JPH04311608A - Repowering system of previously provided steam power facility - Google Patents

Repowering system of previously provided steam power facility

Info

Publication number
JPH04311608A
JPH04311608A JP10510691A JP10510691A JPH04311608A JP H04311608 A JPH04311608 A JP H04311608A JP 10510691 A JP10510691 A JP 10510691A JP 10510691 A JP10510691 A JP 10510691A JP H04311608 A JPH04311608 A JP H04311608A
Authority
JP
Japan
Prior art keywords
feed water
boiler
water supply
steam
gas cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10510691A
Other languages
Japanese (ja)
Inventor
Toshiaki Nishiyama
西山 俊昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10510691A priority Critical patent/JPH04311608A/en
Publication of JPH04311608A publication Critical patent/JPH04311608A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/103Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with afterburner in exhaust boiler

Abstract

PURPOSE:To suppress over-raising of the inlet temperature of the economizer of a boiler, and prevent its steaming by cooling feed water at a deaerator outlet by a drain, at a low temperature, of a low pressure feed water heater so as to lower inlet temperature of a struck gas cooler at the time of partial loading of a plant. CONSTITUTION:A repowering system of previously provided steam power facility is provided with a steam power facility in which turbines 3, 7, 9 are operated by steam supplied from a boiler 1 so as to drive a power generator 10, and then steam is condensed by a condenser 11 to be returned into the boiler 1 through low/high pressure feed water heaters 14a, 14c, 18a to 18c, a deaerator 15, and the like. A gas turbine 22 is additionally provided on the power facility, and exhaust thereof is used as combustion air of the boiler 1. And a stuck gas cooler 25 is additionally provided in order to lower the temperature of exhaust gas so as to heat feed water branched from a feed water pipe 16. In this case, a heat exchanger 28 is provided to exchange heat between the outlet feed water of the deaerator 15 and the lower pressure feed water heater 14a, and water supplied through the stuck gas cooler 25 is introduced into the heat exchanger 28.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】[発明の目的][Object of the invention]

【産業上の利用分野】本発明は、既設汽力発電設備のリ
パワリングシステムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a repowering system for existing steam power generation equipment.

【0002】0002

【従来の技術】既設汽力発電設備のリパワリングシステ
ムとして排気再熱型のコンバインドサイクルプラントが
ある。これは、既設汽力発電設備にガスタービンプラン
トを追設し、ガスタービンの排気をボイラの燃焼用空気
として使用する。また、既設汽力発電設備の空気予熱器
の替わりに、ボイラの排ガスで、蒸気タービンサイクル
系の復水または給水を加熱するスタックガスクーラーを
設置している。このリパワリングシステムには、次のよ
うな利点がある。
2. Description of the Related Art As a repowering system for existing steam power generation facilities, there is an exhaust gas reheating combined cycle plant. This involves adding a gas turbine plant to existing steam power generation equipment and using the gas turbine exhaust gas as combustion air for the boiler. In addition, instead of the air preheater of the existing steam power generation equipment, a stack gas cooler is installed that uses boiler exhaust gas to heat the condensate or feed water of the steam turbine cycle system. This repowering system has the following advantages.

【0003】即ち、第一には、既設の発電プラントをコ
ンバインド化することによって、発電効率を向上させる
ことができる。第二には、ガスタービンを追設するため
、発電所全体としての発生電力量を増加させることがで
きる。第三には、既設設備の改造部分が少ないため比較
的短期間でリパワリングを行うことができる。
[0003] First, power generation efficiency can be improved by combining existing power generation plants. Second, since a gas turbine is additionally installed, the amount of power generated by the power plant as a whole can be increased. Third, since there are few modifications to existing equipment, repowering can be carried out in a relatively short period of time.

【0004】近年、大幅な電力需要の伸び、それに伴う
各電力会社の電力予備率の低下の傾向が顕著となってい
る。これに対処するために、新設の発電所を早急に建設
することの困難さという実情を考えると、リパワリング
はこれらの問題を解決する有効な手段の一つである。
[0004] In recent years, there has been a significant increase in the demand for electric power, and there has been a remarkable tendency for the power reserve margin of each electric power company to decrease accordingly. Considering the fact that it is difficult to quickly construct new power plants to deal with this problem, repowering is one of the effective means to solve these problems.

【0005】従来の汽力発電設備の一例を図2に示す。FIG. 2 shows an example of a conventional steam power generation facility.

【0006】ボイラ1により発生された蒸気は、主蒸気
管2により高圧蒸気タービン3へ導かれる。高圧蒸気タ
ービン3で仕事をした蒸気は、低温再熱蒸気管4により
、ボイラ1の再熱器5へ至る。再熱器5で加熱された蒸
気は、高温再熱蒸気管6によって中圧蒸気タービン7へ
導かれる。中圧蒸気タービン7で仕事をした蒸気は、ク
ロスオーバー管8によって低圧蒸気タービン9へ導かれ
る。
[0006] Steam generated by the boiler 1 is guided to a high pressure steam turbine 3 through a main steam pipe 2. The steam that has done work in the high-pressure steam turbine 3 reaches the reheater 5 of the boiler 1 via a low-temperature reheat steam pipe 4. The steam heated in the reheater 5 is guided to an intermediate pressure steam turbine 7 through a high temperature reheat steam pipe 6. The steam that has done work in the intermediate pressure steam turbine 7 is guided to a low pressure steam turbine 9 through a crossover pipe 8.

【0007】高圧蒸気タービン3、中圧蒸気タービン7
および低圧蒸気タービン9は、発電機10へ連絡され、
発電機10によって電気を発生する。
High pressure steam turbine 3, intermediate pressure steam turbine 7
and the low pressure steam turbine 9 is connected to the generator 10,
Electricity is generated by a generator 10.

【0008】低圧蒸気タービン9で仕事をした蒸気は、
復水器11へ導かれ、復水となる。復水器11の復水は
、復水ポンプ12によって加圧され、復水管13を介し
て低圧給水加熱器14a,14b,14cによって加熱
される。
[0008] The steam that has done work in the low pressure steam turbine 9 is
It is guided to the condenser 11 and becomes condensate. Condensate in the condenser 11 is pressurized by a condensate pump 12 and heated via a condensate pipe 13 by low-pressure feed water heaters 14a, 14b, and 14c.

【0009】脱気器15で脱気された水は、給水管16
を介し、給水ポンプ17によりさらに加圧され、高圧給
水加熱器18a,18b,18cによって加熱される。 その後ボイラ1へ至り、上記した系統のサイクルを繰り
返しながら発電をする。
The water deaerated by the deaerator 15 is transferred to the water supply pipe 16.
The water is further pressurized by the water supply pump 17 and heated by the high pressure water heaters 18a, 18b, and 18c. After that, it reaches the boiler 1 and generates electricity while repeating the cycle of the system described above.

【0010】なお、19は、空気予熱器であり、ボイラ
1の燃焼効率を高めるために設置され、ボイラ1の高温
の排ガスでボイラ燃焼用空気を加熱する熱交換器である
Reference numeral 19 denotes an air preheater, which is a heat exchanger that is installed to increase the combustion efficiency of the boiler 1 and heats boiler combustion air with the high-temperature exhaust gas of the boiler 1.

【0011】次に、上記した従来の汽力発電設備にガス
タービンプラントを追設し、排気再熱型のコンバインド
サイクル化としたリパワリングシステムの一例を図3に
示す。
Next, FIG. 3 shows an example of a repowering system in which a gas turbine plant is added to the above-described conventional steam power generation equipment to create an exhaust reheating combined cycle system.

【0012】図示するように、従来の汽力発電設備に、
圧縮機20、燃焼器21、ガスタービン22、ガスター
ビン発電機23およびガスダンパー24等が追設される
。さらに、ボイラ1の高温の排ガスを有効利用するため
、また、高圧の排ガスをそのまま煙突から放出すること
が出来ないため排ガスの温度を下げる目的で、スタック
ガスクーラー25を追設する。なお、26はガスタービ
ン排気管を示し、27はボイラ排気ガスダクトを示す。
As shown in the figure, conventional steam power generation equipment includes
A compressor 20, a combustor 21, a gas turbine 22, a gas turbine generator 23, a gas damper 24, etc. are additionally installed. Furthermore, a stack gas cooler 25 is additionally installed in order to effectively utilize the high temperature exhaust gas of the boiler 1 and to lower the temperature of the exhaust gas since high pressure exhaust gas cannot be directly discharged from the chimney. Note that 26 indicates a gas turbine exhaust pipe, and 27 indicates a boiler exhaust gas duct.

【0013】スタックガスクーラー25は、給水管16
から分岐した水と熱交換をして給水を加熱し、再び蒸気
タービンサイクル系へ戻して熱回収を行っている。なお
、ガスタービン22の排気をボイラ燃焼用空気として利
用するため、空気予熱器19は不要となる。
The stack gas cooler 25 is connected to the water supply pipe 16
The feed water is heated by exchanging heat with water branched from the steam turbine, and then returned to the steam turbine cycle system for heat recovery. Note that since the exhaust gas of the gas turbine 22 is used as boiler combustion air, the air preheater 19 is not required.

【0014】[0014]

【発明が解決しようとする課題】しかしながら、上記し
た既設汽力発電設備のリパワリングシステムには次の問
題がある。
[Problems to be Solved by the Invention] However, the above repowering system for existing steam power generation equipment has the following problems.

【0015】ガスタービンは、常に一定の回転をしてい
るため、圧縮機20で圧縮される空気量は、部分負荷に
おいても、大きな変化はない。従って、ボイラ1よりス
タックガスクーラー25へ排出される部分負荷時の排ガ
ス量は、定格運転時と大きな変化はない。
Since the gas turbine always rotates at a constant rate, the amount of air compressed by the compressor 20 does not change significantly even under partial load. Therefore, the amount of exhaust gas discharged from the boiler 1 to the stack gas cooler 25 during partial load does not change significantly from that during rated operation.

【0016】一方、蒸気タービンサイクル系では、部分
負荷になると、負荷に応じて復水管13や給水管16の
流量は減少してくる。また、蒸気タービンの抽気圧力も
負荷の減少と共に下がってくるため、各低圧給水加熱器
14a,14b,14c、脱気器15、高圧給水加熱器
18a,18b,18cの器内圧力も低下する。その結
果、スタックガスクーラー25に流入する給水量と温度
が、低下してくる。
On the other hand, in a steam turbine cycle system, when a partial load is reached, the flow rates of the condensate pipe 13 and the water supply pipe 16 decrease depending on the load. Moreover, since the extraction pressure of the steam turbine also decreases as the load decreases, the internal pressure of each low-pressure feedwater heater 14a, 14b, 14c, deaerator 15, and high-pressure feedwater heater 18a, 18b, 18c also decreases. As a result, the amount and temperature of water flowing into the stack gas cooler 25 decrease.

【0017】このため、スタックガスクーラー25の出
口給水温度が上がり過ぎて、ボイラ1の節炭器内でスチ
ーミングを起こしてしまうという問題がある。
For this reason, there is a problem in that the temperature of the outlet water supply of the stack gas cooler 25 rises too much, causing steaming in the economizer of the boiler 1.

【0018】そこで、本発明は、スタックガスクーラー
の出口給水温度が上がり過ぎるのを防止し、部分負荷時
においても、システムを安全で経済的に運転することが
できる既設汽力発電設備のリパワリングシステムを提供
することを目的とする。
[0018] Therefore, the present invention provides a repowering system for existing steam power generation equipment that prevents the temperature of the outlet water supply of the stack gas cooler from rising too high and allows the system to operate safely and economically even during partial load. The purpose is to provide.

【0019】[発明の構成][Configuration of the invention]

【課題を解決するための手段】本発明は、ボイラで発生
した蒸気をタービンを介し復水器に流入し、さらに、低
圧給水加熱器を介して脱気器および高圧給水加熱器を経
由して蒸気タービンサイクル系を形成する既設汽力発電
設備にガスタービンを追設し、このガスタービンの排気
をボイラの燃焼用空気として使用し、かつ、蒸気タービ
ンサイクル系の前記脱気器の出口側と前記高圧給水加熱
器との出口側をバイパスさせ脱気器から高圧給水加熱器
に流入する給水の一部とボイラの排ガスとの間で熱交換
して給水を加熱するためのスタックガスクーラーを設置
することにより排気再熱型コンバインドサイクル化とす
る既設汽力発電設備のリパワリングシステムにおいて、
スタックガスクーラーへの給水ラインから分岐した給水
が熱交換器および第一の制御弁を経由してスタックガス
クーラーへの給水ラインに合流する給水分岐管と、低圧
給水加熱器のドレンラインから分岐したドレンが熱交換
器のスタックガスクーラーへの給水ラインから分岐した
給水と熱交換をして第二の制御弁を経由して復水器へ戻
る低圧給水加熱器ドレン分岐管と、スタックガスクーラ
ーの出口給水温度に基づいて第一の制御弁および第二の
制御弁とを開閉制御する演算器とを設けるようにしたも
のである。
[Means for Solving the Problems] The present invention allows steam generated in a boiler to flow into a condenser through a turbine, and further through a low-pressure feedwater heater, a deaerator, and a high-pressure feedwater heater. A gas turbine is added to the existing steam power generation equipment that forms a steam turbine cycle system, and the exhaust gas of this gas turbine is used as combustion air for the boiler, and the outlet side of the deaerator of the steam turbine cycle system and the Install a stack gas cooler that bypasses the outlet side of the high-pressure feedwater heater and heats the feedwater by exchanging heat between a portion of the feedwater that flows into the high-pressure feedwater heater from the deaerator and the boiler exhaust gas. In the repowering system of existing steam power generation equipment, which converts to exhaust reheating combined cycle,
The water supply branched from the water supply line to the stack gas cooler passes through the heat exchanger and the first control valve to join the water supply line to the stack gas cooler, and the water supply branch pipe branches from the drain line of the low-pressure feed water heater. The drain exchanges heat with the water supply branched from the water supply line to the stack gas cooler of the heat exchanger and returns to the condenser via the second control valve. A computing unit is provided for controlling the opening and closing of the first control valve and the second control valve based on the outlet water supply temperature.

【0020】[0020]

【作用】上記構成により、低温の低圧給水加熱器のドレ
ンで脱気器の出口給水を冷却することによって、プラン
トの部分負荷時のスタックガスクーラーの入口温度を下
げる。そして、ボイラの排ガスと熱交換をしてスタック
ガスクーラーの出口給水温度の上がり過ぎを抑える。従
って、ボイラの節炭器の入口温度の上がり過ぎが抑えら
れ、ボイラの節炭器内のスチーミングを防止することが
できる。
[Operation] With the above structure, the inlet temperature of the stack gas cooler is lowered when the plant is under partial load by cooling the outlet feed water of the deaerator with the drain of the low-temperature, low-pressure feed water heater. It then exchanges heat with the boiler exhaust gas to prevent the stack gas cooler outlet water supply temperature from rising too high. Therefore, the inlet temperature of the boiler economizer is prevented from rising too much, and steaming within the boiler economizer can be prevented.

【0021】[0021]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0022】図1は、本発明の一実施例を示す既設汽力
発電設備のリパワリングシステムのブロック構成図であ
る。図3と同一符号は同一部分または相当部分を示す。 図3と異なる点は、熱交換器28、熱交換器給水流量調
節弁29、給水分岐管30、低圧給水加熱器ドレン流量
調節弁31、低圧給水加熱器ドレン分岐管32、低圧給
水加熱器ドレンポンプ33、温度検出器34および演算
器35が追設されている点である。
FIG. 1 is a block diagram of a repowering system for an existing steam power generation facility showing an embodiment of the present invention. The same reference numerals as in FIG. 3 indicate the same or equivalent parts. The differences from FIG. 3 include a heat exchanger 28, a heat exchanger feed water flow rate control valve 29, a feed water branch pipe 30, a low pressure feed water heater drain flow control valve 31, a low pressure feed water heater drain branch pipe 32, and a low pressure feed water heater drain. The difference is that a pump 33, a temperature detector 34, and a computing unit 35 are additionally provided.

【0023】本実施例は、従来の汽力発電設備にガスタ
ービンプラントを追設し、かつ、脱気器の出口給水と、
低圧給水加熱器のドレンとの間で熱交換を行う熱交換器
を設置し、排気再燃型のコンバインドサイクル化をして
いる。
[0023] In this embodiment, a gas turbine plant is added to the conventional steam power generation equipment, and the deaerator outlet water supply and
A heat exchanger is installed to exchange heat with the drain of the low-pressure feedwater heater, creating an exhaust reburning combined cycle system.

【0024】熱交換器28は、脱気器15の出口給水と
低圧給水加熱器14aのドレンとの間で熱交換をする。
The heat exchanger 28 exchanges heat between the outlet feed water of the deaerator 15 and the drain of the low pressure feed water heater 14a.

【0025】熱交換器給水流量調節弁29は、熱交換器
28へ流水する給水量を調整する。
The heat exchanger water supply flow rate control valve 29 adjusts the amount of water supplied to the heat exchanger 28 .

【0026】給水分岐管30は、スタックガスクーラー
25の入口給水ラインより分岐して熱交換器28に給水
する。
The water supply branch pipe 30 branches from the inlet water supply line of the stack gas cooler 25 and supplies water to the heat exchanger 28.

【0027】低圧給水加熱器ドレン流量調節弁31は、
低圧給水加熱器14aから熱交換器28へ流入するドレ
ン量を調整する。
[0027] The low pressure feed water heater drain flow rate control valve 31 is as follows:
The amount of drain flowing into the heat exchanger 28 from the low pressure feed water heater 14a is adjusted.

【0028】低圧給水加熱器ドレン分岐管32は、低圧
給水加熱器14aより分岐し、熱交換器28を経由して
、復水器11へ戻る分岐管である。
The low-pressure feedwater heater drain branch pipe 32 is a branch pipe that branches from the low-pressure feedwater heater 14a and returns to the condenser 11 via the heat exchanger 28.

【0029】低圧給水加熱器ドレンポンプ33は、低圧
給水加熱器14aからのドレンを熱交換器28に送出す
る。
The low pressure feed water heater drain pump 33 sends drain from the low pressure feed water heater 14a to the heat exchanger 28.

【0030】温度検出器34は、スタックガスクーラー
25の出口温度を検出する。
The temperature detector 34 detects the outlet temperature of the stack gas cooler 25.

【0031】演算器35は、温度検出器34の検出信号
に基づいて熱交換器給水流量調節弁29および低圧給水
加熱器ドレン流量調節弁31へ開度信号を出力する。
The computing unit 35 outputs an opening signal to the heat exchanger feed water flow rate control valve 29 and the low pressure feed water heater drain flow rate control valve 31 based on the detection signal of the temperature detector 34.

【0032】なお、36は、低圧給水加熱器ドレン管を
示し、37は、高圧給水加熱器ドレン管を示す。
Note that 36 indicates a low-pressure feedwater heater drain pipe, and 37 indicates a high-pressure feedwater heater drain pipe.

【0033】上記構成で、通常運転時には、熱交換器2
8を使用する必要がないから、熱交換器給水流量調節弁
29は全閉とし、給水分岐管30内を流れる給水を止め
る。同時に低圧給水加熱器ドレン流量調節弁31も全閉
とし、低圧給水加熱器ドレン分岐管32内を流れるドレ
ンを止める。
With the above configuration, during normal operation, the heat exchanger 2
8 is not necessary, the heat exchanger water supply flow rate control valve 29 is fully closed, and the water supply flowing through the water supply branch pipe 30 is stopped. At the same time, the low-pressure feed water heater drain flow control valve 31 is also fully closed to stop the drain flowing through the low-pressure feed water heater drain branch pipe 32.

【0034】次に、部分負荷になると、蒸気タービンサ
イクル系の復水量、ドレン量および給水量とボイラの排
ガス量との関係において、アンバランスが生じてくるた
め、スタックガスクーラー25の出口温度の上がり過ぎ
という事態が発生する。
Next, when the load becomes partial, an imbalance occurs in the relationship between the amount of condensate, drain, and water supply in the steam turbine cycle system and the amount of exhaust gas from the boiler, so the outlet temperature of the stack gas cooler 25 increases. A situation where the price rises too much occurs.

【0035】そこで、スタックガスクーラー25の出口
付近、図示するA点の温度を温度検出器34が検出し、
その検出信号に基づいて演算器35が制御演算を行い、
開度信号を熱交換器給水流量調節弁29と低圧給水加熱
器ドレン流量調節弁31とへ送る。これにより、熱交換
器給水流量調節弁29は演算器35からの開度信号に基
づいて開閉動作して、給水分岐管30の給水量を制御す
る。
Then, the temperature detector 34 detects the temperature at point A shown in the figure near the outlet of the stack gas cooler 25,
Based on the detection signal, the calculator 35 performs control calculations,
The opening signal is sent to the heat exchanger feed water flow rate control valve 29 and the low pressure feed water heater drain flow rate control valve 31. Thereby, the heat exchanger water supply flow rate control valve 29 opens and closes based on the opening degree signal from the computing unit 35 to control the water supply amount of the water supply branch pipe 30.

【0036】一方、低圧給水加熱器ドレン流量調節弁3
1は、演算器35の開度指令に基づいて開閉動作して、
低圧給水加熱器ドレン分岐管32のドレン量を制御する
On the other hand, the low pressure feed water heater drain flow control valve 3
1 opens and closes based on the opening command from the computing unit 35,
The drain amount of the low pressure feed water heater drain branch pipe 32 is controlled.

【0037】即ち、例えば、温度検出器34の検出信号
が演算器35で設定した所定値より大きいとき、制御演
算信号により熱交換器給水流量調節弁29と低圧給水加
熱器ドレン流量調節弁31とを開方向に動作させる。こ
れにより、熱交換器28の二次側を流れる給水分岐管3
0の給水量が増加する。さらに、低圧給水加熱器ドレン
分岐管32を介して熱交換器28の一次側に流れる低圧
給水加熱器14aからの低温の低圧給水加熱器のドレン
量が増加する。
That is, for example, when the detection signal of the temperature detector 34 is larger than a predetermined value set by the calculator 35, the control calculation signal causes the heat exchanger feed water flow rate control valve 29 and the low pressure feed water heater drain flow rate control valve 31 to be activated. Move in the opening direction. As a result, the water supply branch pipe 3 flowing on the secondary side of the heat exchanger 28
0 water supply amount increases. Furthermore, the amount of low-temperature low-pressure feedwater heater drain flowing from the low-pressure feedwater heater 14a to the primary side of the heat exchanger 28 via the low-pressure feedwater heater drain branch pipe 32 increases.

【0038】この結果、熱交換器28の二次側の給水は
冷却されて、スタックガスクーラー25に流入する。こ
の場合、ボイラ1からの排ガスの量は部分負荷の運転時
でも通常運転時と変わらないから上記スタックガスクー
ラー25の出口側も低温の給水となる。従って、スタッ
クガスクーラー25の出口温度の上昇を抑制され所定の
温度範囲内に制御される。
As a result, the feed water on the secondary side of the heat exchanger 28 is cooled and flows into the stack gas cooler 25. In this case, since the amount of exhaust gas from the boiler 1 is the same even during partial load operation as during normal operation, the outlet side of the stack gas cooler 25 is also supplied with low temperature water. Therefore, the rise in the outlet temperature of the stack gas cooler 25 is suppressed and controlled within a predetermined temperature range.

【0039】[0039]

【発明の効果】以上説明したように本発明によれば、部
分負荷の運転時においても、スタックガスクーラーの出
口温度を特定の温度とすることができる。このためボイ
ラの節炭器におけるスチーミングを防止することができ
るから各機器の信頼性を向上させリパワリングシステム
を安全に運転することが可能となる。
As explained above, according to the present invention, the outlet temperature of the stack gas cooler can be maintained at a specific temperature even during partial load operation. This makes it possible to prevent steaming in the boiler economizer, thereby improving the reliability of each device and making it possible to safely operate the repowering system.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例を示す既設汽力発電設備のリ
パワリングシステムの系統図である。
FIG. 1 is a system diagram of a repowering system for existing steam power generation equipment, showing one embodiment of the present invention.

【図2】従来の既設汽力発電設備の系統図である。FIG. 2 is a system diagram of a conventional existing steam power generation facility.

【図3】従来例を示す既設汽力発電設備のリパワリング
システムの系統図である。
FIG. 3 is a system diagram of a repowering system for an existing steam power generation facility, showing a conventional example.

【符号の説明】[Explanation of symbols]

1    ボイラ 2    主蒸気管 3    高圧蒸気タービン 4    低温再熱蒸気管 5    再熱器 7    中圧蒸気タービン 9    低圧蒸気タービン 10    発電機 11    復水器 14a    低圧給水加熱器 15    脱気器 21    燃焼器 22    ガスタービン 23    ガスタービン発電機 25    スタックガスクーラー 26    ガスタービン排気管 27    ボイラ排気ガスダクト 28    熱交換器 29    熱交換器給水流量調節弁 30    給水分岐管 31    低圧給水加熱器ドレン流量調節弁32  
  低圧給水加熱器ドレン分岐管33    低圧給水
加熱器ドレンポンプ34    温度検出器 35    演算器
1 Boiler 2 Main steam pipe 3 High pressure steam turbine 4 Low temperature reheat steam pipe 5 Reheater 7 Intermediate pressure steam turbine 9 Low pressure steam turbine 10 Generator 11 Condenser 14a Low pressure feed water heater 15 Deaerator 21 Combustor 22 Gas Turbine 23 Gas turbine generator 25 Stack gas cooler 26 Gas turbine exhaust pipe 27 Boiler exhaust gas duct 28 Heat exchanger 29 Heat exchanger feed water flow rate control valve 30 Water supply branch pipe 31 Low pressure feed water heater drain flow rate control valve 32
Low-pressure feed water heater drain branch pipe 33 Low-pressure feed water heater drain pump 34 Temperature detector 35 Arithmetic unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  ボイラで発生した蒸気をタービンを介
し復水器に流入し、さらに、低圧給水加熱器を介して脱
気器および高圧給水加熱器を経由して蒸気タービンサイ
クル系を形成する既設汽力発電設備にガスタービンを追
設し、このガスタービンの排気を前記ボイラの燃焼用空
気として使用し、かつ、前記蒸気タービンサイクル系の
前記脱気器の出口側と前記高圧給水加熱器との出口側を
バイパスさせ脱気器から高圧給水加熱器に流入する給水
の一部と前記ボイラの排ガスとの間で熱交換して給水を
加熱するためのスタックガスクーラーを設置することに
より排気再熱型コンバインドサイクル化とする既設汽力
発電設備のリパワリングシステムにおいて、前記スタッ
クガスクーラーへの給水ラインから分岐した給水が熱交
換器および第一の制御弁を経由して前記スタックガスク
ーラーへの給水ラインに合流する給水分岐管と、前記低
圧給水加熱器のドレンラインから分岐したドレンが前記
熱交換器の前記スタックガスクーラーへの給水ラインか
ら分岐した給水と熱交換をして第二の制御弁を経由して
前記復水器へ戻る低圧給水加熱器ドレン分岐管と、前記
スタックガスクーラーの出口給水温度に基づいて第一の
制御弁および第二の制御弁とを開閉制御する演算器とを
備えたことを特徴とする既設汽力発電設備のリパワリン
グシステム。
[Claim 1] An existing system in which steam generated in a boiler flows through a turbine to a condenser, and further passes through a low-pressure feedwater heater, a deaerator, and a high-pressure feedwater heater to form a steam turbine cycle system. A gas turbine is added to the steam power generation equipment, the exhaust gas of the gas turbine is used as combustion air for the boiler, and the outlet side of the deaerator of the steam turbine cycle system and the high pressure feed water heater are connected. Exhaust reheating is achieved by bypassing the outlet side and installing a stack gas cooler to heat the feedwater by exchanging heat between a part of the feedwater flowing from the deaerator into the high-pressure feedwater heater and the exhaust gas of the boiler. In a repowering system for existing steam power generation equipment that is converted to a combined cycle type, water supply branched from the water supply line to the stack gas cooler passes through a heat exchanger and a first control valve to the water supply line to the stack gas cooler. The merging water supply branch pipe and the drain branched from the drain line of the low-pressure feed water heater exchange heat with the water supply branched from the water supply line to the stack gas cooler of the heat exchanger, and pass through the second control valve. and a low-pressure feed water heater drain branch pipe that returns to the condenser, and a computing unit that controls opening and closing of a first control valve and a second control valve based on the temperature of the outlet feed water of the stack gas cooler. A repowering system for existing steam power generation equipment.
JP10510691A 1991-04-11 1991-04-11 Repowering system of previously provided steam power facility Pending JPH04311608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10510691A JPH04311608A (en) 1991-04-11 1991-04-11 Repowering system of previously provided steam power facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10510691A JPH04311608A (en) 1991-04-11 1991-04-11 Repowering system of previously provided steam power facility

Publications (1)

Publication Number Publication Date
JPH04311608A true JPH04311608A (en) 1992-11-04

Family

ID=14398610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10510691A Pending JPH04311608A (en) 1991-04-11 1991-04-11 Repowering system of previously provided steam power facility

Country Status (1)

Country Link
JP (1) JPH04311608A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018189007A (en) * 2017-04-28 2018-11-29 三菱日立パワーシステムズ株式会社 Power generation plant and method for operating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018189007A (en) * 2017-04-28 2018-11-29 三菱日立パワーシステムズ株式会社 Power generation plant and method for operating the same

Similar Documents

Publication Publication Date Title
JP3800384B2 (en) Combined power generation equipment
US5375410A (en) Combined combustion and steam turbine power plant
JP4540472B2 (en) Waste heat steam generator
JP2000161014A5 (en)
US8959917B2 (en) Method for operating a forced-flow steam generator operating at a steam temperature above 650°C and forced-flow steam generator
JP2021014839A (en) Steam power generation plant, modification method for steam power generation plant, and operation method for steam power generation plant
CN112197258A (en) Stable operation system and method for denitration device in emergency operation without shutdown of coal-electricity machine
JP7066572B2 (en) Temporary piping system for boiler blow-out and boiler blow-out method
JP3518252B2 (en) Closed steam cooled gas turbine combined plant and gas turbine combined plant
JPH04311608A (en) Repowering system of previously provided steam power facility
JP2004245184A (en) Reheat steam turbine plant and starting method for the plant
JP3133183B2 (en) Combined cycle power plant
JP2766687B2 (en) Combined power plant
JP2999122B2 (en) Control equipment for complex plant
JP3068972B2 (en) Combined cycle power plant
JP3641518B2 (en) Steam temperature control method and apparatus for combined cycle plant
JP4090584B2 (en) Combined cycle power plant
JPH074605A (en) Composite power-generating plant
CN217400983U (en) Safe and efficient heat supply system of gas-steam combined cycle straight condensing generator set
JPH062806A (en) Water supplying and heating device
JPH0610619A (en) Supply water heating device
JP2003343213A (en) Combined plant constructed with closed steam cooling gas turbine
Warren et al. Advanced Technology Combustion Turbines in Combined-Cycle Applications
JP2708406B2 (en) Startup control method for thermal power plant
JP2863645B2 (en) Feedwater flow control system for an exhaust gas reburning combined cycle power plant