JPS61118508A - Control device for recirculating flow of feed pump - Google Patents

Control device for recirculating flow of feed pump

Info

Publication number
JPS61118508A
JPS61118508A JP23844884A JP23844884A JPS61118508A JP S61118508 A JPS61118508 A JP S61118508A JP 23844884 A JP23844884 A JP 23844884A JP 23844884 A JP23844884 A JP 23844884A JP S61118508 A JPS61118508 A JP S61118508A
Authority
JP
Japan
Prior art keywords
flow rate
feed water
control device
water supply
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23844884A
Other languages
Japanese (ja)
Inventor
Takeshi Ishida
武司 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23844884A priority Critical patent/JPS61118508A/en
Publication of JPS61118508A publication Critical patent/JPS61118508A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • F01K23/108Regulating means specially adapted therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To make it possible to eliminate a detector for the outlet flow rate of a feed pump, in a control device in a combined cycle power plant, by providing a control device for the recirculation flow of a feed pump, which also controls the inlet temperature of a fuel economizer. CONSTITUTION:Feed water 19 is pressure-boosted up by a condensate pump and is fed into a fuel economizer 20 in which the feed water 19 is heated. The heated feed water 21 is divided into two feed water part, one of which flows into a low pressure drum 10 through a feed water flow rate adjusting valve 22 and the other one 23 of which flows into a high pressure drum through a feed pump 9. Further, the feed water part 25 is divided into a feed water part 24 led to the high pressure drum and a recirculated feed water part 25 which is controlled by a recirculating flow rate control valve 26, and is returned into the inlet port side of the fuel economizer. The temperature 28 detected by a temperature detector 27, and the flow rate 30 detected by a high pressure feed water flow rate detector 29 are delivered to a control device 31 for the recirculating flow of the feed pump, and the output 32 of the control device 31 determines the opening degree of the recirculating flow control valve 26.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、複合サイクル発電プラント制御装置に係り、
特に、節炭器入口温度制御を兼ねた給水ポンプ再循環流
量制御装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a combined cycle power plant control device,
In particular, the present invention relates to a water pump recirculation flow rate control device that also controls the temperature at the inlet of the economizer.

〔発明の背景〕[Background of the invention]

複合サイクル発電プラントでは、系統構成を簡単にする
ために、脱気器を省略し復水脱気方式とすることが多い
。節炭器は、温度の低い水が給水されると、節炭器チュ
ーブ外面に結露し、チューブ外面が腐食する。このため
、節炭器チューブ外面に結露今生じないように給水の温
度を上げる必要があった。従来は、脱気器内で加熱して
いたため問題とならなかったが、脱気器を省略すると別
の手段が必要となる。
In combined cycle power plants, in order to simplify the system configuration, a deaerator is often omitted and a condensate deaeration system is used. When low-temperature water is supplied to the economizer, dew condenses on the outer surface of the economizer tube, corroding the outer surface of the tube. Therefore, it was necessary to raise the temperature of the water supply to prevent condensation from forming on the outer surface of the economizer tube. Conventionally, this did not pose a problem because the heating was done in a deaerator, but if the deaerator is omitted, another means will be required.

従来、循環水ポンプの出口から節炭器入口に温水を戻す
系統を設け、このもどし流量を節炭器入口温度制御装置
で調節する方式としているが、プラントの系統及び制御
システムがやや複雑になるきらいがある。
Conventionally, a system has been installed to return hot water from the outlet of the circulating water pump to the inlet of the economizer, and the flow rate of this return is regulated by a temperature control device at the inlet of the economizer, but this makes the plant system and control system somewhat complicated. I don't like it.

また、従来設置されている給水ポンプ再循環流量制御系
統を利用して、節炭器入口温度を規定値以上に制御する
手段では、給水ポンプの再循環流量制御と節炭器入口温
度制御の二つの制御を組合せたものと々す、複雑な制御
切替器が必要となるばかりでなく、給水ポンプ出口流量
検出手段と節炭器入口温度検出手段の両方が必要である
。節炭器出口から節炭器入口への再循環流量制御方式に
ついて、関連する特許の例として、特開昭55−116
001号公報があるが、この発明は、再循環流量制御弁
をガスタービン負荷に応じて制御することにより、節炭
器部分における蒸気の発生を防止することを目的として
おり、本発明の目的とする節炭器入口温度制御と再循環
流量制御を兼ねる制御方式とはなっていない。
In addition, in the conventional method of controlling the inlet temperature of the economizer to a specified value using the water pump recirculation flow rate control system, there are two methods: control of the recirculation flow rate of the water pump and control of the inlet temperature of the economizer. Not only is a complicated control switch combining two controls required, but also both a feedwater pump outlet flow rate sensing means and an economizer inlet temperature sensing means are required. Regarding the recirculation flow rate control method from the outlet of the economizer to the inlet of the economizer, an example of a related patent is JP-A-55-116.
No. 001, the purpose of this invention is to prevent the generation of steam in the economizer section by controlling the recirculation flow rate control valve according to the gas turbine load. It does not have a control system that controls the temperature at the inlet of the economizer and controls the recirculation flow rate.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、給水ポンプ再循環流量制御を簡略化し
、給水ポンプ出口流量の検出手段を省略して、節炭器入
口温度制御と一体化した給水ポンプ再循環流量制御装置
を提供することにある。
An object of the present invention is to provide a water pump recirculation flow rate control device that simplifies water pump recirculation flow rate control, omits a means for detecting the water pump outlet flow rate, and is integrated with energy saver inlet temperature control. be.

〔発明の概要〕[Summary of the invention]

給水ポンプの再循環流量制御の目的は、給水ポンプの最
小流量を確保し、流量不足によるポンプの過熱を防止す
ることである。このため、給水ポンプ出口の温水を節炭
器入口に戻す系統で、最小流量を確保し、かつ、節炭器
入口温度を制御する。
The purpose of water pump recirculation flow control is to ensure a minimum flow rate of the water pump and prevent the pump from overheating due to insufficient flow. For this reason, a system that returns hot water from the water supply pump outlet to the economizer inlet ensures a minimum flow rate and controls the temperature at the economizer inlet.

通常、節炭器にとって十分な温度にするための再循環流
量は、給水ポンプの最小流量より十分多いため、節炭器
入口温度制御に最小流量を確保するための制限器を組合
わせることにより、従来の方式と同等の効果が得られる
Normally, the recirculation flow rate to achieve a sufficient temperature for the economizer is sufficiently higher than the minimum flow rate of the water pump, so by combining the economizer inlet temperature control with a limiter to ensure the minimum flow rate, The same effect as the conventional method can be obtained.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図、第2図、第3図を用
いて説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1, 2, and 3.

第1図は、本発明を適用する一軸を複合サイクル発電プ
ラントの構成を示す。
FIG. 1 shows the configuration of a single-shaft combined cycle power plant to which the present invention is applied.

圧縮機1は、空気2を取り込み、圧縮して燃焼器3へ送
り込む。燃料は、燃料流量制御弁4を経由して燃焼器3
へ送られ、圧縮空気と混合燃焼される。燃焼ガスは、ガ
スタービン5を駆動し、排熱回収ボイラ6へ導かれる。
Compressor 1 takes in air 2, compresses it, and sends it to combustor 3. The fuel is supplied to the combustor 3 via the fuel flow control valve 4.
The fuel is mixed with compressed air and combusted. The combustion gas drives a gas turbine 5 and is led to an exhaust heat recovery boiler 6.

排熱回収ボイラ6では、ガスタービンの排ガス7のもつ
エネルギで、復水ポンプ8及び給水ポンプ9により給水
する水を低圧ドラム10、高圧ドラム11を経由して蒸
気に変え、低圧加減弁12、高圧加減弁13を通して蒸
気タービン14へ送り込む。この蒸気は、蒸気タービン
14で仕事をした後、復水器15で復水され、復水ポン
プ8で、再び、排熱回収ボイラ6へ給水される。
In the exhaust heat recovery boiler 6, the energy of the exhaust gas 7 of the gas turbine is used to convert the water supplied by the condensate pump 8 and the water supply pump 9 into steam via the low pressure drum 10 and the high pressure drum 11. It is sent to the steam turbine 14 through the high pressure regulating valve 13. After this steam performs work in the steam turbine 14, it is condensed in the condenser 15, and is again supplied to the exhaust heat recovery boiler 6 by the condensate pump 8.

ガスタービンと、蒸気タービンのエネルギハ発電機16
で電力に変換される。
Gas turbine and steam turbine energy generator 16
is converted into electricity.

低圧バイパス弁17及び高圧バイパス弁18は、加減弁
12.13の前圧を制御する目的で蒸気タービン14の
起動・停止時に使用される。通常運転時、バイパス弁1
7,18は、全閉位置に制御されている。
The low-pressure bypass valve 17 and the high-pressure bypass valve 18 are used when starting and stopping the steam turbine 14 for the purpose of controlling the prepressure of the regulating valve 12.13. During normal operation, bypass valve 1
7 and 18 are controlled to the fully closed position.

第2図に、給水ポンプ再循環系統を示す。Figure 2 shows the water pump recirculation system.

復水ポンプで昇圧された給水19は、節炭器220へ送
られる。ここで加熱された給水21は、給水流:を調節
弁22を経由して低圧ドラムlo側と給水ポンプ9を経
由して高圧ドラム側への給水23にわかれる。給水ポン
プ9を経由した給水23は、さらに、高圧ドラムへの給
水24と再循環する給水25にわかれる。給水25は、
再循環流量制御弁26で制御され、節炭器入口側へ戻さ
れる。
The feed water 19 whose pressure has been increased by the condensate pump is sent to the energy saver 220 . The heated feed water 21 is divided into a water supply stream 23 via a regulating valve 22 to the low-pressure drum lo side and via the water supply pump 9 to the high-pressure drum side. The water supply 23 via the water pump 9 is further divided into a water supply 24 to the high-pressure drum and a recirculated water supply 25. The water supply 25 is
It is controlled by the recirculation flow rate control valve 26 and returned to the inlet side of the economizer.

温度検出器27で計測された温度28と、高圧給水流電
検出器29で計測された流4に30は、給水ポンプ再循
環流量制御装置31に接続されている。
The temperature 28 measured by the temperature detector 27 and the flow 4 30 measured by the high pressure feed water current detector 29 are connected to a feed water pump recirculation flow rate control device 31.

ここで、高圧給水流量検出器29は、高圧ドラムレベル
制御用に設置されているものを使用する。
Here, the high-pressure water supply flow rate detector 29 used is one installed for high-pressure drum level control.

よって、本制御方式で新たに必要となる検出器は、温度
検出器27のみとなる。
Therefore, the only new detector required in this control method is the temperature detector 27.

再循環流量制御装置の出力32は、再循環流量制御弁2
6の開度を決定する。
The output 32 of the recirculation flow control device is connected to the recirculation flow control valve 2.
6. Determine the opening degree.

第3図に、再循環流量制御装置31の制御系統を示す。FIG. 3 shows the control system of the recirculation flow rate control device 31.

本制御装置は、節炭器入口温度制御を基本制御として、
給水ポンプの最小流量を確保するため、低値制限器33
で制御出力を制限する。
This control device uses economizer inlet temperature control as its basic control.
In order to ensure the minimum flow rate of the water pump, a low value limiter 33 is installed.
to limit the control output.

節炭器入口温度設定値34(節炭器が許容できる最低温
度十余裕値)と給水温度28の偏差36を加算器35で
演算し、これを比例積分又は、比例積分・微分器37に
接続する。演算器37の出力は、低値制限器33に接続
し、給水ポンプの最小流量を確保する制限値38で制限
する。給水ボ/プの出口読飛23は、高圧給水流量24
と再循環流量25の和であるため、給水ポンプの最小流
量を確保するために必要な再循環流量は、高圧給水流量
24により決まる。−例として、最小流量設定値を10
 T@@ / h rとし、高圧給水流量が5’f’、
、/hrであったとすると最小流量を確保するために必
要な再循環流量は、最低5 T@@ / hrとなる。
The adder 35 calculates the deviation 36 between the economizer inlet temperature set value 34 (minimum temperature allowable value for the economizer) and the feed water temperature 28, and calculates this using the proportional integral or the proportional integral/differentiator 37. Connecting. The output of the calculator 37 is connected to a low value limiter 33 and is limited by a limit value 38 that ensures the minimum flow rate of the water pump. The water supply valve outlet reading 23 is a high pressure water supply flow rate 24.
and the recirculation flow rate 25, the recirculation flow rate required to ensure the minimum flow rate of the feed water pump is determined by the high pressure feed water flow rate 24. - As an example, set the minimum flow rate to 10
T@@ / h r, high pressure water supply flow rate is 5'f',
,/hr, the recirculation flow rate required to ensure the minimum flow rate is at least 5 T@@/hr.

よって、高圧給水流量が多ければ、再循環流量は、少な
い流量で最小流量が確保できることになる。このため、
給水ポンプの最小流量を確保する制限値38は、高圧給
水流量により決められる。以下、制限値38の設定方法
について記述する。基準とする最小流量設定値39の場
合の高圧給水流量30に対する最小流量を確保するため
に必要な再循環流量を算出する関数発生器40に高圧給
水流量30を接続する。基準とする最小流量設定値39
と実際の最小流量設定値42を加算器43に加え、その
偏差44により、関数発生器40の出力41を、実際の
最小流量設定値における最小流量を確保するために必要
な再循環流量とするため、演算器45で補正する。
Therefore, if the high-pressure water supply flow rate is large, the minimum recirculation flow rate can be ensured with a small flow rate. For this reason,
The limit value 38 that ensures the minimum flow rate of the water supply pump is determined by the high pressure water supply flow rate. A method for setting the limit value 38 will be described below. The high pressure water supply flow rate 30 is connected to a function generator 40 that calculates the recirculation flow rate necessary to ensure the minimum flow rate for the high pressure water supply flow rate 30 in the case of the reference minimum flow rate setting value 39. Standard minimum flow rate setting value 39
and the actual minimum flow setting 42 are added to the adder 43, and the deviation 44 thereof makes the output 41 of the function generator 40 the recirculation flow rate required to ensure the minimum flow at the actual minimum flow setting. Therefore, the calculation unit 45 corrects it.

その出力を制限値3Bとし、低値制限器33に接続する
。その制御出力32は、再循環流量制御弁26を制御す
る。
The output is set as a limit value 3B and connected to a low value limiter 33. Its control output 32 controls recirculation flow control valve 26 .

〔発明の効果〕〔Effect of the invention〕

本発明によれば、給水ポンプ出口流量の検出器が省略で
き、再循環流量制御と節炭器入口温度側割を切替える複
雑な切替器が不要となる。
According to the present invention, a detector for the water supply pump outlet flow rate can be omitted, and a complicated switch for switching between recirculation flow rate control and economizer inlet temperature side division is unnecessary.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のプラント全体構成図、第2
図は本発明の給水ポンプ再循環系統図、第3図は本発明
の給水ポンプ再循環流量制御システム図である。 9・・・給水ポンプ、27・・・節炭器入口温度検出手
段、35.37・・・演算手段、33・・・制限手段、
29・・・高圧給水流量検出手段。
Fig. 1 is an overall configuration diagram of a plant according to an embodiment of the present invention;
The figure is a water pump recirculation system diagram of the present invention, and FIG. 3 is a water pump recirculation flow rate control system diagram of the present invention. 9... Water supply pump, 27... Energy saver inlet temperature detection means, 35.37... Calculation means, 33... Limiting means,
29...High pressure water supply flow rate detection means.

Claims (1)

【特許請求の範囲】 1、給水ポンプ出口から流量制御弁を経由し、節炭器入
口への給水再循環系統と低圧節炭器の入口温度検出手段
、高圧節炭器への高圧給水流量検出手段、前記入口温度
検出手段からの信号と前記高圧給水流量検出手段からの
信号をもとに前記流量制御弁の開度を演算する手段にお
いて、 前記流量制御弁の開度演算結果を前記給水ポンプ再循環
流量を確保するための制限値で制限する手段を設けたこ
とを特徴とする給水ポンプ再循環流量制御装置。
[Claims] 1. Water supply recirculation system from the water supply pump outlet to the inlet of the economizer via the flow rate control valve, means for detecting the inlet temperature of the low pressure economizer, and detection of the flow rate of high pressure water supply to the high pressure economizer. means for calculating the opening degree of the flow rate control valve based on the signal from the inlet temperature detection means and the signal from the high-pressure water supply flow rate detection means, the means for calculating the opening degree of the flow rate control valve based on the signal from the inlet temperature detection means and the signal from the high pressure water supply flow rate detection means; A water supply pump recirculation flow rate control device, characterized in that it is provided with means for restricting the recirculation flow rate with a limit value to ensure the recirculation flow rate.
JP23844884A 1984-11-14 1984-11-14 Control device for recirculating flow of feed pump Pending JPS61118508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23844884A JPS61118508A (en) 1984-11-14 1984-11-14 Control device for recirculating flow of feed pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23844884A JPS61118508A (en) 1984-11-14 1984-11-14 Control device for recirculating flow of feed pump

Publications (1)

Publication Number Publication Date
JPS61118508A true JPS61118508A (en) 1986-06-05

Family

ID=17030367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23844884A Pending JPS61118508A (en) 1984-11-14 1984-11-14 Control device for recirculating flow of feed pump

Country Status (1)

Country Link
JP (1) JPS61118508A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008510096A (en) * 2004-08-19 2008-04-03 周華群 Gas-steam engine
JP2010512972A (en) * 2006-12-19 2010-04-30 イーエルシー マネージメント エルエルシー Multi-purpose tri-fold compact with no movement
US7780037B2 (en) 2006-09-29 2010-08-24 Elc Management Llc Unitary cosmetic compact with decoupled motion

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008510096A (en) * 2004-08-19 2008-04-03 周華群 Gas-steam engine
US7780037B2 (en) 2006-09-29 2010-08-24 Elc Management Llc Unitary cosmetic compact with decoupled motion
JP2010512972A (en) * 2006-12-19 2010-04-30 イーエルシー マネージメント エルエルシー Multi-purpose tri-fold compact with no movement
US7849863B2 (en) 2006-12-19 2010-12-14 Elc Management Llc Versatile, tri-fold compact with decoupled motion

Similar Documents

Publication Publication Date Title
US20140290264A1 (en) Control of the gas composition in a gas turbine power plant with flue gas recirculation
EP0900921A2 (en) Hydrogen burning turbine plant
CA2262722C (en) Gas turbine combined plant, method of operating the same, and steam-cooling system for gas turbine hot section
JP2003161164A (en) Combined-cycle power generation plant
JPS61118508A (en) Control device for recirculating flow of feed pump
JPH112105A (en) Combined cycle power generation plant
JP2908884B2 (en) Pressurized fluidized bed combined plant and its partial load operation control method and control device
JPS61108814A (en) Gas-steam turbine composite facility
JP7308719B2 (en) Exhaust heat recovery system
JPS5870007A (en) Apparatus for controlling combined cycle power plant
JPS6239661B2 (en)
JP2863645B2 (en) Feedwater flow control system for an exhaust gas reburning combined cycle power plant
JPH05296401A (en) Exhaust heat recoverying boiler system and its main steam temperature controller
JPS6211283Y2 (en)
JPH0387502A (en) Device for controlling feedwater for waste heat recovery boiler
JPH0330761B2 (en)
JPH0231205B2 (en)
JPH04191405A (en) Water supply control device for repowering system
JPH08178205A (en) Controller of boiler
JP3095575B2 (en) Cycle plant
JPH01212802A (en) Steam temperature control device for boiler
JP2645128B2 (en) Coal gasification power plant control unit
JP2708406B2 (en) Startup control method for thermal power plant
JPS6326801B2 (en)
JPH06129208A (en) Composite cycle plant