JP3706411B2 - Method for adjusting the amount of medium-pressure steam in combined cycle power plants - Google Patents

Method for adjusting the amount of medium-pressure steam in combined cycle power plants Download PDF

Info

Publication number
JP3706411B2
JP3706411B2 JP16066395A JP16066395A JP3706411B2 JP 3706411 B2 JP3706411 B2 JP 3706411B2 JP 16066395 A JP16066395 A JP 16066395A JP 16066395 A JP16066395 A JP 16066395A JP 3706411 B2 JP3706411 B2 JP 3706411B2
Authority
JP
Japan
Prior art keywords
pressure
steam
amount
medium
combined cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16066395A
Other languages
Japanese (ja)
Other versions
JPH0913917A (en
Inventor
謙治 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP16066395A priority Critical patent/JP3706411B2/en
Publication of JPH0913917A publication Critical patent/JPH0913917A/en
Application granted granted Critical
Publication of JP3706411B2 publication Critical patent/JP3706411B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、高圧ドラム、中圧ドラム、および低圧ドラムを備えた再熱三重圧型排熱回収ボイラを有するコンバインドサイクル発電プラントにおいて、中圧蒸気をガスタービンの尾筒冷却に使用する場合の中圧蒸気量の調整方法に関する。
【0002】
【従来の技術】
コンバインドサイクル発電プラントのガスタービン開発は著しく、タービン入口燃焼ガス温度も高温大容量化してきている。
このように高温大容量化するガスタービンに伴い排熱回収ボイラの入口ガス温度、ガス量も増加し、排熱回収ボイラの大型化、高効率化が計られていて熱効率向上の視点から極力熱回収が考慮されている。
【0003】
図2は、高圧ドラム、中圧ドラム、および低圧ドラムを備えた再熱三重圧型排熱回収ボイラの横型の系統構成例を示す図である。
図2に示すように、排熱回収ボイラは、ガスタービン排気の来る上流側から過熱器21、再熱器22、ドラム24付蒸発器23、節炭器(図では省略)の順に構成されていて圧力域の違いによって高圧、中圧、及び低圧と三重圧系統に構成されている。
【0004】
これ等の高圧、中圧、及び低圧の蒸気は、それぞれ、高圧蒸気タービン、中圧蒸気タービン、及び低圧蒸気タービンの動力源となる。
一方、ガスタービン側における蒸気使用のひとつとしてガスタービンの出力増加、NOx 低減のため燃焼器に蒸気を噴射させるが、このように蒸気噴射を行った場合、燃焼器尾筒が高温となり易い。
【0005】
そのため蒸気供給管を設けてガスタービンの尾筒の周囲及び尾筒内に蒸気を供給し尾筒冷却を行っている。この時に尾筒に供給される蒸気としては、排熱回収ボイラの中圧蒸気を抽気して導びいている。
【0006】
【発明が解決しようとする課題】
前記したように、ガスタービン燃焼器尾筒に冷却用の蒸気を供給する場合、その蒸気は、排熱回収ボイラの中圧蒸気を抽気して導びいている。
このとき、蒸気タービンが部分負荷運転時にあると、中圧蒸気量がガスタービンの尾筒冷却に必要な蒸気量を下廻る事態が起ることがある。
【0007】
本発明はこの問題点を解決するためになされたもので、ガスタービンの尾筒冷却に使用する中圧蒸気量が蒸気タービンの部分負荷運転時に必要量を下廻らないようにするコンバインドサイクル発電プラントの中圧蒸気調整方法を提供することを課題としている。
【0008】
【課題を解決するための手段】
本発明は、高圧ドラム、中圧ドラム、および低圧ドラムを備えた再熱三重圧型排熱回収ボイラを有するコンバインドサイクル発電プラントにおける前記課題を解決するため、中圧蒸気をガスタービンの尾筒冷却に使用する場合、蒸気タービンの部分負荷運転時には高圧蒸気タービンのガバナ弁を絞って中圧蒸気発生量を増加させる。
【0009】
【作用】
前記したように、本発明により、蒸気タービンの部分負荷運転時に高圧蒸気タービンのガバナ弁を絞ると、排熱回収ボイラにおける高圧ドラムの蒸気圧力は上昇する。高圧ドラムでの蒸気圧力が上昇すると高圧蒸発器での蒸気の発生量は減少する。
【0010】
その分の熱量は中圧蒸発器にまわり中圧蒸発器での蒸気発生量は増加し部分負荷運転時においても尾筒冷却に必要な蒸気量を確保できる。
【0011】
このように、本発明の中圧蒸気量調整方法によれは、ガスタービンの尾筒冷却に使用する中圧蒸気量が蒸気タービンの部分負荷運転時に必要量を下廻らないようにすることができる。
【0012】
【実施例】
以下、本発明によるコンバインドサイクル発電プラントの中圧蒸気量調整方法の実施の態様を、図1に示したコンバインドサイクル発電プラントの系統略図を用いて具体的に説明する。
【0013】
図1に示したコンバインドサイクル発電プラントには、高圧蒸気タービン(HP)1、中圧蒸気タービン(IP)・低圧蒸気タービン(LP)2、これらの蒸気タービンによって駆動される発電機(G)3、及びガスタービン(GT)4によって駆動される圧縮機(C)5と発電機(G)6が配置されている。
【0014】
各蒸気タービン1,2にはそれぞれガバナー弁7,8,9が付属されている。また、ガスタービン4の排気ガスは排熱回収ボイラ10に送られる。排熱回収ボイラ10は排気ガスの入口側から順に高圧過熱器11、高圧蒸発器(HP)12、中圧過熱器13、低圧過熱器15、中圧蒸発器(IP)14、低圧蒸発器(LP)16の順に配されている。
【0015】
そして、それぞれの蒸発器12,14,16には、高圧ドラム17、中圧ドラム18、低圧ドラム19が付属されている。
図示していないが、排熱回収ボイラ10の中圧蒸気を抽気してガスタービン4の燃焼器尾筒に冷却用の蒸気が供給されるように構成してある。
【0016】
以上のように構成した図1の系統において、高圧蒸気タービン1のガバナー弁7を絞ると排熱回収ボイラ10の高圧ドラム17の蒸気圧力は上昇する。高圧ドラム17での蒸気圧力が上昇すると高圧蒸発器12での蒸気発生量は減少する。そしてその分の熱量は中圧蒸発器14にまわされ、中圧蒸発器14での蒸気発生量は増加する。
【0017】
従って、蒸気タービンの部分負荷運転時に高圧蒸気タービン1のガバナー弁を絞ることにより部分負荷運転時においても尾筒冷却に必要な中圧蒸気量を充足することができる。
【0018】
【発明の効果】
以上説明したように、本発明のコンバインドサイクル発電プラントの中圧蒸気量調整方法によれば蒸気タービンの部分負荷時にガスタービン燃焼器の尾筒の冷却用蒸気の必要量が不足した場合にも高圧蒸気タービンのガバナー弁を絞ることによって臨機に対応できる。
従って、コンバインド発電プラントの運転に自在性が加味されることになる。
【図面の簡単な説明】
【図1】本発明による中圧蒸気調整方法の実施の態様を説明するためのコンバインドサイクル発電プラントの系統略図。
【図2】コンバインドサイクル発電プラントにおける再熱三重圧型排熱回収ボイラの構成図。
【符号の説明】
1 高圧蒸気タービン
2 中圧蒸気タービン、低圧蒸気タービン
3 発電機
4 ガスタービン
5 圧縮機
6 発電機
7 高圧ガスタービンのガバナー弁
8 中圧ガスタービンのガバナー弁
9 低圧ガスタービンのガバナー弁
10 排熱回収ボイラ
11 高圧過熱器
12 高圧蒸発器
13 中圧過熱器
14 中圧蒸発器
15 低圧過熱器
16 低圧蒸発器
17 高圧ドラム
18 中圧ドラム
19 低圧ドラム
[0001]
[Industrial application fields]
The present invention relates to a combined cycle power plant having a reheat triple pressure exhaust heat recovery boiler having a high pressure drum, an intermediate pressure drum, and a low pressure drum, in which intermediate pressure steam is used for cooling a tail tube of a gas turbine. The present invention relates to a method for adjusting the amount of steam.
[0002]
[Prior art]
The development of gas turbines in combined cycle power plants is remarkable, and the combustion gas temperature at the turbine inlet is also increasing in high temperature and capacity.
As the gas turbine increases in temperature and capacity, the inlet gas temperature and gas volume of the exhaust heat recovery boiler also increase, and the exhaust heat recovery boiler is becoming larger and more efficient. Recovery is considered.
[0003]
FIG. 2 is a diagram illustrating a horizontal system configuration example of a reheat triple pressure exhaust heat recovery boiler including a high pressure drum, an intermediate pressure drum, and a low pressure drum.
As shown in FIG. 2, the exhaust heat recovery boiler is configured in the order of a superheater 21, a reheater 22, an evaporator 23 with a drum 24, and a economizer (not shown) from the upstream side where the gas turbine exhaust comes. Depending on the pressure range, high pressure, medium pressure, low pressure and triple pressure systems are constructed.
[0004]
These high-pressure, medium-pressure, and low-pressure steams serve as power sources for the high-pressure steam turbine, medium-pressure steam turbine, and low-pressure steam turbine, respectively.
On the other hand, the increase of the output of one as a gas turbine of the steam used in the gas turbine side, but to inject steam into the combustor for of the NO x reduction, in the case of performing this way the steam injection, the combustor transition piece is likely to become high temperature.
[0005]
For this reason, a steam supply pipe is provided to supply steam to the periphery of the transition piece of the gas turbine and in the transition piece to cool the transition piece. At this time, as the steam supplied to the tail cylinder, the medium pressure steam of the exhaust heat recovery boiler is extracted and guided.
[0006]
[Problems to be solved by the invention]
As described above, when the cooling steam is supplied to the gas turbine combustor tail tube, the steam is extracted by guiding the intermediate pressure steam of the exhaust heat recovery boiler.
At this time, if the steam turbine is in partial load operation, there may occur a situation in which the amount of intermediate pressure steam falls below the amount of steam necessary for cooling the tail tube of the gas turbine.
[0007]
The present invention has been made to solve this problem, and a combined cycle power plant that prevents the amount of medium-pressure steam used for cooling the transition of the gas turbine from being less than the required amount during partial load operation of the steam turbine. It is an object to provide a method for adjusting the medium pressure steam.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problem in a combined cycle power plant having a reheat triple-pressure type exhaust heat recovery boiler having a high-pressure drum, an intermediate-pressure drum, and a low-pressure drum, the present invention is used for cooling intermediate-pressure steam to a tail turbine of a gas turbine. When used, during the partial load operation of the steam turbine, the governor valve of the high pressure steam turbine is throttled to increase the amount of intermediate pressure steam generated.
[0009]
[Action]
As described above, according to the present invention, when the governor valve of the high-pressure steam turbine is throttled during partial load operation of the steam turbine, the steam pressure of the high-pressure drum in the exhaust heat recovery boiler increases. When the steam pressure in the high-pressure drum increases, the amount of steam generated in the high-pressure evaporator decreases.
[0010]
The amount of heat that passes around the medium pressure evaporator increases the amount of steam generated in the medium pressure evaporator, and the amount of steam necessary for cooling the tail cylinder can be secured even during partial load operation.
[0011]
As described above, according to the method for adjusting the amount of steam at the intermediate pressure of the present invention, the amount of steam at the intermediate pressure used for cooling the transition of the gas turbine can be prevented from being less than the required amount during partial load operation of the steam turbine. .
[0012]
【Example】
Hereinafter, the embodiment of the method for adjusting the amount of medium pressure steam of the combined cycle power plant according to the present invention will be described in detail with reference to the system schematic diagram of the combined cycle power plant shown in FIG.
[0013]
The combined cycle power plant shown in FIG. 1 includes a high pressure steam turbine (HP) 1, an intermediate pressure steam turbine (IP) / low pressure steam turbine (LP) 2, and a generator (G) 3 driven by these steam turbines. , And a compressor (C) 5 and a generator (G) 6 driven by a gas turbine (GT) 4 are disposed.
[0014]
Governor valves 7, 8, and 9 are attached to the steam turbines 1 and 2, respectively. Further, the exhaust gas of the gas turbine 4 is sent to the exhaust heat recovery boiler 10. The exhaust heat recovery boiler 10 includes a high-pressure superheater 11, a high-pressure evaporator (HP) 12, an intermediate-pressure superheater 13, a low-pressure superheater 15, an intermediate-pressure evaporator (IP) 14, and a low-pressure evaporator (in order from the exhaust gas inlet side). LP) 16 in this order.
[0015]
A high pressure drum 17, an intermediate pressure drum 18, and a low pressure drum 19 are attached to each of the evaporators 12, 14, and 16.
Although not shown, the medium pressure steam of the exhaust heat recovery boiler 10 is extracted and the cooling steam is supplied to the combustor tail of the gas turbine 4.
[0016]
In the system of FIG. 1 configured as described above, when the governor valve 7 of the high pressure steam turbine 1 is throttled, the steam pressure of the high pressure drum 17 of the exhaust heat recovery boiler 10 increases. When the steam pressure in the high-pressure drum 17 increases, the amount of steam generated in the high-pressure evaporator 12 decreases. Then, the amount of heat is transferred to the intermediate pressure evaporator 14, and the amount of steam generated in the intermediate pressure evaporator 14 increases.
[0017]
Therefore, by restricting the governor valve of the high pressure steam turbine 1 during partial load operation of the steam turbine, the amount of intermediate pressure steam necessary for cooling the tail cylinder can be satisfied even during partial load operation.
[0018]
【The invention's effect】
As described above, according to the method for adjusting the amount of steam at the intermediate pressure of the combined cycle power plant of the present invention, even when the required amount of steam for cooling the tail cylinder of the gas turbine combustor is insufficient at the partial load of the steam turbine, the high pressure is maintained. It is possible to respond immediately by restricting the governor valve of the steam turbine.
Therefore, flexibility is added to the operation of the combined power plant.
[Brief description of the drawings]
FIG. 1 is a system schematic diagram of a combined cycle power plant for explaining an embodiment of an intermediate pressure steam adjustment method according to the present invention.
FIG. 2 is a configuration diagram of a reheat triple pressure exhaust heat recovery boiler in a combined cycle power plant.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 High pressure steam turbine 2 Medium pressure steam turbine, Low pressure steam turbine 3 Generator 4 Gas turbine 5 Compressor 6 Generator 7 High pressure gas turbine governor valve 8 Medium pressure gas turbine governor valve 9 Low pressure gas turbine governor valve 10 Waste heat Recovery boiler 11 High pressure superheater 12 High pressure evaporator 13 Medium pressure superheater 14 Medium pressure evaporator 15 Low pressure superheater 16 Low pressure evaporator 17 High pressure drum 18 Medium pressure drum 19 Low pressure drum

Claims (1)

高圧ドラム、中圧ドラム、および低圧ドラムを備えた再熱三重圧型排熱回収ボイラを有するコンバインドサイクル発電プラントにおいて、中圧蒸気をガスタービンの尾筒冷却に使用する場合、蒸気タービンの部分負荷運転時には蒸気タービンの高圧ガバナ弁を絞って中圧蒸気発生量を増加させることを特徴とするコンバインドサイクル発電プラントの中圧蒸気量調整方法。In a combined cycle power plant having a reheat triple pressure exhaust heat recovery boiler with a high pressure drum, an intermediate pressure drum, and a low pressure drum, when the intermediate pressure steam is used for cooling the transition of the gas turbine, the partial load operation of the steam turbine A method for adjusting the amount of medium-pressure steam in a combined cycle power plant, which sometimes increases the amount of medium-pressure steam generation by restricting the high-pressure governor valve of the steam turbine.
JP16066395A 1995-06-27 1995-06-27 Method for adjusting the amount of medium-pressure steam in combined cycle power plants Expired - Fee Related JP3706411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16066395A JP3706411B2 (en) 1995-06-27 1995-06-27 Method for adjusting the amount of medium-pressure steam in combined cycle power plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16066395A JP3706411B2 (en) 1995-06-27 1995-06-27 Method for adjusting the amount of medium-pressure steam in combined cycle power plants

Publications (2)

Publication Number Publication Date
JPH0913917A JPH0913917A (en) 1997-01-14
JP3706411B2 true JP3706411B2 (en) 2005-10-12

Family

ID=15719809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16066395A Expired - Fee Related JP3706411B2 (en) 1995-06-27 1995-06-27 Method for adjusting the amount of medium-pressure steam in combined cycle power plants

Country Status (1)

Country Link
JP (1) JP3706411B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3500020B2 (en) * 1996-11-29 2004-02-23 三菱重工業株式会社 Steam cooled gas turbine system
US6279308B1 (en) 1997-04-23 2001-08-28 Mitsubishi Heavy Industries, Ltd. Cooling steam control method for combined cycle power generation plants
JPH1193618A (en) 1997-09-22 1999-04-06 Mitsubishi Heavy Ind Ltd Steam pressure control method for gas turbine steam cooling system

Also Published As

Publication number Publication date
JPH0913917A (en) 1997-01-14

Similar Documents

Publication Publication Date Title
US5660037A (en) Method for conversion of a reheat steam turbine power plant to a non-reheat combined cycle power plant
US5428950A (en) Steam cycle for combined cycle with steam cooled gas turbine
JP3681464B2 (en) Combined cycle system
US5412937A (en) Steam cycle for combined cycle with steam cooled gas turbine
JP5604074B2 (en) Steam temperature control device that uses fuel gas heater drain to reduce feed pump size
US20100170218A1 (en) Method for expanding compressor discharge bleed air
JPH06264763A (en) Combined plant system
CA2114072A1 (en) Combined combustion and steam turbine power plant
US20090056341A1 (en) Method and apparatus for facilitating cooling of a steam turbine component
EP2535533A2 (en) Asymmetrical combined cycle power plant
US20100077722A1 (en) Peak load management by combined cycle power augmentation using peaking cycle exhaust heat recovery
US6141952A (en) Method of operating a combined-cycle power plant
JPH08260912A (en) Combined cycle power plant
EP0618997B1 (en) Steam system in a multiple boiler plant
JP3706411B2 (en) Method for adjusting the amount of medium-pressure steam in combined cycle power plants
JP2699808B2 (en) Steam-cooled gas turbine combined plant
US6272841B2 (en) Combined cycle power plant
JP2915885B1 (en) Gas turbine combined cycle system
KR101887971B1 (en) Low load turndown for combined cycle power plants
JP7066572B2 (en) Temporary piping system for boiler blow-out and boiler blow-out method
JP3133183B2 (en) Combined cycle power plant
Bolland A comparative evaluation of advanced combined cycle alternatives
US20240175379A1 (en) Combined power generation system and control method thereof
JPH1193618A (en) Steam pressure control method for gas turbine steam cooling system
JPH04110507A (en) Steam temperature controller of superheater and reheater in cogeneration power plant

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050729

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130805

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees