JPH08158806A - Turbine starting device - Google Patents

Turbine starting device

Info

Publication number
JPH08158806A
JPH08158806A JP30587594A JP30587594A JPH08158806A JP H08158806 A JPH08158806 A JP H08158806A JP 30587594 A JP30587594 A JP 30587594A JP 30587594 A JP30587594 A JP 30587594A JP H08158806 A JPH08158806 A JP H08158806A
Authority
JP
Japan
Prior art keywords
pressure turbine
turbine
steam
primary
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30587594A
Other languages
Japanese (ja)
Inventor
Masahiko Sanada
政彦 真田
Mitsushige Nonaka
光慈 野中
Hideto Tsunai
英人 津内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Toshiba Corp
Original Assignee
Toshiba Engineering Corp
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp, Toshiba Corp filed Critical Toshiba Engineering Corp
Priority to JP30587594A priority Critical patent/JPH08158806A/en
Publication of JPH08158806A publication Critical patent/JPH08158806A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

PURPOSE: To control a relative difference in rotational speeds so as to remain in a synchronizable range, by connecting a midway point of a high-pressure-turbine exhaust pipe starting from an outlet port of a high-pressure turbine and ending at a boiler to an outlet port of a medium-pressure turbine by means of piping and by equipping a secondary-axis bypass valve on a midway point of the piping. CONSTITUTION: Rotational speed control during start-up of a turbine is carried out by means of steam volume flowing in a high-pressure turbine 1 while the steam volume is regulated by means of an opening of a sub valve 7 for a main steam-stop valve or a steam adjusting valve 8. The steam having passed through the sub valve 7 for the main steam-stop valve or the steam adjusting valve 8 is returned to a boiler 9 via a high-pressure-turbine exhaust pipe 14 after giving rotatory power to the high- pressure turbine 1 located on the side of a primary axis. A midway point of the high- pressure-turbine exhaust pipe 14 is connected to an outlet port of a medium-pressure turbine by means of piping 15a and a secondary-axis bypass valve 11 is equipped on a midway point of the piping 15a. A difference between a rotational speed of the primary axis and a rotational speed of the secondary axis can be thereby controlled so as to remain in a synchronizable range, and in its turn effective utilization of energy can be achieved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、クロスコンパウンド機
のタービン起動装置に係り、特に発電機の二軸同期投入
時のタービン起動装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turbine starting device for a cross-compound machine, and more particularly to a turbine starting device for a two-axis synchronous injection of a generator.

【0002】[0002]

【従来の技術】従来技術のタービン起動装置を図13の
系統図を参照して説明する。同図に示すように、一次軸
は高圧タービン1、一次低圧タービン2、一次発電機3
により構成されており、二次軸は中圧タービン4、二次
低圧タービン5、二次発電機6により構成されている。
2. Description of the Related Art A conventional turbine starting device will be described with reference to the system diagram of FIG. As shown in the figure, the primary shaft is a high pressure turbine 1, a primary low pressure turbine 2, and a primary generator 3.
The secondary shaft is composed of the intermediate pressure turbine 4, the secondary low pressure turbine 5, and the secondary generator 6.

【0003】一次発電機3と二次発電機6は回転上昇途
中の適当な時期に電気的に結合し、一体の発電機として
送電系統に投入される。この電気的な結合は二軸同期投
入と呼ばれ、二軸同期投入時、一次発電機3と二次発電
機6の回転数差を3〜5%程度より小さくする必要があ
る。
The primary generator 3 and the secondary generator 6 are electrically coupled to each other at an appropriate timing while the rotation is rising, and are introduced into the power transmission system as an integral generator. This electrical coupling is called biaxial synchronous closing, and it is necessary to make the difference in rotational speed between the primary generator 3 and the secondary generator 6 smaller than about 3 to 5% during the biaxial synchronous closing.

【0004】タービン起動時、一次軸回転数は、主蒸気
止め弁副弁7または蒸気加減弁8によって高圧タービン
1に導かれる蒸気量を調整することによって制御され
る。
When the turbine is started, the primary shaft speed is controlled by adjusting the amount of steam introduced to the high pressure turbine 1 by the main steam stop valve auxiliary valve 7 or the steam control valve 8.

【0005】また、高圧タービン1内で膨脹し回転力を
与えた蒸気は、ボイラ9で加熱された後、中圧タービン
4に導かれる。この時、二次軸の回転数が一次軸の回転
数より低い場合は、スピードマッチング弁10の開度を
制御し、一次軸の高圧タービン1の流入蒸気量を変える
ことなく中圧タービン4に流入する蒸気量を増加するこ
とによって二次軸の回転数を上昇させ、一次軸の回転数
に近付くように制御していた。
The steam expanded in the high-pressure turbine 1 and given a rotational force is heated by the boiler 9 and then guided to the intermediate-pressure turbine 4. At this time, when the rotation speed of the secondary shaft is lower than the rotation speed of the primary shaft, the opening of the speed matching valve 10 is controlled so that the intermediate pressure turbine 4 is supplied to the high pressure turbine 1 without changing the inflow steam amount of the primary shaft. The rotational speed of the secondary shaft was increased by increasing the amount of inflowing steam, and was controlled so as to approach the rotational speed of the primary shaft.

【0006】また、二次軸の回転数が一次軸の回転数よ
り高い場合、二次軸バイパス管15jの途中に設けた弁
二次軸バイパス弁11の開度を制御して、一次軸の高圧
タービン1の流入蒸気量を変えることなく中圧タービン
入口蒸気の一部を、復水器12に排出することによって
中圧タービン4に流入する蒸気量を減少させて二次軸の
回転数を降下させ、一次軸の回転数に近付くように制御
していた。
When the rotation speed of the secondary shaft is higher than that of the primary shaft, the opening degree of the valve secondary shaft bypass valve 11 provided in the middle of the secondary shaft bypass pipe 15j is controlled to control the primary shaft. By discharging a part of the intermediate-pressure turbine inlet steam to the condenser 12 without changing the amount of steam flowing into the high-pressure turbine 1, the amount of steam flowing into the intermediate-pressure turbine 4 is reduced to reduce the rotational speed of the secondary shaft. It was lowered and controlled to approach the rotation speed of the primary shaft.

【0007】しかし、中圧タービン4の入口蒸気は、高
圧タービン1の出口蒸気をボイラ9で加熱したものであ
り、この蒸気エネルギーを復水器12に排出すること
は、熱損失の増大となる。
However, the inlet steam of the intermediate-pressure turbine 4 is obtained by heating the outlet steam of the high-pressure turbine 1 in the boiler 9, and discharging this steam energy to the condenser 12 causes an increase in heat loss. .

【0008】また、一般に高圧タービン1の第1段ノズ
ルは、図8に示すように蒸気室が4分割されていて、分
割されたそれぞれの蒸気室に対応して蒸気加減弁8a,
8b,8c,8dが配置されている。タービン起動時
は、4分割されたそれぞれの蒸気室に接続された蒸気加
減弁8a〜8dを4弁とも全開して、この蒸気加減弁8
a〜8dの上流に配置された主蒸気止め弁副弁7によっ
て流量を制御するか、または主蒸気止め弁13ならびに
主蒸気止め弁副弁7を全開して、図9の弁開度特性図に
示すように、複数の蒸気加減弁8a〜8dを同時に制御
すること(以下、加減弁同時開という)によって蒸気を
タービン第1段の全周から噴射させて流量を制御してい
た。
Further, generally, in the first stage nozzle of the high-pressure turbine 1, the steam chamber is divided into four, as shown in FIG. 8, and the steam control valves 8a, 8a corresponding to the respective divided steam chambers.
8b, 8c and 8d are arranged. When the turbine is started, all four steam control valves 8a to 8d connected to each of the four divided steam chambers are fully opened.
The flow rate is controlled by the main steam stop valve sub-valve 7 arranged upstream of a to 8d, or the main steam stop valve 13 and the main steam stop valve sub-valve 7 are fully opened, and the valve opening characteristic diagram of FIG. As shown in (4), the flow rate was controlled by injecting steam from the entire circumference of the first stage of the turbine by simultaneously controlling the plurality of steam control valves 8a to 8d (hereinafter referred to as simultaneous control valve open).

【0009】[0009]

【発明が解決しようとする課題】このように蒸気をター
ビン第1段の全周から噴射させると、流量制御に用いる
主蒸気止め弁副弁7または複数の蒸気加減弁8a〜8d
での圧力損失が増加してタービンで利用できる蒸気の熱
落差が小さくなり、エネルギー損失が増大する原因とな
った。上述したように、従来技術による発電機の二軸同
期投入方式ではエネルギー損失が大きくなるという問題
があった。
When steam is injected from the entire circumference of the first stage of the turbine in this way, the main steam stop valve auxiliary valve 7 or a plurality of steam control valves 8a to 8d used for flow rate control.
At the same time, the pressure loss increased, and the heat drop of the steam that could be used in the turbine became smaller, which increased energy loss. As described above, the conventional two-axis synchronous injection system of the generator has a problem that energy loss increases.

【0010】本発明は、上記事情に鑑みてなされたもの
で、その目的は二軸の発電機の同期投入が困難な場合
に、相対的な回転数差を同期が可能な範囲に制御するた
めに、エネルギーを有効に利用したタービン起動装置を
提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to control a relative rotational speed difference within a range in which synchronization can be performed when it is difficult to synchronize a biaxial generator. Another object is to provide a turbine starting device that effectively uses energy.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1は、高圧タービンと一次低圧ター
ビン並に一次発電機が一軸に結合された一次タービン・
発電機と、複流式の中圧タービンと二次低圧タービン並
に二次発電機が他の一軸に結合された二次タービン・発
電機と、前記高圧タービンに導入した蒸気の排気をボイ
ラーに導き、このボイラの蒸気の排気を前記複流式の中
圧タービンに導くと共に、前記複流式の中圧タービンの
一方の出口蒸気は一次低圧タービンに導かれ、前記複流
式の中圧タービンのもう一方の出口蒸気は二次低圧ター
ビンに導かれるように配管接続された再熱再生サイクル
のタービン起動装置において、前記高圧タービンの出口
または途中の段落の抽気管と前記低圧タービンの入口ま
たは途中の段落の抽気管の間を接続する配管と、この配
管の途中に蒸気を調整する弁を設けたことを特徴とす
る。
In order to achieve the above object, the first aspect of the present invention provides a primary turbine in which a high pressure turbine, a primary low pressure turbine, a primary generator, and a primary generator are uniaxially connected.
A generator, a secondary turbine with a double-flow type medium-pressure turbine, a secondary low-pressure turbine, and a secondary generator connected to another shaft, and the exhaust of steam introduced into the high-pressure turbine to a boiler. , While guiding the steam exhaust of the boiler to the double-flow intermediate-pressure turbine, one outlet steam of the double-flow intermediate-pressure turbine is introduced to the primary low-pressure turbine, the other of the double-flow intermediate-pressure turbine The outlet steam is connected to the secondary low pressure turbine by a pipe connection in a reheat regeneration cycle turbine starter, and the outlet of the high pressure turbine or the extraction pipe in the middle paragraph and the extraction pipe in the inlet of the low pressure turbine or the middle paragraph. It is characterized in that a pipe connecting the trachea and a valve for adjusting steam are provided in the middle of the pipe.

【0012】本発明の請求項2は、高圧タービンと一次
低圧タービン並に一次発電機が一軸に結合された一次タ
ービン・発電機と、複流式の中圧タービンと二次低圧タ
ービン並に二次発電機が他の一軸に結合された二次ター
ビン・発電機と、前記高圧タービンに導入した蒸気の排
気をボイラーに導き、このボイラの蒸気の排気を前記複
流式の中圧タービンに導くと共に、前記複流式の中圧タ
ービンの一方の出口蒸気は一次低圧タービンに導かれ、
前記複流式の中圧タービンのもう一方の出口蒸気は二次
低圧タービンに導かれるように配管接続された再熱再生
サイクルのタービン起動装置において、前記二次タービ
ンの途中の抽気管と復水器との間を接続する配管と、こ
の配管の途中に蒸気を調整する弁を設けたことを特徴と
する。
According to a second aspect of the present invention, a primary turbine / generator in which a primary generator is uniaxially coupled to a high pressure turbine, a primary low pressure turbine, a secondary flow intermediate pressure turbine, a secondary low pressure turbine and a secondary turbine. A secondary turbine / generator in which a generator is coupled to another one shaft, and exhaust of steam introduced into the high-pressure turbine are guided to a boiler, and exhaust of steam of this boiler is guided to the double-flow intermediate-pressure turbine, One outlet steam of the double-flow type medium-pressure turbine is guided to the primary low-pressure turbine,
In the turbine starter of the reheat regeneration cycle, the other outlet steam of the double-flow type medium-pressure turbine is pipe-connected so as to be guided to the secondary low-pressure turbine, and an extraction pipe and a condenser in the middle of the secondary turbine. It is characterized in that a pipe for connecting between and is provided with a valve for adjusting steam in the middle of the pipe.

【0013】本発明の請求項3は、高圧タービンと一次
低圧タービン並に一次発電機が一軸に結合された一次タ
ービン・発電機と、複流式の中圧タービンと二次低圧タ
ービン並に二次発電機が他の一軸に結合された二次ター
ビン・発電機と、前記高圧タービンに導入した蒸気の排
気をボイラーに導き、このボイラの蒸気の排気を前記複
流式の中圧タービンに導くと共に、前記複流式の中圧タ
ービンの一方の出口蒸気は一次低圧タービンに導かれ、
前記複流式の中圧タービンのもう一方の出口蒸気は二次
低圧タービンに導かれるように配管接続された再熱再生
サイクルのタービン起動装置において、前記一次低圧タ
ービンの抽気管と当該抽気管より低圧のタービン抽気管
との間を接続する配管と、この配管の途中に蒸気を調整
する弁を設けたことを特徴とする。
According to a third aspect of the present invention, a high-pressure turbine, a primary low-pressure turbine, a primary turbine / generator in which a primary generator is uniaxially coupled, a double-flow type intermediate-pressure turbine, a secondary low-pressure turbine, and a secondary turbine. A secondary turbine / generator in which a generator is coupled to another one shaft, and exhaust of steam introduced into the high-pressure turbine are guided to a boiler, and exhaust of steam of this boiler is guided to the double-flow intermediate-pressure turbine, One outlet steam of the double-flow type medium-pressure turbine is guided to the primary low-pressure turbine,
The other outlet steam of the double-flow type intermediate-pressure turbine is connected to the secondary low-pressure turbine in a turbine starter for a reheat regeneration cycle, which is connected to the secondary low-pressure turbine, and a lower pressure than the extraction pipe of the primary low-pressure turbine and the extraction pipe. It is characterized in that a pipe connecting between the turbine and the turbine extraction pipe and a valve for adjusting steam are provided in the middle of the pipe.

【0014】本発明の請求項4は、高圧タービンと一次
低圧タービン並に一次発電機が一軸に結合された一次タ
ービン・発電機と、複流式の中圧タービンと二次低圧タ
ービン並に二次発電機が他の一軸に結合された二次ター
ビン・発電機と、前記高圧タービンに導入した蒸気の排
気をボイラーに導き、このボイラの蒸気の排気を前記複
流式の中圧タービンに導くと共に、前記複流式の中圧タ
ービンの一方の出口蒸気は一次低圧タービンに導かれ、
前記複流式の中圧タービンのもう一方の出口蒸気は二次
低圧タービンに導かれるように配管接続された再熱再生
サイクルのタービン起動装置において、前記高圧タービ
ンの途中の段落の抽気管または前記高圧タービンの出口
と復水器との間を接続する配管と、この配管の途中に蒸
気を調整する弁を設けたことを特徴とする。
According to a fourth aspect of the present invention, a high-pressure turbine, a primary low-pressure turbine, a primary turbine / generator in which a primary generator is uniaxially coupled, a double-flow type intermediate-pressure turbine, a secondary low-pressure turbine, and a secondary turbine. A secondary turbine / generator in which a generator is coupled to another one shaft, and exhaust of steam introduced into the high-pressure turbine are guided to a boiler, and exhaust of steam of this boiler is guided to the double-flow intermediate-pressure turbine, One outlet steam of the double-flow type medium-pressure turbine is guided to the primary low-pressure turbine,
In the turbine starter of the reheat regeneration cycle, the other outlet steam of the double-flow type medium-pressure turbine is connected by piping so as to be guided to the secondary low-pressure turbine, and the extraction pipe or the high-pressure pipe in the middle of the high-pressure turbine. It is characterized in that a pipe connecting between the outlet of the turbine and the condenser and a valve for adjusting steam are provided in the middle of the pipe.

【0015】本発明の請求項5は、高圧タービンと一次
低圧タービン並に一次発電機が一軸に結合された一次タ
ービン・発電機と、複流式の中圧タービンと二次低圧タ
ービン並に二次発電機が他の一軸に結合された二次ター
ビン・発電機と、前記高圧タービンに導入した蒸気の排
気をボイラーに導き、このボイラの蒸気の排気を前記複
流式の中圧タービンに導くと共に、前記複流式の中圧タ
ービンの一方の出口蒸気は一次低圧タービンに導かれ、
前記複流式の中圧タービンのもう一方の出口蒸気は二次
低圧タービンに導かれるように配管接続された再熱再生
サイクルのタービン起動装置において、前記中圧タービ
ンの出口と前記二次低圧タービンを接続する配管の途中
に弁を設けたことを特徴とする。
According to a fifth aspect of the present invention, a high-pressure turbine, a primary low-pressure turbine, a primary turbine and a generator in which a primary generator is uniaxially coupled, a double-flow intermediate-pressure turbine, a secondary low-pressure turbine, and a secondary turbine. A secondary turbine / generator in which a generator is coupled to another one shaft, and exhaust of steam introduced into the high-pressure turbine are guided to a boiler, and exhaust of steam of this boiler is guided to the double-flow intermediate-pressure turbine, One outlet steam of the double-flow type medium-pressure turbine is guided to the primary low-pressure turbine,
The other outlet steam of the double-flow type medium-pressure turbine is connected to the secondary low-pressure turbine by a pipe connection in a turbine starter of a reheat regeneration cycle, and the outlet of the medium-pressure turbine and the secondary low-pressure turbine are connected to each other. A feature is that a valve is provided in the middle of the connecting pipe.

【0016】[0016]

【請求項6】 高圧タービンと一次低圧タービン並に一
次発電機が一軸に結合された一次タービン・発電機と、
複流式の中圧タービンと二次低圧タービン並に二次発電
機が他の一軸に結合された二次タービン・発電機と、前
記高圧タービンに導入した蒸気の排気をボイラーに導
き、このボイラの蒸気の排気を前記複流式の中圧タービ
ンに導くと共に、前記複流式の中圧タービンの一方の出
口蒸気は一次低圧タービンに導かれ、前記複流式の中圧
タービンのもう一方の出口蒸気は二次低圧タービンに導
かれるように配管接続された再熱再生サイクルのタービ
ン起動装置において、前記中圧タービンの出口と前記一
次低圧タービンを接続する配管の途中に弁を設けると共
に前記中圧タービンのもう一方の出口と前記二次低圧タ
ービンを接続する配管の途中に弁を設けたことを特徴と
する。
6. A primary turbine / generator in which a high-pressure turbine, a primary low-pressure turbine, and a primary generator are uniaxially coupled together,
A secondary turbine / generator in which a double-flow type intermediate-pressure turbine, a secondary low-pressure turbine, and a secondary generator as well as another secondary shaft are coupled to each other, and the exhaust gas of the steam introduced into the high-pressure turbine is guided to a boiler. The steam exhaust is guided to the double-flow intermediate-pressure turbine, one outlet steam of the double-flow intermediate-pressure turbine is guided to the primary low-pressure turbine, and the other outlet steam of the double-flow intermediate-pressure turbine is two. In a turbine starter for a reheat regeneration cycle, which is pipe-connected to be guided to a next low-pressure turbine, a valve is provided in the middle of a pipe connecting the outlet of the intermediate-pressure turbine and the primary low-pressure turbine, A valve is provided in the middle of a pipe connecting the one outlet and the secondary low-pressure turbine.

【0017】本発明の請求項7は、高圧タービンと一次
低圧タービン並に一次発電機が一軸に結合された一次タ
ービン・発電機と、複流式の中圧タービンと二次低圧タ
ービン並に二次発電機が他の一軸に結合された二次ター
ビン・発電機と、前記高圧タービンに導入した蒸気の排
気をボイラーに導き、このボイラの蒸気の排気を前記複
流式の中圧タービンに導くと共に、前記複流式の中圧タ
ービンの一方の出口蒸気は一次低圧タービンに導かれ、
前記複流式の中圧タービンのもう一方の出口蒸気は二次
低圧タービンに導かれるように配管接続された再熱再生
サイクルのタービン起動装置において、前記高圧タービ
ンの出口と前記中圧タービン入口をボイラ再熱器を経由
することなく直接接続する配管と、この配管の途中に弁
を設けたことを特徴とする。
According to a seventh aspect of the present invention, a high-pressure turbine, a primary low-pressure turbine, a primary turbine / generator in which a primary generator is uniaxially coupled, a double-flow type intermediate-pressure turbine, a secondary low-pressure turbine, and a secondary turbine. A secondary turbine / generator in which a generator is coupled to another one shaft, and exhaust of steam introduced into the high-pressure turbine are guided to a boiler, and exhaust of steam of this boiler is guided to the double-flow intermediate-pressure turbine, One outlet steam of the double-flow type medium-pressure turbine is guided to the primary low-pressure turbine,
In a turbine starter for a reheat regeneration cycle, in which the other outlet steam of the double-flow type intermediate pressure turbine is connected so as to be guided to a secondary low pressure turbine, the outlet of the high pressure turbine and the inlet of the intermediate pressure turbine are connected to a boiler. A feature is that a pipe is directly connected without passing through a reheater and a valve is provided in the middle of the pipe.

【0018】本発明の請求項8は、一次タービン・発電
機の一次軸と二次タービン・発電機の二次軸の2軸で構
成され、更に一次タービンの複数の蒸気加減弁を同時開
閉かまたは順番開閉かのいずれも可能な制御装置を備え
たタービン起動装置において、前記発電機の二軸同時投
入時に、ボイラ点火前のメタル温度、ボイラ点火前の主
蒸気温度、ボイラ点火前の缶水温度、タービン通気前の
メタル温度または停止時間のうち、少なくとも1つの値
を検出して、前記蒸気加減弁を同時開閉か順番開閉かに
制御する制御装置を備えたことを特徴とする。
The eighth aspect of the present invention comprises two shafts, a primary shaft of the primary turbine / generator and a secondary shaft of the secondary turbine / generator. Further, a plurality of steam control valves of the primary turbine are simultaneously opened / closed. In a turbine starter equipped with a control device capable of either sequential opening or closing, the metal temperature before boiler ignition, the main steam temperature before boiler ignition, and the boiler water before boiler ignition when the two axes of the generator are simultaneously turned on. It is characterized by further comprising a control device for detecting at least one of a temperature, a metal temperature before ventilation of the turbine, or a stop time, and controlling the steam control valve to be opened or closed simultaneously or sequentially.

【0019】[0019]

【作用】本発明によると、従来のように中圧タービンの
入口蒸気を復水器に排出する必要がないため、エネルギ
ー損失の減少を図ることが可能である。また、一次軸、
二次軸のどちらの回転数が高くとも二軸同期が可能な
上、従来のように高いエネルギーを持った中圧タービン
入口蒸気を復水器に排出することはなく、エネルギー損
失の減少を図ることが可能である。さらに、加減弁順次
開によるタービン起動を行うことによって、一次軸の回
転エネルギーが加減弁同時開で起動した場合に対して上
昇し、相対的に二次軸の回転数が低下するため、復水器
に捨てる蒸気が減少するので、エネルギー損失の減少を
図ることが可能である。
According to the present invention, it is not necessary to discharge the inlet steam of the intermediate-pressure turbine to the condenser as in the conventional case, so that energy loss can be reduced. Also, the primary axis,
No matter which rotation speed of the secondary shaft is high, twin-axis synchronization is possible, and unlike the conventional method, the medium-pressure turbine inlet steam with high energy is not discharged to the condenser to reduce energy loss. It is possible. Furthermore, by starting the turbine by sequentially opening the control valve, the rotational energy of the primary shaft rises compared to when it is started by the simultaneous opening of the control valve, and the rotational speed of the secondary shaft relatively decreases, so the condensate Since the amount of steam thrown into the vessel is reduced, it is possible to reduce energy loss.

【0020】[0020]

【実施例】以下、本発明の実施例を図について説明す
る。図1は本発明の第1実施例(請求項1対応)の系統
構成図である。同図に示すように、一次軸は高圧タービ
ン1、一次低圧タービン2、一次発電機3により構成さ
れており、二次軸は中圧タービン4、二次低圧タービン
5、二次発電機6により構成されている。一次発電機3
と二次発電機6は回転上昇途中の適当な時期に電気的に
結合し、一体の発電機として送電系統に投入される。こ
の電気的な結合は二軸同期投入と呼ばれ、二軸同期投入
時、一次発電機3と二次発電機6の回転数差を3〜5%
程度より小さくする必要がある。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. FIG. 1 is a system configuration diagram of a first embodiment (corresponding to claim 1) of the present invention. As shown in the figure, the primary shaft comprises a high pressure turbine 1, a primary low pressure turbine 2 and a primary generator 3, and the secondary shaft comprises a medium pressure turbine 4, a secondary low pressure turbine 5 and a secondary generator 6. It is configured. Primary generator 3
The secondary generator 6 and the secondary generator 6 are electrically coupled at an appropriate time during the rotation increase, and are input to the power transmission system as an integral generator. This electrical connection is called twin-axis synchronous closing, and the difference in the number of revolutions of the primary generator 3 and the secondary generator 6 is 3 to 5% when the double-axis synchronous closing is performed.
It must be smaller than the degree.

【0021】タービン起動時の回転数制御は高圧タービ
ン1に流入する蒸気量で制御され、この蒸気量は主蒸気
止め弁副弁7または蒸気加減弁8の開度を調整すること
によって制御される。主蒸気止め弁副弁7または蒸気加
減弁8を経た蒸気は、一次軸側に配置された高圧タービ
ン1に回転力を与えた後、高圧タービン排気管14を経
てボイラ9に戻される。
The rotation speed control at the time of starting the turbine is controlled by the amount of steam flowing into the high-pressure turbine 1, and this amount of steam is controlled by adjusting the opening degree of the main steam stop valve auxiliary valve 7 or the steam control valve 8. . The steam that has passed through the main steam stop valve auxiliary valve 7 or the steam control valve 8 gives a rotational force to the high pressure turbine 1 arranged on the primary shaft side, and then is returned to the boiler 9 through the high pressure turbine exhaust pipe 14.

【0022】また、ボイラ9で加熱された蒸気は、二次
軸側に配置された中圧タービン4に回転力を与えた後、
中圧タービン4の二つの出口、すなわち一方の出口から
は一次軸側に配置された一次低圧タービン2に導かれて
一次軸に回転力を与え、もう一方の出口からは二次軸側
に配置された二次低圧タービン5に導かれて、二次軸に
回転力を与えた後、復水器(図示せず)に排出される。
以上説明したことは、既に図13の従来技術で説明した
ものと同一である。
The steam heated in the boiler 9 gives a rotating force to the intermediate pressure turbine 4 arranged on the secondary shaft side,
Two outlets of the intermediate-pressure turbine 4, that is, one outlet is guided to the primary low-pressure turbine 2 arranged on the primary shaft side to give a rotational force to the primary shaft, and the other outlet is arranged on the secondary shaft side. After being guided to the secondary low-pressure turbine 5 and imparting a rotational force to the secondary shaft, it is discharged to a condenser (not shown).
The above description is the same as that described in the related art of FIG.

【0023】本実施例が、図13のクロスコンパウンド
機のタービン起動装置と異なる点は、高圧タービン1の
出口からボイラ9に至る高圧タービン排気管14の途中
から中圧タービン4の出口までを接続した配管15a
と、その配管15aの途中に二次軸バイパス弁11を設
けている点である。従って、従来例と同様に本実施例に
おいても、中圧タービン4には一次低圧タービン2側に
接続する出口と、二次低圧タービン5側に接続する出口
の2つの出口(どちらの出口でもよい)を設けている。
The present embodiment differs from the turbine starting device of the cross compound machine shown in FIG. 13 in that the high pressure turbine exhaust pipe 14 from the outlet of the high pressure turbine 1 to the boiler 9 is connected to the outlet of the intermediate pressure turbine 4. Piping 15a
The secondary shaft bypass valve 11 is provided in the middle of the pipe 15a. Therefore, similarly to the conventional example, in this embodiment as well, the intermediate pressure turbine 4 has two outlets, one of which is connected to the primary low-pressure turbine 2 side and the other of which is connected to the secondary low-pressure turbine 5 side (either outlet may be used. ) Is provided.

【0024】本実施例では、二軸同期投入時、二次軸側
の回転数が一次軸側の回転数より高い場合は、二次軸バ
イパス弁11を開き、二次軸に配置された中圧タービン
4の流入蒸気量を減少させる。その結果、二次軸側の回
転力が減少し、二次軸の回転数が低下する。したがっ
て、従来のように高いエネルギーを持った中圧タービン
4の入口蒸気を復水器12に排出する必要がないため、
エネルギー損失の減少を図ることが可能である。
In this embodiment, when the rotational speed on the secondary shaft side is higher than the rotational speed on the primary shaft side when the two shafts are synchronously closed, the secondary shaft bypass valve 11 is opened and the secondary shaft is arranged on the secondary shaft. The amount of steam flowing into the pressure turbine 4 is reduced. As a result, the rotational force on the secondary shaft side is reduced, and the rotational speed of the secondary shaft is reduced. Therefore, it is not necessary to discharge the inlet steam of the medium-pressure turbine 4 having high energy to the condenser 12 as in the conventional case,
It is possible to reduce energy loss.

【0025】図2は本発明の第2実施例(請求項2対
応)の系統構成図である。本実施例が既に説明した図1
3の従来例と比べて異なる点は、二次低圧タービン5の
抽気の途中から復水器12までを接続した配管15b
と、この配管15bの途中に設けた二次軸バイパス弁1
1と、一次低圧タービン2の抽気の途中から抽気弁24
と抽気弁23を介して配管15bの途中に接続する配管
を設けた点であり、その他の点は同一であるので、同一
部分には同一符号を付して重複説明は省略する。
FIG. 2 is a system configuration diagram of a second embodiment (corresponding to claim 2) of the present invention. FIG. 1 which this embodiment has already described.
3 is different from the conventional example in that the pipe 15b connecting the middle of the extraction of the secondary low-pressure turbine 5 to the condenser 12
And the secondary shaft bypass valve 1 provided in the middle of the pipe 15b
1 and the extraction valve 24 from the middle of the extraction of the primary low-pressure turbine 2.
And a pipe connected to the middle of the pipe 15b via the bleed valve 23. Since the other points are the same, the same portions are denoted by the same reference numerals and duplicate description will be omitted.

【0026】本実施例では、二軸同期投入時、二次軸側
の回転数が一次軸側の回転数より高い場合は、二次軸バ
イパス弁11を開き、二次軸に配置された二次低圧ター
ビン5の通過蒸気量を減少させる。その結果、二次軸側
の回転力が減少し、二次軸の回転数が低下する。この
時、一次低圧タービン2側から抽気しないように、二次
低圧タービン5側の抽気弁23または一次低圧タービン
2側の抽気弁24を全閉する必要がある。このように、
本実施例によれば、従来のように高いエネルギーを持っ
た中圧タービン入口蒸気を復水器に排出することなく、
エネルギーの小さな低圧タービンの蒸気を排出するた
め、エネルギー損失の減少を図ることが可能である。
In this embodiment, when the rotational speed on the secondary shaft side is higher than the rotational speed on the primary shaft side when the two shafts are synchronized, the secondary shaft bypass valve 11 is opened and the secondary shaft arranged on the secondary shaft is opened. The amount of steam passing through the next low-pressure turbine 5 is reduced. As a result, the rotational force on the secondary shaft side is reduced, and the rotational speed of the secondary shaft is reduced. At this time, it is necessary to fully close the extraction valve 23 on the secondary low-pressure turbine 5 side or the extraction valve 24 on the primary low-pressure turbine 2 side so as not to extract air from the primary low-pressure turbine 2 side. in this way,
According to this embodiment, without discharging conventional medium pressure turbine inlet steam having high energy to the condenser,
Since the steam of the low pressure turbine with small energy is discharged, it is possible to reduce energy loss.

【0027】図3は本発明の第3実施例(請求項3対
応)の系統構成図である。本実施例が既に説明した図1
3の従来例と比べて異なる点は、中圧タービン4の出口
から一次低圧タービン2までを接続した配管15cと、
その配管15cの途中に二次軸バイパス弁11を設ける
と共に、中圧タービン4の出口管には止め弁25を設
け、一次低圧タービン2に接続する配管の分岐点は、こ
の止め弁25より中圧タービン4の2つの出口の内の二
次低圧タービン5側とした点であり、その他の点は同一
であるので、同一部分には同一符号を付して重複説明は
省略する。
FIG. 3 is a system configuration diagram of a third embodiment (corresponding to claim 3) of the present invention. FIG. 1 which this embodiment has already described.
3 is different from the conventional example in that there is a pipe 15c connecting the outlet of the intermediate pressure turbine 4 to the primary low pressure turbine 2,
A secondary shaft bypass valve 11 is provided in the middle of the pipe 15c, a stop valve 25 is provided at the outlet pipe of the intermediate-pressure turbine 4, and a branch point of the pipe connected to the primary low-pressure turbine 2 is located in the middle of the stop valve 25. This is the point on the secondary low-pressure turbine 5 side of the two outlets of the pressure turbine 4, and the other points are the same, so the same parts will be denoted by the same reference numerals and redundant description will be omitted.

【0028】本実施例では、二軸同期投入時、二次軸側
の回転数が一次軸側の回転数より高い場合は、止め弁2
5を全閉して、二次軸バイパス弁11を開くことによ
り、二次低圧タービン5の入口蒸気の一部を抽出して二
次低圧タービン5の流入蒸気量を減少させると共に、二
次低圧タービン5の入口から抽出した蒸気を一次低圧タ
ービン2の途中に流入させて一次低圧タービン2の通過
蒸気量を増加させるようにする。その結果、二次軸側の
回転力が減少して二次軸の回転数が低下し、同時に一次
低圧タービンの回転力が増加することから、一次軸の回
転数が上昇し、一次軸の回転数と二次軸の回転数差が少
なくなる。このように、本実施例によれば、従来のよう
に高いエネルギーを持った中圧タービン入口蒸気を復水
器に排出することはなく、エネルギー損失の減少を図る
ことが可能である。
In this embodiment, when the rotation speed of the secondary shaft side is higher than the rotation speed of the primary shaft side when the two shafts are synchronously closed, the stop valve 2 is used.
5 is fully closed and the secondary shaft bypass valve 11 is opened to extract a part of the inlet steam of the secondary low-pressure turbine 5 to reduce the amount of steam flowing into the secondary low-pressure turbine 5 and to reduce the secondary low-pressure. The steam extracted from the inlet of the turbine 5 is caused to flow in the middle of the primary low-pressure turbine 2 to increase the amount of steam passing through the primary low-pressure turbine 2. As a result, the rotational force on the secondary shaft side decreases, the rotational speed of the secondary shaft decreases, and at the same time the rotational force of the primary low-pressure turbine increases, so the rotational speed of the primary shaft increases and the rotational speed of the primary shaft increases. The difference between the number and the number of rotations of the secondary shaft is reduced. As described above, according to the present embodiment, it is possible to reduce energy loss without discharging the medium-pressure turbine inlet steam having high energy to the condenser as in the conventional case.

【0029】図4は本発明の第4実施例(請求項4対
応)の系統構成図である。本実施例が既に説明した図1
3の従来例と比べて異なる点は、高圧タービン1の出口
から復水器12に接続した配管15dと、その配管15
dの途中に二次軸バイパス弁11を設けた点であり、そ
の他の点は同一であるので、同一部分には同一符号を付
して重複説明は省略する。
FIG. 4 is a system configuration diagram of a fourth embodiment (corresponding to claim 4) of the present invention. FIG. 1 which this embodiment has already described.
3 differs from the conventional example in that the pipe 15d connected from the outlet of the high-pressure turbine 1 to the condenser 12 and the pipe 15d
Since the secondary shaft bypass valve 11 is provided in the middle of d and the other points are the same, the same portions are denoted by the same reference numerals and duplicate description will be omitted.

【0030】本実施例では、二軸同期投入時、二次軸側
の回転数が一次軸側の回転数より高い場合は、二次軸バ
イパス弁11を開くことにより、中圧タービン4の入口
蒸気の一部を抽出して中圧タービン4の流入蒸気量を減
少させる。その結果、二次軸側の回転力が減少して二次
軸の回転数が低下し、一次軸の回転数と二次軸の回転数
差が少なくなる。このように、本実施例によれば、従来
のように高いエネルギーを持った中圧タービン入口蒸気
を復水器に排出することはなく、エネルギー損失の減少
を図ることが可能である。
In this embodiment, when the rotational speed on the secondary shaft side is higher than the rotational speed on the primary shaft side when the two shafts are synchronously closed, the secondary shaft bypass valve 11 is opened to open the inlet of the intermediate pressure turbine 4. A part of the steam is extracted to reduce the amount of steam flowing into the intermediate pressure turbine 4. As a result, the rotational force on the secondary shaft side decreases, the rotational speed of the secondary shaft decreases, and the rotational speed difference between the primary shaft and the secondary shaft decreases. As described above, according to the present embodiment, it is possible to reduce energy loss without discharging the medium-pressure turbine inlet steam having high energy to the condenser as in the conventional case.

【0031】図5は本発明の第5実施例(請求項5対
応)の系統構成図である。本実施例が既に説明した図1
3の従来例と比べて異なる点は、中圧タービン4の出口
のうち、二次低圧タービン5につながる二次クロスオー
バ管21の途中に二次クロスオーバ弁22を設けた点で
あり、その他の点は同一であるので、同一部分には同一
符号を付して重複説明は省略する。
FIG. 5 is a system configuration diagram of the fifth embodiment (corresponding to claim 5) of the present invention. FIG. 1 which this embodiment has already described.
3 is different from the conventional example in that the secondary crossover valve 22 is provided in the middle of the secondary crossover pipe 21 connected to the secondary low pressure turbine 5 among the outlets of the intermediate pressure turbine 4. Since the points are the same, the same reference numerals are given to the same portions, and duplicate description will be omitted.

【0032】本実施例では、二軸同期投入時、二次軸側
の回転数が一次軸側の回転数より高い場合は、二次クロ
スオーバ弁22を中間開度に絞り込むことにより、二次
低圧タービン5の入口蒸気を減少させる。その結果、二
次軸側の回転力が減少して二次軸の回転数が低下し、一
次軸の回転数と二次軸の回転数差が少なくなる。このよ
うに、本実施例によれば、従来のように高いエネルギー
を持った中圧タービン入口蒸気を復水器に排出すること
はなく、エネルギー損失の減少を図ることが可能であ
る。
In this embodiment, when the rotational speed on the secondary shaft side is higher than the rotational speed on the primary shaft side at the time of synchronously closing the two shafts, the secondary crossover valve 22 is narrowed down to an intermediate opening degree, and The inlet steam of the low pressure turbine 5 is reduced. As a result, the rotational force on the secondary shaft side decreases, the rotational speed of the secondary shaft decreases, and the rotational speed difference between the primary shaft and the secondary shaft decreases. As described above, according to the present embodiment, it is possible to reduce energy loss without discharging the medium-pressure turbine inlet steam having high energy to the condenser as in the conventional case.

【0033】図6は本発明の第6実施例(請求項6対
応)の系統構成図である。本実施例が既に説明した図1
3の従来例と比べて異なる点は、中圧タービン4の出口
の一次低圧タービン2につながる一次クロスオーバ管1
9の途中に一次クロスオーバ弁20を設けると共に二次
低圧タービン5につながる二次クロスオーバ管21の途
中に二次クロスオーバ弁22を設けた点であり、その他
の点は同一であるので、同一部分には同一符号を付して
重複説明は省略する。
FIG. 6 is a system configuration diagram of a sixth embodiment (corresponding to claim 6) of the present invention. FIG. 1 which this embodiment has already described.
3 is different from the conventional example in that the primary crossover pipe 1 connected to the primary low-pressure turbine 2 at the outlet of the intermediate-pressure turbine 4 is connected.
The primary crossover valve 20 is provided in the middle of 9 and the secondary crossover valve 22 is provided in the middle of the secondary crossover pipe 21 connected to the secondary low-pressure turbine 5, and the other points are the same. The same portions will be denoted by the same reference symbols and redundant description will be omitted.

【0034】本実施例では、二軸同期投入時、二次軸側
の回転数が一次軸側の回転数より高い場合は、二次クロ
スオーバ弁22を中間開度に絞り込むことにより、二次
低圧タービン5の入口蒸気を減少させる。その結果、二
次軸側の回転力が減少して二次軸の回転数が低下し、一
次軸の回転数と二次軸の回転数差が少なくなる。
In this embodiment, when the rotational speed on the secondary shaft side is higher than the rotational speed on the primary shaft side when the two shafts are synchronously closed, the secondary crossover valve 22 is narrowed down to an intermediate opening degree, and The inlet steam of the low pressure turbine 5 is reduced. As a result, the rotational force on the secondary shaft side decreases, the rotational speed of the secondary shaft decreases, and the rotational speed difference between the primary shaft and the secondary shaft decreases.

【0035】逆に一次軸側の回転数が二次軸側の回転数
より高い場合は、一次クロスオーバ弁20を中間開度に
絞り込むことにより、一次低圧タービン2の入口蒸気を
減少させる。その結果、一次軸側の回転力が減少して一
次軸の回転数が低下し、一次軸の回転数と二次軸の回転
数差が少なくなる。このように、本実施例によれば、一
次軸、二次軸のどちらの回転数が高くとも二軸同期が可
能な上、従来のように高いエネルギーを持った中圧ター
ビン入口蒸気を復水器に排出することはなく、エネルギ
ー損失の減少を図ることが可能である。
On the contrary, when the rotation speed on the primary shaft side is higher than the rotation speed on the secondary shaft side, the inlet steam of the primary low-pressure turbine 2 is reduced by narrowing the primary crossover valve 20 to an intermediate opening degree. As a result, the rotational force on the primary shaft side is reduced, the rotational speed of the primary shaft is reduced, and the rotational speed difference between the primary shaft and the secondary shaft is reduced. As described above, according to the present embodiment, it is possible to perform biaxial synchronization regardless of whether the rotational speed of the primary shaft or the secondary shaft is high, and to condense the medium pressure turbine inlet steam having high energy as in the conventional case. It is possible to reduce energy loss without discharging it to the vessel.

【0036】図7は本発明の実施例(請求項7対応)の
系統構成図である。本実施例が既に説明した図13の従
来例と比べて異なる点は、高圧タービン1の排気管14
と中圧タービン4の入口を接続する再熱器バイパス管2
6と再熱器バイパス管26の途中に再熱器バイパス弁2
7を設けた点であり、その他の点は同一であるので、同
一部分には同一符号を付して重複説明は省略する。
FIG. 7 is a system configuration diagram of an embodiment of the present invention (corresponding to claim 7). The present embodiment is different from the conventional example shown in FIG. 13 which has already been described, except that the exhaust pipe 14 of the high-pressure turbine 1 is different.
And the reheater bypass pipe 2 connecting the inlet of the medium pressure turbine 4
6 and the reheater bypass pipe 26 in the middle of the reheater bypass pipe 26
Since 7 is provided and the other points are the same, the same portions are denoted by the same reference numerals and duplicate description will be omitted.

【0037】本実施例では、二軸同期投入時、二次軸側
の回転数が一次軸側の回転数より高い場合は、再熱器バ
イパス弁27を開くことによって低温の高圧タービン1
の排気を中圧タービン4の入口に合流させる。その結
果、二次軸側の入口エネルギーが低下して二次軸側の回
転数が減少するため、二次軸の回転数が低下し、一次軸
の回転数と二次軸の回転数差が少なくなる。このよう
に、本実施例によれば、従来のように高いエネルギーを
持った中圧タービン入口蒸気を復水器に排出することは
なく、エネルギー損失の減少を図ることが可能である。
In this embodiment, when the rotational speed on the secondary shaft side is higher than the rotational speed on the primary shaft side when the two shafts are synchronously closed, the low-temperature high-pressure turbine 1 is opened by opening the reheater bypass valve 27.
The exhaust gas of 1 is merged with the inlet of the intermediate pressure turbine 4. As a result, the inlet energy on the secondary shaft side decreases and the rotation speed on the secondary shaft side decreases, so the rotation speed of the secondary shaft decreases and the difference between the rotation speed of the primary shaft and the rotation speed of the secondary shaft decreases. Less. As described above, according to the present embodiment, it is possible to reduce energy loss without discharging the medium-pressure turbine inlet steam having high energy to the condenser as in the conventional case.

【0038】図11は本発明の第8実施例(請求項8対
応)の制御ロジック図である。通常、タービン入口の第
1段ノズルは図8に示す如く蒸気室が4つに分かれてい
て、各蒸気室のそれぞれに繋がった蒸気加減弁8a〜8
dが配置されている。この蒸気加減弁8a〜8dの弁開
度特性、すなわち、加減弁同時開の各弁の特性を図9、
加減弁順次開の各弁の特性を図10に示す。従来の起動
制御では加減弁を同時に開く図9の加減弁開度特性で起
動していた。
FIG. 11 is a control logic diagram of the eighth embodiment (corresponding to claim 8) of the present invention. Usually, the first-stage nozzle at the turbine inlet has four steam chambers as shown in FIG. 8, and steam control valves 8a to 8a connected to the respective steam chambers.
d is arranged. FIG. 9 shows the valve opening characteristics of the steam control valves 8a to 8d, that is, the characteristics of each valve that is simultaneously opened.
FIG. 10 shows the characteristics of each valve in which the adjustable valve is sequentially opened. In the conventional start control, the control valve is started with the control valve opening / closing characteristic of FIG. 9 in which the control valve is opened simultaneously.

【0039】本実施例では、タービン起動に際し、ボイ
ラ点火前メタル温度t1 ℃以上、主蒸気温度t2 ℃以
上、ボイラ点火前缶水温度t3 ℃以上、タービン・メタ
ル温度t4 ℃以上または停止時間h時間以内のプラント
状態のうち、少なくとも1つの条件を満たす場合は、加
減弁制御方式を複数弁を順番に制御する「加減弁順次
開」を選定し、それ以外の場合は、加減弁制御方式を複
数弁を同時に制御する「加減弁同時開」を選定する。
In the present embodiment, when starting the turbine, the metal temperature before boiler ignition is t1 ° C or more, the main steam temperature is t2 ° C or more, the boiler water temperature before boiler ignition is t3 ° C or more, the turbine metal temperature is t4 ° C or more, or the stop time is h hours. If at least one of the following plant conditions is satisfied, select "Sequential opening / closing of control valve" for controlling multiple valves in order as control valve control method. Otherwise, select multiple control valve control methods. Select “simultaneous opening / closing of control valve” to control valves simultaneously.

【0040】次に、本実施例の作用について説明する。
通常、一次軸回転数は蒸気加減弁によって高圧タービン
に流入する蒸気量を調整することによって制御される
が、図8に示した第1段ノズルの蒸気室が完全に4等分
されていると仮定した場合「加減弁同時開」で起動する
場合に対して「加減弁順次開」で起動する場合は、第1
段ノズルの入口圧力が約4倍になる。
Next, the operation of this embodiment will be described.
Normally, the primary shaft speed is controlled by adjusting the amount of steam flowing into the high-pressure turbine by the steam control valve, but if the steam chamber of the first stage nozzle shown in FIG. 8 is completely divided into four equal parts. Assuming that it is started by "simultaneous opening of control valve", when starting by "sequential opening of control valve",
The inlet pressure of the stage nozzle becomes about 4 times.

【0041】以下、図12を参照して説明すると、蒸気
加減弁入口圧力P1と第1段ノズル入口圧力P2,P3
の差は、蒸気加減弁による圧力降下である。「加減弁同
時開」で起動した場合の第1段ノズル入口圧力P3に対
し、「加減弁順次開」で起動した場合の第1段ノズル入
口圧力P2は約4倍の圧力となり、高圧タービンの出口
圧力P4はほとんど変わらないから、「加減弁同時開」
で起動した場合の断熱熱落差E3に対し、「加減弁順次
開」で起動した場合の断熱熱落差E1は大きくなる。し
たがって、「加減弁同時開」で起動した場合に、二次軸
回転数が一次軸回転数より高くなるような場合には、
「加減弁順次開」で起動することによって、高圧タービ
ンが接続される一次軸の回転数が高くなり、一次軸の回
転数と二次軸の回転数差が少なくなる。なお、E2は加
減弁順次開時の有効熱落差、E4は加減弁同時開時の有
効熱落差を示す。
Referring to FIG. 12, the steam control valve inlet pressure P1 and the first stage nozzle inlet pressures P2 and P3 will be described below.
Is the pressure drop due to the steam control valve. Compared to the first stage nozzle inlet pressure P3 when activated by "control valve simultaneous opening", the first stage nozzle inlet pressure P2 when activated by "regulated valve sequential opening" is about 4 times the pressure of the high pressure turbine. Since the outlet pressure P4 is almost unchanged, "simultaneous opening of the regulating valve"
In contrast to the adiabatic heat drop E3 in the case of starting with, the adiabatic heat drop E1 in the case of starting with "sequential adjustment valve open" becomes large. Therefore, if the secondary shaft speed becomes higher than the primary shaft speed when starting with "simultaneous opening of the control valve",
By starting by "sequential opening of the control valve", the rotational speed of the primary shaft to which the high-pressure turbine is connected increases, and the rotational speed difference between the primary shaft and the secondary shaft decreases. It should be noted that E2 indicates an effective heat drop when the control valves are sequentially opened, and E4 indicates an effective heat drop when the control valves are simultaneously opened.

【0042】ところで、従来技術では、中圧タービンの
回転数を下げるために、中圧タービンの入口から復水器
に駆動蒸気の一部を捨てていた。しかし、本実施例では
「加減弁順次開」による起動を行うことによって一次軸
の回転エネルギーが「加減弁同時開」で起動した場合に
対して2〜3%上昇するため、相対的に二次軸の回転数
が低下する。このため、復水器に捨てる蒸気が減少する
ため、損失の減少を図ることが可能である。
By the way, in the prior art, in order to reduce the rotational speed of the intermediate-pressure turbine, part of the driving steam was discarded from the inlet of the intermediate-pressure turbine to the condenser. However, in the present embodiment, the rotational energy of the primary shaft is increased by 2 to 3% as compared with the case of starting by "simultaneous opening and closing of the adjusting valve" by performing the starting by "sequential opening and closing of the adjusting valve". The rotation speed of the shaft decreases. For this reason, the amount of steam to be discarded in the condenser is reduced, so that the loss can be reduced.

【0043】[0043]

【発明の効果】以上説明したように、本発明によれば、
蒸気のエネルギーを有効に利用できるので、エネルギー
効率の良いタービン起動装置を提供できる。
As described above, according to the present invention,
Since the energy of steam can be effectively used, it is possible to provide a turbine starter having high energy efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の系統構成図。FIG. 1 is a system configuration diagram of a first embodiment of the present invention.

【図2】本発明の第2実施例の系統構成図。FIG. 2 is a system configuration diagram of a second embodiment of the present invention.

【図3】本発明の第3実施例の系統構成図。FIG. 3 is a system configuration diagram of a third embodiment of the present invention.

【図4】本発明の第4実施例の系統構成図。FIG. 4 is a system configuration diagram of a fourth embodiment of the present invention.

【図5】本発明の第5実施例の系統構成図。FIG. 5 is a system configuration diagram of a fifth embodiment of the present invention.

【図6】本発明の第6実施例の系統構成図。FIG. 6 is a system configuration diagram of a sixth embodiment of the present invention.

【図7】本発明の第7実施例の系統構成図。FIG. 7 is a system configuration diagram of a seventh embodiment of the present invention.

【図8】高圧タービンの第1段ノズルと加減弁の配置を
示す図。
FIG. 8 is a view showing the arrangement of a first stage nozzle and a regulator valve of a high pressure turbine.

【図9】「加減弁順次開」操作時の弁開度特性図。FIG. 9 is a valve opening characteristic diagram at the time of the “sequential adjustment valve opening” operation.

【図10】「加減弁同時開」操作時の弁開度特性図。FIG. 10 is a valve opening characteristic diagram at the time of “simultaneous opening of the control valve” operation.

【図11】本発明の第8実施例の制御ブロック図。FIG. 11 is a control block diagram of an eighth embodiment of the present invention.

【図12】「加減弁順次開」の場合と「加減弁同時開」
の場合の高圧タービンの蒸気の膨脹線図。
[Fig. 12] "Sequential opening of control valve" and "Simultaneous opening of control valve"
Expansion diagram of high pressure turbine steam in the case of.

【図13】従来技術の系統構成図。FIG. 13 is a system configuration diagram of a conventional technique.

【符号の説明】[Explanation of symbols]

1…高圧タービン、2…一次低圧タービン、3…一次発
電機、4…中圧タービン、5…二次低圧タービン、6…
二次発電機、7…主蒸気止め弁副弁、8,8a,8b,
8c,8d…蒸気加減弁、9…ボイラ、10…スピード
マッチング弁、11…二次軸バイパス弁、12…復水
器、13…主蒸気止め弁、14…高圧タービン排気管、
15a,15b,15c,15d,15j…二次軸バイ
パス管、19…一次クロスオーバ管、20…一次クロス
オーバ弁、21…二次クロスオーバ管、22…二次クロ
スオーバ弁、23,24…抽気弁、25…止め弁、26
…再熱器バイパス管、27…再熱器バイパス弁、P1…
加減弁入口圧力、P2,P3,…高圧タービン第1段ノ
ズル入口圧力、P4…高圧タービン出口圧力、E1,E
3…断熱熱落差、E2,E4…有効熱落差。
1 ... High-pressure turbine, 2 ... Primary low-pressure turbine, 3 ... Primary generator, 4 ... Medium-pressure turbine, 5 ... Secondary low-pressure turbine, 6 ...
Secondary generator, 7 ... Main steam stop valve, sub valve, 8, 8a, 8b,
8c, 8d ... Steam control valve, 9 ... Boiler, 10 ... Speed matching valve, 11 ... Secondary shaft bypass valve, 12 ... Condenser, 13 ... Main steam stop valve, 14 ... High pressure turbine exhaust pipe,
15a, 15b, 15c, 15d, 15j ... Secondary shaft bypass pipe, 19 ... Primary crossover pipe, 20 ... Primary crossover valve, 21 ... Secondary crossover pipe, 22 ... Secondary crossover valve, 23, 24 ... Bleed valve, 25 ... Stop valve, 26
… Reheater bypass pipe, 27… Reheater bypass valve, P1…
Control valve inlet pressure, P2, P3, ... High pressure turbine first stage nozzle inlet pressure, P4 ... High pressure turbine outlet pressure, E1, E
3 ... Adiabatic heat drop, E2, E4 ... Effective heat drop.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 津内 英人 神奈川県川崎市幸区堀川町66番2 東芝エ ンジニアリング株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideto Tsuuchi 66-2 Horikawa-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Toshiba Engineering Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 高圧タービンと一次低圧タービン並に一
次発電機が一軸に結合された一次タービン・発電機と、
複流式の中圧タービンと二次低圧タービン並に二次発電
機が他の一軸に結合された二次タービン・発電機と、前
記高圧タービンに導入した蒸気の排気をボイラーに導
き、このボイラの蒸気の排気を前記複流式の中圧タービ
ンに導くと共に、前記複流式の中圧タービンの一方の出
口蒸気は一次低圧タービンに導かれ、前記複流式の中圧
タービンのもう一方の出口蒸気は二次低圧タービンに導
かれるように配管接続された再熱再生サイクルのタービ
ン起動装置において、前記高圧タービンの出口または途
中の段落の抽気管と前記低圧タービンの入口または途中
の段落の抽気管の間を接続する配管と、この配管の途中
に蒸気を調整する弁を設けたことを特徴とするタービン
起動装置。
1. A primary turbine / generator having a high-pressure turbine, a primary low-pressure turbine, and a primary generator uniaxially coupled together,
A secondary turbine / generator in which a double-flow type intermediate-pressure turbine, a secondary low-pressure turbine, and a secondary generator as well as another secondary shaft are coupled to each other, and the exhaust gas of the steam introduced into the high-pressure turbine is guided to a boiler. The steam exhaust is guided to the double-flow intermediate-pressure turbine, one outlet steam of the double-flow intermediate-pressure turbine is guided to the primary low-pressure turbine, and the other outlet steam of the double-flow intermediate-pressure turbine is two. In the turbine starter of the reheat regeneration cycle pipe-connected so as to be guided to the next low-pressure turbine, between the outlet of the high-pressure turbine or the extraction pipe in the middle paragraph and the inlet of the low-pressure turbine or the extraction pipe in the middle paragraph. A turbine starter characterized in that a pipe for connection and a valve for adjusting steam are provided in the middle of the pipe.
【請求項2】 高圧タービンと一次低圧タービン並に一
次発電機が一軸に結合された一次タービン・発電機と、
複流式の中圧タービンと二次低圧タービン並に二次発電
機が他の一軸に結合された二次タービン・発電機と、前
記高圧タービンに導入した蒸気の排気をボイラーに導
き、このボイラの蒸気の排気を前記複流式の中圧タービ
ンに導くと共に、前記複流式の中圧タービンの一方の出
口蒸気は一次低圧タービンに導かれ、前記複流式の中圧
タービンのもう一方の出口蒸気は二次低圧タービンに導
かれるように配管接続された再熱再生サイクルのタービ
ン起動装置において、前記二次タービンの途中の抽気管
と復水器との間を接続する配管と、この配管の途中に蒸
気を調整する弁を設けたことを特徴とするタービン起動
装置。
2. A primary turbine / generator having a high-pressure turbine, a primary low-pressure turbine, and a primary generator uniaxially coupled together,
A secondary turbine / generator in which a double-flow type intermediate-pressure turbine, a secondary low-pressure turbine, and a secondary generator as well as another secondary shaft are coupled to each other, and the exhaust gas of the steam introduced into the high-pressure turbine is guided to a boiler. The steam exhaust is guided to the double-flow intermediate-pressure turbine, one outlet steam of the double-flow intermediate-pressure turbine is guided to the primary low-pressure turbine, and the other outlet steam of the double-flow intermediate-pressure turbine is two. In the turbine starter of the reheat regeneration cycle connected so as to be guided to the next low-pressure turbine, the pipe connecting the extraction pipe and the condenser in the middle of the secondary turbine, and the steam in the middle of this pipe. A turbine starter characterized in that a valve for adjusting is provided.
【請求項3】 高圧タービンと一次低圧タービン並に一
次発電機が一軸に結合された一次タービン・発電機と、
複流式の中圧タービンと二次低圧タービン並に二次発電
機が他の一軸に結合された二次タービン・発電機と、前
記高圧タービンに導入した蒸気の排気をボイラーに導
き、このボイラの蒸気の排気を前記複流式の中圧タービ
ンに導くと共に、前記複流式の中圧タービンの一方の出
口蒸気は一次低圧タービンに導かれ、前記複流式の中圧
タービンのもう一方の出口蒸気は二次低圧タービンに導
かれるように配管接続された再熱再生サイクルのタービ
ン起動装置において、前記一次低圧タービンの抽気管と
当該抽気管より低圧のタービン抽気管との間を接続する
配管と、この配管の途中に蒸気を調整する弁を設けたこ
とを特徴とするタービン起動装置。
3. A primary turbine / generator in which a high-pressure turbine, a primary low-pressure turbine, and a primary generator are uniaxially coupled together,
A secondary turbine / generator in which a double-flow type intermediate-pressure turbine, a secondary low-pressure turbine, and a secondary generator as well as another secondary shaft are coupled to each other, and the exhaust gas of the steam introduced into the high-pressure turbine is guided to a boiler. The steam exhaust is guided to the double-flow intermediate-pressure turbine, one outlet steam of the double-flow intermediate-pressure turbine is guided to the primary low-pressure turbine, and the other outlet steam of the double-flow intermediate-pressure turbine is two. In a turbine starter for a reheat regeneration cycle, which is pipe-connected so as to be guided to a next low-pressure turbine, a pipe connecting between an extraction pipe of the primary low-pressure turbine and a turbine extraction pipe lower in pressure than the extraction pipe, and this pipe. A turbine starter characterized in that a valve for adjusting steam is provided midway.
【請求項4】 高圧タービンと一次低圧タービン並に一
次発電機が一軸に結合された一次タービン・発電機と、
複流式の中圧タービンと二次低圧タービン並に二次発電
機が他の一軸に結合された二次タービン・発電機と、前
記高圧タービンに導入した蒸気の排気をボイラーに導
き、このボイラの蒸気の排気を前記複流式の中圧タービ
ンに導くと共に、前記複流式の中圧タービンの一方の出
口蒸気は一次低圧タービンに導かれ、前記複流式の中圧
タービンのもう一方の出口蒸気は二次低圧タービンに導
かれるように配管接続された再熱再生サイクルのタービ
ン起動装置において、前記高圧タービンの途中の段落の
抽気管または前記高圧タービンの出口と復水器との間を
接続する配管と、この配管の途中に蒸気を調整する弁を
設けたことを特徴とするタービン起動装置。
4. A primary turbine / generator in which a high-pressure turbine, a primary low-pressure turbine, and a primary generator are uniaxially coupled together,
A secondary turbine / generator in which a double-flow type intermediate-pressure turbine, a secondary low-pressure turbine, and a secondary generator as well as another secondary shaft are coupled to each other, and the exhaust gas of the steam introduced into the high-pressure turbine is guided to a boiler. The steam exhaust is guided to the double-flow intermediate-pressure turbine, one outlet steam of the double-flow intermediate-pressure turbine is guided to the primary low-pressure turbine, and the other outlet steam of the double-flow intermediate-pressure turbine is two. In a turbine starter for a reheat regeneration cycle, which is pipe-connected so as to be guided to a next low-pressure turbine, a bleed pipe in the middle of the high-pressure turbine or a pipe connecting an outlet of the high-pressure turbine and a condenser. A turbine starter characterized in that a valve for adjusting steam is provided in the middle of the pipe.
【請求項5】 高圧タービンと一次低圧タービン並に一
次発電機が一軸に結合された一次タービン・発電機と、
複流式の中圧タービンと二次低圧タービン並に二次発電
機が他の一軸に結合された二次タービン・発電機と、前
記高圧タービンに導入した蒸気の排気をボイラーに導
き、このボイラの蒸気の排気を前記複流式の中圧タービ
ンに導くと共に、前記複流式の中圧タービンの一方の出
口蒸気は一次低圧タービンに導かれ、前記複流式の中圧
タービンのもう一方の出口蒸気は二次低圧タービンに導
かれるように配管接続された再熱再生サイクルのタービ
ン起動装置において、前記中圧タービンの出口と前記二
次低圧タービンを接続する配管の途中に弁を設けたこと
を特徴とするタービン起動装置。
5. A primary turbine / generator in which a high-pressure turbine, a primary low-pressure turbine, and a primary generator are uniaxially coupled together,
A secondary turbine / generator in which a double-flow type intermediate-pressure turbine, a secondary low-pressure turbine, and a secondary generator as well as another secondary shaft are coupled to each other, and the exhaust gas of the steam introduced into the high-pressure turbine is guided to a boiler. The steam exhaust is guided to the double-flow intermediate-pressure turbine, one outlet steam of the double-flow intermediate-pressure turbine is guided to the primary low-pressure turbine, and the other outlet steam of the double-flow intermediate-pressure turbine is two. In a turbine starter for a reheat regeneration cycle, which is pipe-connected so as to be guided to a next low-pressure turbine, a valve is provided in the middle of a pipe connecting the outlet of the intermediate-pressure turbine and the secondary low-pressure turbine. Turbine starter.
【請求項6】 高圧タービンと一次低圧タービン並に一
次発電機が一軸に結合された一次タービン・発電機と、
複流式の中圧タービンと二次低圧タービン並に二次発電
機が他の一軸に結合された二次タービン・発電機と、前
記高圧タービンに導入した蒸気の排気をボイラーに導
き、このボイラの蒸気の排気を前記複流式の中圧タービ
ンに導くと共に、前記複流式の中圧タービンの一方の出
口蒸気は一次低圧タービンに導かれ、前記複流式の中圧
タービンのもう一方の出口蒸気は二次低圧タービンに導
かれるように配管接続された再熱再生サイクルのタービ
ン起動装置において、前記中圧タービンの出口と前記一
次低圧タービンを接続する配管の途中に弁を設けると共
に前記中圧タービンのもう一方の出口と前記二次低圧タ
ービンを接続する配管の途中に弁を設けたことを特徴と
するタービン起動装置。
6. A primary turbine / generator in which a high-pressure turbine, a primary low-pressure turbine, and a primary generator are uniaxially coupled together,
A secondary turbine / generator in which a double-flow type intermediate-pressure turbine, a secondary low-pressure turbine, and a secondary generator as well as another secondary shaft are coupled to each other, and the exhaust gas of the steam introduced into the high-pressure turbine is guided to a boiler. The steam exhaust is guided to the double-flow intermediate-pressure turbine, one outlet steam of the double-flow intermediate-pressure turbine is guided to the primary low-pressure turbine, and the other outlet steam of the double-flow intermediate-pressure turbine is two. In a turbine starter for a reheat regeneration cycle, which is pipe-connected to be guided to a next low-pressure turbine, a valve is provided in the middle of a pipe connecting the outlet of the intermediate-pressure turbine and the primary low-pressure turbine, A turbine starting device characterized in that a valve is provided in the middle of a pipe connecting one outlet to the secondary low-pressure turbine.
【請求項7】 高圧タービンと一次低圧タービン並に一
次発電機が一軸に結合された一次タービン・発電機と、
複流式の中圧タービンと二次低圧タービン並に二次発電
機が他の一軸に結合された二次タービン・発電機と、前
記高圧タービンに導入した蒸気の排気をボイラーに導
き、このボイラの蒸気の排気を前記複流式の中圧タービ
ンに導くと共に、前記複流式の中圧タービンの一方の出
口蒸気は一次低圧タービンに導かれ、前記複流式の中圧
タービンのもう一方の出口蒸気は二次低圧タービンに導
かれるように配管接続された再熱再生サイクルのタービ
ン起動装置において、前記高圧タービンの出口と前記中
圧タービン入口をボイラ再熱器を経由することなく直接
接続する配管と、この配管の途中に弁を設けたことを特
徴とするタービン起動装置。
7. A primary turbine / generator having a high-pressure turbine, a primary low-pressure turbine, and a primary generator uniaxially coupled together,
A secondary turbine / generator in which a double-flow type intermediate-pressure turbine, a secondary low-pressure turbine, and a secondary generator as well as another secondary shaft are coupled to each other, and the exhaust gas of the steam introduced into the high-pressure turbine is guided to a boiler. The steam exhaust is guided to the double-flow intermediate-pressure turbine, one outlet steam of the double-flow intermediate-pressure turbine is guided to the primary low-pressure turbine, and the other outlet steam of the double-flow intermediate-pressure turbine is two. In a turbine starter for a reheat regeneration cycle, which is pipe-connected so as to be guided to a next low-pressure turbine, a pipe that directly connects the outlet of the high-pressure turbine and the inlet of the intermediate-pressure turbine without passing through a boiler reheater, A turbine starter characterized in that a valve is provided in the middle of the pipe.
【請求項8】 一次タービン・発電機の一次軸と二次タ
ービン・発電機の二次軸の2軸で構成され、更に一次タ
ービンの複数の蒸気加減弁を同時開閉かまたは順番開閉
かのいずれも可能な制御装置を備えたタービン起動装置
において、前記発電機の二軸同時投入時に、ボイラ点火
前のメタル温度、ボイラ点火前の主蒸気温度、ボイラ点
火前の缶水温度、タービン通気前のメタル温度または停
止時間のうち、少なくとも1つの値を検出して、前記蒸
気加減弁を同時開閉か順番開閉かに制御する制御装置を
備えたことを特徴とするタービン起動装置。
8. A primary shaft of a primary turbine / generator and a secondary shaft of a secondary turbine / generator, which are two shafts, and a plurality of steam control valves of the primary turbine are simultaneously opened or closed or sequentially opened or closed. In a turbine starter equipped with a control device that is also capable of, when the two axes of the generator are simultaneously turned on, the metal temperature before boiler ignition, the main steam temperature before boiler ignition, the boiler water temperature before boiler ignition, and the turbine before ventilation A turbine starter comprising a control device that detects at least one value of a metal temperature and a stop time and controls the steam control valve to open and close simultaneously or sequentially.
JP30587594A 1994-12-09 1994-12-09 Turbine starting device Pending JPH08158806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30587594A JPH08158806A (en) 1994-12-09 1994-12-09 Turbine starting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30587594A JPH08158806A (en) 1994-12-09 1994-12-09 Turbine starting device

Publications (1)

Publication Number Publication Date
JPH08158806A true JPH08158806A (en) 1996-06-18

Family

ID=17950396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30587594A Pending JPH08158806A (en) 1994-12-09 1994-12-09 Turbine starting device

Country Status (1)

Country Link
JP (1) JPH08158806A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5526219B2 (en) * 2010-02-26 2014-06-18 株式会社日立製作所 Thermal power generation system and operation method thereof, thermal power generation system modification method, steam turbine equipment used in thermal power generation system, carbon dioxide separation and recovery device, overheat reducer
CN105822373A (en) * 2015-01-08 2016-08-03 国电浙江北仑第发电有限公司 Pressure-boosting main machine coaxial driving water feeding pump system comprising backpressure steam extraction small steam turbine
CN106050336A (en) * 2016-05-24 2016-10-26 大唐淮北发电厂 Ultra-supercritical generator set

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5526219B2 (en) * 2010-02-26 2014-06-18 株式会社日立製作所 Thermal power generation system and operation method thereof, thermal power generation system modification method, steam turbine equipment used in thermal power generation system, carbon dioxide separation and recovery device, overheat reducer
CN105822373A (en) * 2015-01-08 2016-08-03 国电浙江北仑第发电有限公司 Pressure-boosting main machine coaxial driving water feeding pump system comprising backpressure steam extraction small steam turbine
CN106050336A (en) * 2016-05-24 2016-10-26 大唐淮北发电厂 Ultra-supercritical generator set

Similar Documents

Publication Publication Date Title
US5412936A (en) Method of effecting start-up of a cold steam turbine system in a combined cycle plant
US8516787B2 (en) Combined-cycle power plant having a once-through cooler
JPH06264763A (en) Combined plant system
JPH09112292A (en) Combined-cycle-system with steam cooling type gas turbine
JPH11200816A (en) Combined cycle power generation plant
JPH11159306A (en) Recovery type steam cooling gas turbine
US5850739A (en) Steam turbine power plant and method of operating same
US6141952A (en) Method of operating a combined-cycle power plant
JPH10169411A (en) Steam turbine plant
JPH08158806A (en) Turbine starting device
JPH09303114A (en) Steam cycle for combined cycle using steam cooling type gas turbine
EP1666699B1 (en) Combined cycle power plant with gas and steam turbo groups
JP2002115807A (en) Driving turbine operation method for boiler feedwater pump, and its operation apparatus
JP3518252B2 (en) Closed steam cooled gas turbine combined plant and gas turbine combined plant
JP4295415B2 (en) Single-shaft combined turbine equipment
JPS60159311A (en) Starting method for steam turbine
CN115324661B (en) System for separating shaft and cutting high-pressure cylinder of steam turbine of thermal power plant and operation method
JP3706411B2 (en) Method for adjusting the amount of medium-pressure steam in combined cycle power plants
WO2024161684A1 (en) Steam supply system and steam supply method
JPH01313605A (en) Combined power generating set
RU2163671C1 (en) Combined-cycle plant
JPH03115707A (en) Combined power plant
JPH07145706A (en) Steam turbine
JPS5898605A (en) Two-shaft synchronizing system for cross-compound type steam turbine
JPH05163961A (en) Combined cycle power generation plant