JPH0231205B2 - - Google Patents

Info

Publication number
JPH0231205B2
JPH0231205B2 JP59013674A JP1367484A JPH0231205B2 JP H0231205 B2 JPH0231205 B2 JP H0231205B2 JP 59013674 A JP59013674 A JP 59013674A JP 1367484 A JP1367484 A JP 1367484A JP H0231205 B2 JPH0231205 B2 JP H0231205B2
Authority
JP
Japan
Prior art keywords
flow rate
recirculation flow
calculation
water supply
economizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59013674A
Other languages
Japanese (ja)
Other versions
JPS60159314A (en
Inventor
Masae Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1367484A priority Critical patent/JPS60159314A/en
Publication of JPS60159314A publication Critical patent/JPS60159314A/en
Publication of JPH0231205B2 publication Critical patent/JPH0231205B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/101Regulating means specially adapted therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はコンバインドサイクル発電プラント制
御装置に係り、特に節炭器入口温度制御を兼ねた
給水ポンプ再循環流量制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a combined cycle power generation plant control device, and more particularly to a water pump recirculation flow rate control device that also serves as economizer inlet temperature control.

[従来の技術] 温度の低い水が節炭器に給水された場合、節炭
器チユーブ外面に結露を起し、チユーブ外面が腐
食される。従来の火力発電プラントのように脱気
器が設置されている場合、給水は脱気器内で加熱
されるので前記の問題は起らないが、コンバイン
ドサイクルでは系統構成を簡単にするために脱気
器を省略して復水器脱気方式とすることが多く、
チユーブ外面の腐食を防ぐ手段が必要となる。
[Prior Art] When low-temperature water is supplied to an economizer, dew condensation occurs on the outer surface of the economizer tube, and the outer surface of the tube corrodes. If a deaerator is installed like in a conventional thermal power plant, the above problem does not occur because the feed water is heated in the deaerator, but in a combined cycle, deaerator is installed to simplify the system configuration. In many cases, a condenser deaeration method is used, omitting the air vent.
Measures are required to prevent corrosion on the outside surface of the tube.

[発明が解決しようとする課題] 従来は、例えば、特開昭58−190504号公報に記
載のように、循環ポンプの出口から節炭器入口に
温水を戻す系統を設け、この戻し流量を節炭器入
口温度制御装置で調節する方式としている。
[Problems to be Solved by the Invention] Conventionally, as described in, for example, Japanese Unexamined Patent Publication No. 58-190504, a system was provided to return hot water from the outlet of a circulation pump to the inlet of a economizer, and this return flow rate was saved. The temperature is controlled by a charcoal machine inlet temperature control device.

ところが、再循環流量制御系統の給水ポンプの
最小流量確保と節炭器の入口温度維持との協調制
御の方法が必ずしも明確でなく、両制御系統を切
換えた場合、滑らかに移行できず、制御の乱れ
(いゆるバンプ)が生ずる問題があつた。
However, the method of coordinated control between ensuring the minimum flow rate of the feed water pump in the recirculation flow control system and maintaining the inlet temperature of the economizer is not always clear, and when switching between the two control systems, it is not possible to transition smoothly and the control There was a problem with disturbances (so-called bumps).

本発明の目的は、給水ポンプ再循環流量制御系
統を利用し、給水ポンプの最小流量を確保しなが
ら節炭器入口温度を規定値以上に維持する際に、
給水ポンプの最小流量確保と節炭器の入口温度維
持とを滑らかにすなわちバンプレスに切り換え協
調制御することが可能な給水ポンプ再循環流量制
御装置を提供することである。
The purpose of the present invention is to maintain the inlet temperature of the economizer above a specified value while ensuring the minimum flow rate of the water pump by using a water pump recirculation flow rate control system.
It is an object of the present invention to provide a water supply pump recirculation flow rate control device capable of smoothly switching and cooperatively controlling ensuring the minimum flow rate of a water supply pump and maintaining the inlet temperature of a energy saver in a bumpless manner.

[課題を解決するための手段] 本発明明は、上記目的を達成するために、低圧
節炭器からの給水を加圧し高圧節炭器に送る給水
ポンプ出口の給水の一部を再循環流量制御弁を介
して前記低圧節炭器入口側に戻す再循環流量を制
御する給水ポンプ再循環流量制御装置において、
給水ポンプに所定値以上の流量を確保するための
再循環流量を演算する手段と、低圧節炭器入口側
温度を所定値以上に維持するための再循環流量を
演算する手段と、2つの演算手段で求められた再
循環流量のうち高値を再循環流量制御弁への開度
制御信号として選択する手段と、2つの演算手段
で求められた再循環流量と開度制御信号とにより
2つの演算手段の演算の実行・停止を判定し演算
停止中の演算手段の出力を選択されている高値に
強制的に一致させる手段とを備えた給水ポンプ再
循環流量制御装置を提案するものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a recirculation flow rate for a portion of the water supply at the outlet of the water supply pump that pressurizes the water supply from the low-pressure economizer and sends it to the high-pressure economizer. In a water pump recirculation flow rate control device that controls a recirculation flow rate returned to the inlet side of the low pressure economizer via a control valve,
A means for calculating a recirculation flow rate to ensure a flow rate of the water supply pump at a predetermined value or higher, and a means for calculating a recirculation flow rate for maintaining the low-pressure economizer inlet temperature at a predetermined value or higher. A means for selecting a high value of the recirculation flow rate determined by the means as an opening control signal to the recirculation flow rate control valve, and two calculations using the recirculation flow rate and the opening control signal determined by the two calculation means. The present invention proposes a water pump recirculation flow rate control device comprising means for determining execution/stop of calculation of the calculation means and forcibly causing the output of the calculation means to match a selected high value while the calculation is stopped.

[作用] 給水ポンプの再循環流量制御の本来の目的は、
給水ポンプの最小流量を確保し、流量不足による
ポンプの過熱を防止することである。このため給
水ポンプ出口の温水を節炭器入口に戻す系統を設
け、戻し流量を再循環流量制御装置で調節してい
る。
[Function] The original purpose of water pump recirculation flow control is to
The goal is to ensure the minimum flow rate of the water pump and prevent the pump from overheating due to insufficient flow. For this reason, a system is provided to return hot water from the water pump outlet to the energy saver inlet, and the return flow rate is regulated by a recirculation flow rate control device.

この再循環流量制御装置に節炭器入口温度制御
ループを追加し、最小流量確保のための再循環流
量演算値と節炭器入口の給水温度維持のための再
循環流量演算値のうち高値を優先して戻して流量
を制御する際に、本発明では、流量偏差の演算手
段と温度偏差演算手段のうち、制御切換えの時点
まで演算を停止しており演算を再開する方の出力
をそれまで優先させていた前記高値に強制的に一
致させ、そこから演算を開始するようにしてある
ので、制御切換え時の演算結果に段差を生ずるこ
とがなく、制御を滑らかに継続できる。
An economizer inlet temperature control loop is added to this recirculation flow rate control device, and the higher value of the recirculation flow rate calculation value to ensure the minimum flow rate and the recirculation flow rate calculation value to maintain the feed water temperature at the economizer inlet is set. When controlling the flow rate by returning priority, the present invention uses the output of the flow deviation calculation means and the temperature deviation calculation means, which stops calculation until the time of control switching and resumes calculation until then. Since the high value that has been given priority is forced to match and the calculation is started from there, there is no difference in the calculation result when switching the control, and the control can be continued smoothly.

[実施例] 次に、図面を参照して、本発明の一実施例を説
明する。
[Example] Next, an example of the present invention will be described with reference to the drawings.

第1図は本発明を適用すべき典型的な一軸型コ
ンバインド発電プラントの構成を示す。主な構成
要素はガスタービン、排熱ボイラ、蒸気タービ
ン、発電機である。
FIG. 1 shows the configuration of a typical single-shaft combined power plant to which the present invention is applied. The main components are a gas turbine, waste heat boiler, steam turbine, and generator.

圧縮機102は作動媒体の空気101を断熱圧
縮し、圧縮空気103として燃焼器104に送り
込む。この燃焼器104では、燃料制御弁106
を経由して送り込まれた燃料105と圧縮空気1
03とが混合燃焼し、高エネルギーの燃焼空気1
07が生成される。燃焼空気107はタービン1
08で仕事をした後に排熱ボイラ114へと導か
れる。
The compressor 102 adiabatically compresses air 101 as a working medium and sends it to the combustor 104 as compressed air 103. In this combustor 104, the fuel control valve 106
Fuel 105 and compressed air 1 sent through
03 is mixed and combusted, resulting in high energy combustion air 1
07 is generated. Combustion air 107 is supplied to turbine 1
After doing work at 08, it is led to the waste heat boiler 114.

一方、蒸気タービン110から排気された蒸気
は復水器111で復水された後、復水ポンプ11
2で昇圧され、低圧節炭器23に給水される。こ
こで加温された給水24は低圧給水調節弁25を
経由して低圧ドラム27に給水されるものと、高
圧給水ポンプ29によつてさらに昇圧され高圧節
炭器119に給水されるものとに分かれる。
On the other hand, steam exhausted from the steam turbine 110 is condensed in a condenser 111, and then
2, and the water is supplied to the low-pressure economizer 23. The heated water supply 24 is divided into two types: one is supplied to the low-pressure drum 27 via the low-pressure water supply control valve 25, and the other is further pressurized by the high-pressure water pump 29 and supplied to the high-pressure energy saver 119. Divided.

低圧ドラム27に入つた給水は低圧蒸発器11
5で低圧蒸気116となり、低圧加減弁117を
経由して蒸気タービン110に送られる。低圧蒸
気はここで仕事をした後、排気されて最初のサイ
クルを再びくりかえす。低圧バイパス弁118は
低圧蒸気116の圧力制御用に設けてある。
The feed water entering the low pressure drum 27 is sent to the low pressure evaporator 11
5, it becomes low pressure steam 116 and is sent to the steam turbine 110 via the low pressure regulating valve 117. After the low-pressure steam has done its work, it is exhausted and repeats the first cycle. A low pressure bypass valve 118 is provided for pressure control of the low pressure steam 116.

高圧節炭器119からの給水120はさらに加
圧され、高圧供水調節弁121を経由して高圧ド
ラム122に給水される。この給水は高圧蒸気器
123で高圧蒸気124となり、過熱器125で
更に温度を高めた後、高圧加減弁126を経由し
て蒸気タービン110に送られる。高圧蒸気はこ
こで仕事をした後、排気されて最初のサイクルを
再びくりかえす。高圧バイパス弁127は高圧蒸
気128の圧力を制御する。
The water supply 120 from the high-pressure economizer 119 is further pressurized and is supplied to the high-pressure drum 122 via the high-pressure water supply control valve 121 . This feed water becomes high-pressure steam 124 in a high-pressure steamer 123, and after further increasing its temperature in a superheater 125, it is sent to the steam turbine 110 via a high-pressure regulating valve 126. After the high-pressure steam has done its work, it is exhausted and repeats the first cycle. High pressure bypass valve 127 controls the pressure of high pressure steam 128.

ガスタービン108の仕事および蒸気タービン
110の仕事は発電機109で電気に変換され
る。
The work of gas turbine 108 and the work of steam turbine 110 are converted into electricity by generator 109.

第2図は本発明による給水ポンプ再循環流量制
御に関連するプラント部分の系統を示す。
FIG. 2 shows the system of plant parts associated with the feedwater pump recirculation flow control according to the present invention.

第1図の復水ポンプ112によつて昇圧された
給水22は節炭器23に送られる。ここで加熱さ
れた給水24は前述のように2つに分かれる。す
なわち給水調節弁25を経由する低圧ドラム27
への給水26と給水ポンプ29を経由する高圧ド
ラム側への給水28である。この給水28は更に
高圧ドラムへの給水30と再循環される給水31
に分かれる。給水31の流量は再循環流量制御弁
32で制御され節炭器入口側へ戻される。
The feed water 22 pressurized by the condensate pump 112 in FIG. 1 is sent to the energy saver 23. The heated feed water 24 is divided into two parts as described above. In other words, the low pressure drum 27 passes through the water supply control valve 25.
and a water supply 28 to the high-pressure drum side via a water supply pump 29. This water supply 28 is further fed into a water supply 30 to the high pressure drum and a recirculated water supply 31.
Divided into. The flow rate of the water supply 31 is controlled by a recirculation flow rate control valve 32 and returned to the inlet side of the economizer.

本発明では、流量検出器34で検出された給水
28の流量35のほかに、温度検出器(例えば熱
電対)33で計測された給水22の温度36が再
循環流量制御装置37に入力されている。再循環
流量制御装置37の制御出力38は再循環流量制
御弁32の開度を決定する。再循環流量制御弁3
2の全閉位置を確認する信号57は逆に再循環流
量制御装置37に取り込まれる。
In the present invention, in addition to the flow rate 35 of the feed water 28 detected by the flow rate detector 34, the temperature 36 of the feed water 22 measured by the temperature detector (for example, a thermocouple) 33 is input to the recirculation flow rate control device 37. There is. The control output 38 of the recirculation flow control device 37 determines the opening of the recirculation flow control valve 32. Recirculation flow control valve 3
A signal 57 confirming the fully closed position of No. 2 is in turn taken into the recirculation flow control device 37.

次に、再循環流量制御装置37の構成を第3図
により説明する。
Next, the configuration of the recirculation flow rate control device 37 will be explained with reference to FIG.

再循環流量制御装置37は、再循環流量制御と
節炭器入口温度制御の2つのループを持つ。いず
れも、設定値と実測値の偏差を比例/積分または
比例/積分/微分演算する方式である。演算後の
2つのループの出力のうち高値が選択され、再循
環流量制御弁の開度を決める。さらに制御ループ
切換え時のバンプレス制御並びに速やかな応答性
を確保する手段が設けられている。
The recirculation flow rate control device 37 has two loops: recirculation flow rate control and economizer inlet temperature control. All of these methods perform proportional/integral or proportional/integral/differential calculations on the deviation between the set value and the actual measured value. The higher value of the outputs of the two loops after calculation is selected to determine the opening degree of the recirculation flow rate control valve. Furthermore, means are provided to ensure bumpless control and quick response when switching control loops.

まず、節炭器入口温度制御ループは、次のよう
に構成してある。節炭器入口温度設定値39(節
炭器が許容できる最低温度に幾分余裕を加えた
値)と給水温度36との偏差41を加算器40で
演算し、これを比例/積分または比例/積分/微
分演算器43に出力する。演算器43の内容は公
知技術であるから説明は省略するが、スイツチに
より演算実行と停止を任意に切換えできるものと
する。演算器43の出力45は高値優先回路56
と演算管理論理44に出力される。演算管理論理
44には偏差41、制御出力38、演算出力4
5、および全閉位置確認信号57が入力されてお
り、次のような演算管理を実行する。
First, the economizer inlet temperature control loop is configured as follows. The adder 40 calculates the deviation 41 between the economizer inlet temperature set value 39 (the minimum temperature that the economizer can tolerate plus some margin) and the feed water temperature 36, and calculates this using proportional/integral or proportional/ It is output to the integral/differential calculator 43. Since the contents of the arithmetic unit 43 are a known technique, a description thereof will be omitted, but it is assumed that execution and stop of the arithmetic operation can be arbitrarily switched using a switch. The output 45 of the arithmetic unit 43 is sent to a high value priority circuit 56
is output to the calculation management logic 44. The calculation management logic 44 has a deviation 41, a control output 38, and a calculation output 4.
5 and a fully closed position confirmation signal 57 are input, and the following calculation management is executed.

すなわち、偏差41が正の場合(節炭器入口温
度設定値に対し、給水温度36の値が小さいと
き)無条件に演算を実行し、偏差41に対応した
演算出力45とする。偏差41が負の場合(設定
値に対して給水温度が高いとき)再循環流量制御
弁32が全閉となるか、あるいは演算出力45が
制御出力38より小さくなるのを待つて演算を停
止し、演算出力45を制御出力38に強制的に一
致させる。このように強制的に一致させるのは、
制御対象信号が両制御ループ間で滑らかに切換
り、制御の連続性が保たれるようにするいわゆる
バンプレス制御を行なうためである。
That is, when the deviation 41 is positive (when the value of the water supply temperature 36 is smaller than the set value of the inlet temperature of the economizer), the calculation is performed unconditionally, and the calculation output 45 corresponding to the deviation 41 is set. If the deviation 41 is negative (when the feed water temperature is higher than the set value), the calculation is stopped until the recirculation flow rate control valve 32 is fully closed or the calculation output 45 becomes smaller than the control output 38. , the calculation output 45 is forced to match the control output 38. To force a match like this,
This is to perform so-called bumpless control in which the control target signal is smoothly switched between both control loops and continuity of control is maintained.

次に、再循環流量制御ループは以下のようにな
つている。再循環流量設定値(給水ポンプが許容
できる最小水量に幾分余裕を加えた値)49と流
量検出器34で検出した給水28の流量35との
偏差51を加算器48で演算し、これを比例/積
分または比例/積分/微分演算器53に出力す
る。演算器53の出力55は演算管理論理54に
出力されるとともに、節炭器入口温度御の出力4
5と同様に高値優先回路56にも出力される。演
算管理論理54の動作は前記の44と同じであ
る。
Next, the recirculation flow control loop is as follows. The adder 48 calculates the deviation 51 between the recirculation flow rate setting value (a value obtained by adding some margin to the minimum water flow rate that the water supply pump can tolerate) 49 and the flow rate 35 of the water supply 28 detected by the flow rate detector 34, and calculates this deviation. It is output to a proportional/integral or proportional/integral/differential calculator 53. The output 55 of the arithmetic unit 53 is output to the arithmetic management logic 54, and the output 4 for controlling the temperature at the inlet of the economizer.
Similarly to 5, it is also output to the high value priority circuit 56. The operation of the calculation management logic 54 is the same as 44 described above.

ここで、給水ポンプの再循環流量は十分だが、
節炭器入口温度が低い場合を考える。
Here, the recirculation flow rate of the water pump is sufficient, but
Consider the case where the temperature at the economizer inlet is low.

最初、偏差41は正で演算器43は実行状態、
演算出力45は偏差に対応した正の値となつてお
り、これに対し偏差51は負で演算器53は実行
状態、演算出力55は偏差に対応した負の値とな
る。高値優先回路56の出力は演算出力45とな
り、これが再循環流量制御弁32を徐々に開けて
いく。同時に演算器53は停止状態となり、演算
出力55は制御出力38と等しくなる。
Initially, the deviation 41 is positive and the arithmetic unit 43 is in the execution state.
The calculation output 45 is a positive value corresponding to the deviation, whereas the deviation 51 is negative, the calculation unit 53 is in an execution state, and the calculation output 55 is a negative value corresponding to the deviation. The output of the high value priority circuit 56 becomes the calculated output 45, which gradually opens the recirculation flow control valve 32. At the same time, the arithmetic unit 53 becomes stopped, and the arithmetic output 55 becomes equal to the control output 38.

この状態で給水ポンプの再循環流量が足りなく
なると、偏差51は正となり、演算器53は制御
出力38を初期値として演算を開始する。この場
合の制御出力38は演算出力45か55の大きい
方となる。
If the recirculation flow rate of the water supply pump becomes insufficient in this state, the deviation 51 becomes positive, and the calculator 53 starts calculation using the control output 38 as an initial value. In this case, the control output 38 is the larger of the calculation outputs 45 and 55.

この状態で節炭器入口温度が十分に高くなると
偏差41は負となり、演算器43は停止状態とな
り、演算出力45は節炭器出力38と等しくな
る。
In this state, when the inlet temperature of the economizer becomes sufficiently high, the deviation 41 becomes negative, the arithmetic unit 43 becomes stopped, and the calculation output 45 becomes equal to the economizer output 38.

再循環流量も節炭器入口温度も十分な値になる
と、偏差41,51ともに負となり、制御出力3
8は徐々に減少し、再循環流量制御弁が全閉とな
ると、演算器43,53ともに停止となり、演算
出力45,55の値は演算停止時の制御出力(す
なわち再循環流量制御弁全閉位置)と等しくな
る。
When the recirculation flow rate and the economizer inlet temperature reach sufficient values, both deviations 41 and 51 become negative, and the control output 3
8 gradually decreases, and when the recirculation flow control valve is fully closed, both the calculation units 43 and 53 stop, and the values of the calculation outputs 45 and 55 are the control outputs when the calculation is stopped (i.e., the recirculation flow control valve is fully closed). position).

第4図は演算管理論理の詳細である。比較器5
8は偏差41または51の正負を判別し、正の時
に論理出力59を「1」とし、ORゲート62に
出力する。リセツト信号65が「0」の場合、
ORゲート62は自己ホールドし、その出力をス
イツチ切換え信号42または52としてそれぞれ
の演算器43または53に出力する。論理出力5
9が「0」で論理出力61または再循環流量制御
弁の全閉確認信号57が「1」であると、ORゲ
ート62のホールドはリセツトされる。論理出力
59が「1」となる条件は、制御出力38に対し
て、演算出力45または55が小さくなつたこと
を比較器60が検出したときである。
FIG. 4 details the calculation management logic. Comparator 5
8 determines whether the deviation 41 or 51 is positive or negative, and when it is positive, sets the logic output 59 to "1" and outputs it to the OR gate 62. When the reset signal 65 is “0”,
The OR gate 62 self-holds and outputs its output as a switch switching signal 42 or 52 to the respective arithmetic unit 43 or 53. logic output 5
9 is "0" and the logic output 61 or the recirculation flow control valve fully closed confirmation signal 57 is "1", the hold of the OR gate 62 is reset. The condition for the logic output 59 to be "1" is when the comparator 60 detects that the calculation output 45 or 55 has become smaller than the control output 38.

なお、低圧節炭器23入口の給水温度と出口で
は約100℃の温度差があること、低圧節炭器23
から低圧ドラム27に直接送られる給水と、高圧
給水ポンプ29を経由して高圧節炭器119に送
られる給水の比は約1:7であることを考える
と、高圧節炭器119への給水の約1/3を再循環
させれば、復水の温度は30℃程度上昇し、低圧節
炭器23にとつて十分な給水温度とすることに問
題はない。
Please note that there is a temperature difference of approximately 100°C between the inlet and outlet of the low-pressure economizer 23, and the low-pressure economizer 23
Considering that the ratio of the water supply sent directly to the low-pressure drum 27 and the water supply sent to the high-pressure economizer 119 via the high-pressure water pump 29 is approximately 1:7, the water supply to the high-pressure economizer 119 If about 1/3 of the water is recirculated, the temperature of the condensate will rise by about 30°C, and there will be no problem in making the water supply temperature sufficient for the low-pressure economizer 23.

ただし、高圧ドラム122の水位レベルの制御
については、この再循環流量を見込んだ計画とし
ておく必要がある。
However, the control of the water level in the high-pressure drum 122 must be planned in consideration of this recirculation flow rate.

[発明の効果] 本発明によれば、給水ポンプ再循環流量制御系
統を利用し、給水ポンプの最小流量を確保しなが
ら節炭器入口温度を規定値以上に維持する際に、
流量偏差の演算手段と温度偏差演算手段のうち、
制御切換えの時点まで演算を停止しており演算を
再開する方の出力をそれまで優先させていた前記
高値に強制的に一致させ、そこから演算を開始す
るようにしてあるので、制御切換え時の演算結果
に段差を生ずることがなく、給水ポンプの最小流
量確保と節炭器の入口温度維持とを滑らかにすな
わちバンプレスに切り換え協調制御することが可
能な給水ポンプ再循環流量制御装置が得られる。
[Effects of the Invention] According to the present invention, when maintaining the inlet temperature of the economizer at a specified value or higher while ensuring the minimum flow rate of the water pump by using the water pump recirculation flow rate control system,
Among the flow deviation calculation means and the temperature deviation calculation means,
The calculation is stopped until the point of control switching, and the output of the one that restarts the calculation is forced to match the high value that had been prioritized up to that point, and the calculation is started from there. A water supply pump recirculation flow rate control device is obtained that does not produce a step difference in calculation results and can smoothly switch and coordinately control ensuring the minimum flow rate of the water pump and maintaining the inlet temperature of the economizer in a bumpless manner. .

したがつて、給水ポンプの最小流量を確保しな
がらチユーブ外面の結露ひいてはその腐食を防止
できることになる。
Therefore, it is possible to prevent dew condensation on the outer surface of the tube and further prevent corrosion thereof while ensuring the minimum flow rate of the water supply pump.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用すべきコンバインド発電
プラントの一例の構成を示す図、第2図は節炭器
入口温度制御ループを備えた本発明による再循環
流量制御系統の構成を示す図、第3図は節炭器入
口温度制御ループと再循環流量制ループとを備え
た本発明による再循環流量制御装置の構成を示す
図、第4図は第3図の演算管理論理の詳細を示す
図である。 23……節炭器、27……低圧ドラム、29…
…給水ポンプ、32……再循環流量制御弁、33
……節炭器入口温度検出器、34……流量検出
器、37……再循環流量制御装置、39……節炭
器入口温度設定値、40,48……加算器、4
3,53……演算器、44,54……演算管理論
理、49……再循環流量設定値、56……高値優
先回路、58,60……比較器、62,64……
ORゲート。
FIG. 1 is a diagram showing the configuration of an example of a combined power generation plant to which the present invention is applied, FIG. FIG. 3 is a diagram showing the configuration of a recirculation flow rate control device according to the present invention, which is equipped with an economizer inlet temperature control loop and a recirculation flow rate control loop, and FIG. 4 is a diagram showing details of the calculation management logic in FIG. 3. It is. 23... Economizer, 27... Low pressure drum, 29...
...Water pump, 32...Recirculation flow control valve, 33
... Economizer inlet temperature detector, 34 ... Flow rate detector, 37 ... Recirculation flow rate control device, 39 ... Economizer inlet temperature set value, 40, 48 ... Adder, 4
3, 53... Arithmetic unit, 44, 54... Arithmetic management logic, 49... Recirculation flow rate setting value, 56... High value priority circuit, 58, 60... Comparator, 62, 64...
OR gate.

Claims (1)

【特許請求の範囲】 1 低圧節炭器からの給水を加圧し高圧節炭器に
送る給水ポンプ出口の給水の一部を再循環流量制
御弁を介して前記低圧節炭器入口側に戻す再循環
流量を制御する給水ポンプ再循環流量制御装置に
おいて、 前記給水ポンプに所定値以上の流量を確保する
ための再循環流量を演算する手段と、 前記低圧節炭器入口側温度を所定値以上に維持
するための再循環流量を演算する手段と、 前記2つの演算手段で求められた再循環流量の
うち高値を前記再循環流量制御弁への開度制御信
号として選択する手段と、 前記2つの演算手段で求められた再循環流量と
前記開度制御信号とにより前記2つの演算手段の
演算の実行・停止を判定し演算停止中の演算手段
の出力を前記選択されている高値に強制的に一致
させる手段と を備えたことを特徴とする給水ポンプ再循環流量
制御装置。
[Claims] 1. A part of the water supply at the outlet of the water supply pump that pressurizes the water supply from the low-pressure economizer and sends it to the high-pressure economizer is returned to the inlet side of the low-pressure economizer via the recirculation flow rate control valve. A water supply pump recirculation flow rate control device for controlling a circulation flow rate, comprising: means for calculating a recirculation flow rate to ensure a flow rate of a predetermined value or more in the water feed pump; means for calculating a recirculation flow rate to maintain; means for selecting a higher value of the recirculation flow rates determined by the two calculation means as an opening control signal to the recirculation flow rate control valve; Based on the recirculation flow rate determined by the calculation means and the opening degree control signal, it is determined whether the calculations of the two calculation means should be executed or stopped, and the output of the calculation means while the calculations are stopped is forced to the selected high value. A water pump recirculation flow rate control device, characterized in that it comprises means for matching.
JP1367484A 1984-01-27 1984-01-27 Recirculating flow control device for water supply pump Granted JPS60159314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1367484A JPS60159314A (en) 1984-01-27 1984-01-27 Recirculating flow control device for water supply pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1367484A JPS60159314A (en) 1984-01-27 1984-01-27 Recirculating flow control device for water supply pump

Publications (2)

Publication Number Publication Date
JPS60159314A JPS60159314A (en) 1985-08-20
JPH0231205B2 true JPH0231205B2 (en) 1990-07-12

Family

ID=11839733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1367484A Granted JPS60159314A (en) 1984-01-27 1984-01-27 Recirculating flow control device for water supply pump

Country Status (1)

Country Link
JP (1) JPS60159314A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190504A (en) * 1982-04-30 1983-11-07 Hitachi Ltd Combined plant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190504A (en) * 1982-04-30 1983-11-07 Hitachi Ltd Combined plant

Also Published As

Publication number Publication date
JPS60159314A (en) 1985-08-20

Similar Documents

Publication Publication Date Title
US4578944A (en) Heat recovery steam generator outlet temperature control system for a combined cycle power plant
US4145995A (en) Method of operating a power plant and apparatus therefor
JPH0933005A (en) Water feeding device for waste heat recovery boiler
JPH10292902A (en) Main steam temperature controller
JPH112105A (en) Combined cycle power generation plant
JPH0231205B2 (en)
JP2823342B2 (en) Steam temperature controller for superheater / reheater in combined cycle power plant
JP2918743B2 (en) Steam cycle controller
JPS61118508A (en) Control device for recirculating flow of feed pump
JP2007285220A (en) Combined cycle power generation facility
JPH05296401A (en) Exhaust heat recoverying boiler system and its main steam temperature controller
JPS58107805A (en) Control of turbine for combined cycle power generation
JPH01212802A (en) Steam temperature control device for boiler
JPH1193618A (en) Steam pressure control method for gas turbine steam cooling system
JPH11159305A (en) Pressurized fluidized bed combined generating plant
JPS61187503A (en) Temperature decreasing controller of turbine gland sealing steam
JPS6211283Y2 (en)
JP2645128B2 (en) Coal gasification power plant control unit
JPH09195718A (en) Main steam temperature control device
JPS63682B2 (en)
JP2023087391A (en) Exhaust heat recovery system
JPH08178205A (en) Controller of boiler
JPH06129208A (en) Composite cycle plant
JPH09236202A (en) Apparatus and method for controlling fuel of boiler
JPH08135405A (en) High pressure turbine bypass steam temperature control method and its device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees