制御弁42が第1実施例と同様に、再熱器下部管寄せ3
2の上下面の温度差によって開閉制御されるように構成
されている。
FIG. 4 is a view showing another embodiment of the present invention. An auxiliary steam supply line 41 is connected to the reheater 6 and a steam supply conduit 40 is provided in the auxiliary steam supply line 41. By controlling the control valve 42, the auxiliary steam flow rate for cooling the reheater supplied from the exhaust heat recovery boiler (not shown) of the other shaft is controlled. Then, as in the first embodiment, the steam control valve 42 has the reheater lower part header 3
The opening / closing control is performed according to the temperature difference between the upper and lower surfaces of the two.

【0028】しかして、排熱回収ボイラ入口ガス温度が
上昇し、再熱器下部管寄せ32の上下面の温度差が設定
値以上になると、関数発生器35からの出力信号が演算
器36を介して制御信号として上記制御弁42に加えら
れ、その制御弁42が開方向に制御される。
However, when the temperature of the exhaust heat recovery boiler inlet gas rises and the temperature difference between the upper and lower surfaces of the reheater lower header 32 exceeds the set value, the output signal from the function generator 35 causes the calculator 36 to operate. A control signal is applied to the control valve 42 through the control valve 42, and the control valve 42 is controlled in the opening direction.

【0029】したがって、他軸の排熱回収ボイラから再
熱器冷却用の補助蒸気が再熱器6に供給開始され、その
補助蒸気の供給によって再熱器下部管寄せの上下面温度
差が過大とならないように制御される。
Therefore, the auxiliary steam for cooling the reheater is started to be supplied to the reheater 6 from the exhaust heat recovery boiler of the other shaft, and the supply of the auxiliary steam causes an excessive temperature difference between the upper and lower surfaces of the reheater lower pipe. It is controlled not to become.

【0030】なお、この実施例においても上部管寄せの
上下面の温度差によって制御弁42を制御するようにし
てもよい。また、上記実施例では他軸の排熱回収ボイラ
から再熱器冷却用の補助蒸気を再熱器に供給するように
したものを示したが、適宜補助蒸気ヘッダから再熱器冷
却用の補助蒸気を再熱器に供給するようにしてもよい。
In this embodiment as well, the control valve 42 may be controlled by the temperature difference between the upper and lower surfaces of the upper pipe assembly. In the above embodiment, the auxiliary steam for cooling the reheater is supplied to the reheater from the exhaust heat recovery boiler of the other shaft.However, the auxiliary steam for cooling the reheater is appropriately supplied from the auxiliary steam header. The steam may be supplied to the reheater.

【0031】[0031]

【発明の効果】以上説明したように、本発明においては
再熱器管寄せの上下面温度差が過大とならないように制
御されるので、再熱器管寄せの熱応力を低く抑えること
ができ、管寄せ寿命を長くすることができる。さらに、
ガスタービン燃料投入量を制御するものにおいては、再
熱器管寄せの熱応力が過大とならない範囲でガスタービ
ン負荷上昇率を極限まで高めることができるので、プラ
ントの起動時間を短縮することができる。また、再熱器
への冷却用補助蒸気を制御するものにおいては、再熱器
管寄せの熱応力によりガスタービン負荷上昇率を制限す
ることなく起動することができる。したがって、プラン
トの急速起動を実現することができる。しかも、再熱器
冷却用蒸気流量を最小に抑えることができ、プラント全
体の効率の低下を防止することができる。
As described above, in the present invention, the temperature difference between the upper and lower surfaces of the reheater pipe header is controlled so as not to be excessive, so that the thermal stress of the reheater pipe header can be suppressed to a low level. It is possible to extend the service life of the pipe. further,
In the case of controlling the gas injection amount of the gas turbine, the gas turbine load increase rate can be increased to the limit within the range where the thermal stress of the reheater header is not excessive, so that the start-up time of the plant can be shortened. . Further, in the case of controlling the auxiliary steam for cooling to the reheater, it is possible to start up without limiting the gas turbine load increase rate due to the thermal stress of the reheater header. Therefore, a quick start of the plant can be realized. In addition, the flow rate of the steam for cooling the reheater can be minimized, and the efficiency of the entire plant can be prevented from being lowered.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の排熱回収コンバインドサイクル発電プ
ラントの一実施例を示す構成図。
FIG. 1 is a configuration diagram showing an embodiment of an exhaust heat recovery combined cycle power generation plant of the present invention.

【図2】図1に示す制御装置部分を示す拡大図。FIG. 2 is an enlarged view showing a control device portion shown in FIG.

【図3】起動時おける排熱回収ボイラ入口ガス温度と再
熱器下部管寄せ上下面の温度差の関係を示す説明図。
FIG. 3 is an explanatory diagram showing the relationship between the exhaust heat recovery boiler inlet gas temperature and the temperature difference between the upper and lower surfaces of the reheater lower pipe at startup.

【図4】本発明の他の実施例を示す図。FIG. 4 is a diagram showing another embodiment of the present invention.

【図5】従来の排熱回収式コンバインドサイクル発電プ
ラントの構成図。
FIG. 5 is a configuration diagram of a conventional exhaust heat recovery type combined cycle power generation plant.

【図6】従来の装置における起動時の排熱回収ボイラ入
口ガス温度と再熱器下部管寄せ上下面の温度差の関係を
示す説明図。
FIG. 6 is an explanatory diagram showing the relationship between the exhaust heat recovery boiler inlet gas temperature at startup and the temperature difference between the upper and lower surfaces of the lower reheater pipe in the conventional apparatus.

【符号の説明】[Explanation of symbols]

1 空気圧縮機 2 燃焼器 3 ガスタービン 4 排熱回収ボイラ 6 再熱器 17 復水器 20 高圧蒸気タービン 22 中圧蒸気タービン 23 低圧蒸気タービン 26 低圧バイパスライン 28 中圧バイパスライン 30 高圧バイパスライン 31 バッフルプレート 32 再熱器下部管寄せ 33a,33b 温度検出器 34 比較器 35 関数発生器 36 演算器 37 ガスタービン燃料供給ライン 38,42 制御弁 41 補助蒸気供給ライン 1 Air Compressor 2 Combustor 3 Gas Turbine 4 Exhaust Heat Recovery Boiler 6 Reheater 17 Condenser 20 High Pressure Steam Turbine 22 Medium Pressure Steam Turbine 23 Low Pressure Steam Turbine 26 Low Pressure Bypass Line 28 Medium Pressure Bypass Line 30 High Pressure Bypass Line 31 Baffle plate 32 Reheater lower heading 33a, 33b Temperature detector 34 Comparator 35 Function generator 36 Operator 37 Gas turbine fuel supply line 38, 42 Control valve 41 Auxiliary steam supply line

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ガスタービン排ガスが排熱回収ボイラの伝
熱面をバイパスしないようにガス流動域にバッフルプレ
ートを設けた再熱器付排熱回収ボイラにおいて、再熱器
管寄せの管壁面における温度の分布の状態に対応してガ
スタービンへの燃料投入量を制御するようにしたことを
特徴とする排熱回収ボイラ。
1. In an exhaust heat recovery boiler with a reheater in which a baffle plate is provided in a gas flow region so that a gas turbine exhaust gas does not bypass a heat transfer surface of an exhaust heat recovery boiler, a pipe wall surface of a reheater header is provided. An exhaust heat recovery boiler characterized in that the amount of fuel input to the gas turbine is controlled in accordance with the state of temperature distribution.
【請求項2】ガスタービン排ガスが排熱回収ボイラの伝
熱面をバイパスしないようにガス流動域にバッフルプレ
ートを設けた再熱器付排熱回収ボイラにおいて、再熱器
管寄せの管壁面にける温度分布の状態に対応して上記再
熱器に供給される再熱器冷却用の蒸気流量を制御するよ
うにしたことを特徴とする排熱回収ボイラ。
2. An exhaust heat recovery boiler with a reheater, wherein a baffle plate is provided in the gas flow region so that the gas turbine exhaust gas does not bypass the heat transfer surface of the exhaust heat recovery boiler. The exhaust heat recovery boiler is characterized in that the flow rate of steam for cooling the reheater supplied to the reheater is controlled in accordance with the temperature distribution state.
JP8215493A 1993-04-08 1993-04-08 Exhaust heat recovery boiler Pending JPH06294305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8215493A JPH06294305A (en) 1993-04-08 1993-04-08 Exhaust heat recovery boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8215493A JPH06294305A (en) 1993-04-08 1993-04-08 Exhaust heat recovery boiler

Publications (1)

Publication Number Publication Date
JPH06294305A true JPH06294305A (en) 1994-10-21

Family

ID=13766525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8215493A Pending JPH06294305A (en) 1993-04-08 1993-04-08 Exhaust heat recovery boiler

Country Status (1)

Country Link
JP (1) JPH06294305A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036894A (en) * 2010-08-05 2012-02-23 General Electric Co <Ge> Thermal control system for failure detection and mitigation within power generation system
JP2013142393A (en) * 2012-01-10 2013-07-22 General Electric Co <Ge> Combined cycle power plant
JP2017502241A (en) * 2013-12-19 2017-01-19 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH Combined cycle power plant
EP3121393A1 (en) * 2015-07-23 2017-01-25 Mitsubishi Hitachi Power Systems, Ltd. Combined cycle power plant and start-up method of the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036894A (en) * 2010-08-05 2012-02-23 General Electric Co <Ge> Thermal control system for failure detection and mitigation within power generation system
JP2013142393A (en) * 2012-01-10 2013-07-22 General Electric Co <Ge> Combined cycle power plant
JP2017502241A (en) * 2013-12-19 2017-01-19 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH Combined cycle power plant
US10590807B2 (en) 2013-12-19 2020-03-17 General Electric Company Combined cycle power plant
EP3121393A1 (en) * 2015-07-23 2017-01-25 Mitsubishi Hitachi Power Systems, Ltd. Combined cycle power plant and start-up method of the same
CN106368817A (en) * 2015-07-23 2017-02-01 三菱日立电力系统株式会社 Combined cycle power plant and start-up method of the same
CN106368817B (en) * 2015-07-23 2018-03-27 三菱日立电力系统株式会社 Combined-circulation power plant and its startup method
US10385736B2 (en) 2015-07-23 2019-08-20 Mitsubishi Hitachi Power Systems, Ltd. Combined cycle power plant and start-up method of the same

Similar Documents

Publication Publication Date Title
US20070017207A1 (en) Combined Cycle Power Plant
US5251432A (en) Method for operating a gas and steam turbine plant
US6178734B1 (en) Combined cycle power generation plant and operating method thereof
US6422022B2 (en) Apparatus and methods for supplying auxiliary steam in a combined cycle system
US5375410A (en) Combined combustion and steam turbine power plant
US5428950A (en) Steam cycle for combined cycle with steam cooled gas turbine
US6263662B1 (en) Combined cycle power generation plant and cooling steam supply method thereof
JPH06264763A (en) Combined plant system
US9404393B2 (en) Combined cycle power plant
US5079909A (en) Combined gas and steam turbine plant with coal gasification
US6062017A (en) Steam generator
US5285627A (en) Method for operating a gas and steam turbine plant and a plant for performing the method
WO2010038288A1 (en) Combined cycle electric power generation plant and heat exchanger
WO2023193477A1 (en) Thermoelectric decoupling system used for heat supply unit, and method
JPH06294305A (en) Exhaust heat recovery boiler
JP2595046B2 (en) Steam temperature control system for reheat type combined plant
JP2004245184A (en) Reheat steam turbine plant and starting method for the plant
RU2144994C1 (en) Combined-cycle plant
JPH02259301A (en) Waste heat recovery boiler
JP2001214758A (en) Gas turbine combined power generation plant facility
JP3068972B2 (en) Combined cycle power plant
JP3133183B2 (en) Combined cycle power plant
JPH04124411A (en) Steam turbine combine generator equipment
CN110513165B (en) Combined cooling heating and power supply distributed energy system
RU2686541C1 (en) Steam-gas plant