【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
〔産業上の利用分野〕 本発明は、変圧運転ボイラのホツトスタート方法に係
り、特に、深夜停止し翌朝起動する運用がなされるもの
に好適なボイラのホツトスタート方法に関する。 〔従来の技術〕 変圧運転ボイラにおいては、電力需要が低下する深夜
には運転を停止し、電力需要が増加する翌朝に運転を再
開するような運用がなされることが多い。このような変
圧運転ボイラのシステムの一例を図により説明する。 第2図は変圧貫流ボイラの系統図である。図で、1は
水冷壁構造を有するボイラ、2はボイラ1へ給水する給
水ポンプ、3は給水ポンプ2からの給水を加熱する高圧
給水ヒータ、4はボイラ1の排ガスの余熱を利用して給
水を余熱する節炭器である。5はボイラ1で発生した蒸
気を導き、これを蒸気と水に分離する気水分離器、6は
気水分離器5で分離されたボイラ水を貯水する貯水タン
ク、7は貯水タンク6の水を再度ボイラ1に給水するた
めのボイラ再循環ポンプである。8は気水分離器5で分
離された飽和蒸気を過熱する過熱器である。9は過熱器
8からの過熱蒸気を駆動源として回転せしめられ発電機
を駆動する高圧タービン、10は過熱器8よりの過熱蒸気
を高圧タービン9に供給する主蒸気管(過熱器8の出口
部から高圧タービン9の入口部までの連絡配管)であ
る。11は高圧タービン9への過熱蒸気を過熱器8の出口
部においてボイラ系列にバイパスさせる高圧タービンバ
イパス弁である。12は高圧タービン9の入口部において
高圧タービン9へ蒸気を送気する前に主蒸気管10をウオ
ーミングする主蒸気管ドレン弁である。 このような変圧貫流ボイラにおいては、前述のよう
に、夜間はその運転を停止し、翌朝起動する毎日停止起
動運用が実施されることが多い。この運用を実施する場
合には、夜間ボイラの保有熱をボイラ系外に逃がさない
ように流体系路をボイラ系外としや断する手段が採られ
る。したがつて、翌朝の起動時においては、過熱器8や
主蒸気配管10はそのメタルの熱容量により450℃〜500℃
の高温状態にあるのに対して、ボイラ1や気水分離器5
は変圧運転することから最低圧力(70〜85atg)の飽和
水又は飽和蒸気温度となつており低温状態にある。 〔発明が解決しようとする課題〕 上記のように、一方が高温状態、他方が低温状態にあ
るボイラを起動する場合、ボイラ点火後発生する蒸気は
最初は低温状態にあるため、通常起動のプログラムにし
たがつて主蒸気管ドレン弁12を開いて主蒸気管10のウオ
ーミングを行なうと、高温状態にある主蒸気管10のメタ
ル温度の保有熱を奪うことになり、その主蒸気温度は大
きく低下する。一方、通常起動のプログラムにより高圧
タービンバイパス弁11が開くと過熱器8に低温の蒸気が
通過するため過熱器出口蒸気温度も大きく低下する。そ
して、これらが高温状態を回復するまではタービンの起
動を行なうことができない。このため、従来、起動に際
しては、過熱器8の出口蒸気温度が高圧タービン9の入
口蒸気温度と一致してはじめてタービンへの通気を行な
つていた。したがつて、一致するまでの間はタービンの
起動はできず、これが起動時間短縮への大きな障害とな
つていた。 本発明の目的は、上記従来技術の課題を解決し、起動
時間を短縮することができるボイラのホツトスタート方
法を提供するにある。 〔課題を解決するための手段〕 上記の目的を達成するため、本発明は、変圧運転ボイ
ラのホットスタート方法において、タービン入口主蒸気
温度と過熱器出口主蒸気温度との温度差が主蒸気管のメ
タル保有数に応じた規定温度差以下であるとき主蒸気を
タービン側に通気することを特徴とする。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot start method for a boiler, and more particularly to a hot start method for a boiler suitable for an operation in which the boiler is stopped at midnight and started the next morning. [Related Art] In a variable-voltage operation boiler, an operation is often performed such that the operation is stopped at midnight when the power demand decreases, and the operation is restarted the next morning when the power demand increases. An example of such a variable-pressure operation boiler system will be described with reference to the drawings. FIG. 2 is a system diagram of a variable-pressure once-through boiler. In the drawing, 1 is a boiler having a water-cooled wall structure, 2 is a water supply pump for supplying water to the boiler 1, 3 is a high-pressure water heater for heating water supplied from the water supply pump 2, 4 is a water supply utilizing residual heat of exhaust gas of the boiler 1. It is a economizer that saves heat. 5 is a steam-water separator for guiding steam generated in the boiler 1 and separating the steam and water into steam, 6 is a water storage tank for storing the boiler water separated by the steam-water separator 5, and 7 is water for the water storage tank 6. Is a boiler recirculation pump for supplying water to the boiler 1 again. A superheater 8 superheats the saturated steam separated by the steam separator 5. Reference numeral 9 denotes a high-pressure turbine rotated by using the superheated steam from the superheater 8 as a drive source and drives a generator. Reference numeral 10 denotes a main steam pipe (exit portion of the superheater 8) for supplying the superheated steam from the superheater 8 to the high-pressure turbine 9. To the inlet of the high-pressure turbine 9). A high-pressure turbine bypass valve 11 bypasses superheated steam to the high-pressure turbine 9 in a boiler system at an outlet of the superheater 8. Reference numeral 12 denotes a main steam pipe drain valve for warming the main steam pipe 10 before sending steam to the high pressure turbine 9 at the inlet of the high pressure turbine 9. As described above, in such a variable-pressure once-through boiler, as described above, the operation is stopped at night, and the stop and start operation is frequently performed every day to start the next morning. When this operation is performed, a means is adopted to cut off the fluid passage outside the boiler system so that the heat retained in the night boiler does not escape outside the boiler system. Therefore, at the time of starting the next morning, the superheater 8 and the main steam pipe 10 are 450 ° C. to 500 ° C. depending on the heat capacity of the metal.
Boiler 1 and steam-water separator 5
Because of the variable pressure operation, the temperature of saturated water or saturated steam at the minimum pressure (70 to 85 atg) is reached and the temperature is low. [Problems to be Solved by the Invention] As described above, when starting a boiler in which one is in a high-temperature state and the other is in a low-temperature state, the steam generated after boiler ignition is initially in a low-temperature state. Accordingly, when the main steam pipe drain valve 12 is opened and the main steam pipe 10 is warmed, the heat of the metal temperature of the main steam pipe 10 in a high temperature state is taken away, and the main steam temperature is greatly reduced. I do. On the other hand, when the high-pressure turbine bypass valve 11 is opened by the normal startup program, low-temperature steam passes through the superheater 8, so that the superheater outlet steam temperature is also greatly reduced. Then, the turbine cannot be started until these recover from the high temperature state. Therefore, conventionally, at the time of startup, ventilation to the turbine is performed only when the outlet steam temperature of the superheater 8 matches the inlet steam temperature of the high-pressure turbine 9. Therefore, the turbine could not be started until the agreement was reached, which was a major obstacle to shortening the start-up time. SUMMARY OF THE INVENTION An object of the present invention is to provide a hot start method for a boiler which can solve the above-mentioned problems of the prior art and can shorten the start-up time. [Means for Solving the Problems] In order to achieve the above object, the present invention provides a hot start method for a variable pressure operation boiler, wherein a temperature difference between a turbine inlet main steam temperature and a superheater outlet main steam temperature is reduced by a main steam pipe. The main steam is vented to the turbine side when the temperature difference is equal to or less than a specified temperature difference according to the number of metals held.
【作用】[Action]
ボイラ停止状態からボイラを点火した場合、タービン
入口主蒸気温度と過熱器出口主蒸気温度との温度差が主
蒸気管の熱容量に応じた規定温度差、例えば30℃以下で
あるとき主蒸気をタービン側に通気する。これにより、
ボイラの起動時間を短縮することができる。 〔実施例〕 以下、本発明を図示の実施例に基づいて説明する。 第1図は本発明の実施例によりボイラの起動を行なつ
た場合の蒸気温度の特性図である。図では横軸に時間
が、又、縦軸に蒸気温度(過熱器出口温度とタービン入
口主蒸気温度)および負荷の大きさがとつてある。点火
前の状態においては、過熱器8の出口部の蒸気温度が主
蒸気管10の蒸気温度よりやや高温の状態にある。このよ
うなボイラ停止状態から例えば、ボイラ停止後ほぼ11時
間経過した翌朝7時44分にボイラを点火する場合、最
初、主蒸気管ドレン弁12は閉じたままとし、又高圧ター
ビンバイパス弁11を絞つた状態でボイラ点火する。これ
によりタービン入口主蒸気温度は低下しない。そして、
ボイラ1からの発生蒸気は過熱器8および高圧タービン
バイパス弁11を通つて流れるが、この時点においては、
当該発生蒸気は低温であるので、過熱器8ではそのメタ
ル保有熱が奪われ、過熱器8の出口蒸気温度は図示のよ
うに低下する。しかしながら、主蒸気管ドレン弁12は閉
じられ、又、高圧タービンバイパス弁11は絞られている
ので、上記低温の発生蒸気は主蒸気管10を流れることは
なく、そのメタル保有熱は奪われず、高圧タービン9の
入口部の蒸気温度を低下させることはなく、かつ、過熱
器出口主蒸気温度の低下も大きくはなくボイラの昇圧が
行なわれる。 その後、ボイラ1の発生蒸気の温度が上昇し、過熱器
8の出口蒸気温度も上昇する。この出口蒸気温度の上昇
により主蒸気管温度との温度差が28℃となつたとき(8
時10分)、過熱器8の出口部の主蒸気を主蒸気管10を通
して高圧タービン9に通気する。このため、主蒸気管10
に主蒸気管蒸気温度より低い蒸気が流れ、高圧タービン
9の入口部の蒸気温度は低下する。しかしながら、この
温度低下は高温状態にある主蒸気管10のメタル熱容量が
大きいので極めて僅かであり、本実施例では3℃であつ
た。そして、この程度の温度低下ではタービン側の熱応
力が上昇することはない。したがつて、高圧タービン入
口部蒸気温度(ほぼタービン第1段メタル温度に等し
い)に対して28℃低い温度の蒸気を送気しても何等の支
障をも生じない。以後、過熱器出口部蒸気温度および高
圧タービン入口部蒸気温度とも図示のように上昇し(過
熱器出口部蒸気温度の上昇の方が大きい)、8時20分に
タービンの並列運転を行ない、9時26分に全負荷運転と
することができた。 このように、本実施例では、過熱器出口部蒸気温度が
高圧タービン入口部蒸気温度より28℃低い温度で、か
つ、過熱器出口部蒸気温度の上昇率が0.3℃/H以上のと
き、高圧タービンバイパス弁を閉じて過熱器出口部蒸気
を高圧タービンに通気するようにしたので、過熱器出口
部蒸気温度をタービン第1段メタル温度と一致するまで
上昇させた後通気する従来の起動に比較して、その時間
をほぼ10分短縮し、起動時間(点火から全負荷運転に入
るまでの時間)を100分程度とすることができる。又、
起動時間の短縮により、起動損失を低減することができ
る。 なお、上記実施例では、過熱器出口部蒸気温度と高圧
タービン入口部蒸気温度との差が28℃になつたとき通気
する例について説明したが、28℃には限らず、ほぼ30℃
程度であつても通気可能であることが確認された。又、
28℃以下でも当然通気可能であるが、その差が大きいほ
ど短縮できる時間も小さくなるのは明らかである。 〔発明の効果〕 以上述べたように、本発明では、過熱器出口主蒸気温
度とタービン入口主蒸気温度との差が主蒸気管の熱容量
に応じた規定温度差以下であるとき主蒸気をタービン側
に通気するようにしたので、起動時間を短縮することが
でき、ひいては起動損失をも低減することができる。When the boiler is ignited from the boiler stopped state, when the temperature difference between the turbine inlet main steam temperature and the superheater outlet main steam temperature is a specified temperature difference corresponding to the heat capacity of the main steam pipe, for example, 30 ° C or less, the main steam is discharged to the turbine. Vent to the side. This allows
The startup time of the boiler can be reduced. [Embodiment] Hereinafter, the present invention will be described based on an illustrated embodiment. FIG. 1 is a characteristic diagram of steam temperature when a boiler is started according to an embodiment of the present invention. In the figure, the horizontal axis represents time, and the vertical axis represents steam temperature (superheater outlet temperature and turbine inlet main steam temperature) and load magnitude. In the state before ignition, the steam temperature at the outlet of the superheater 8 is slightly higher than the steam temperature of the main steam pipe 10. When the boiler is ignited from such a boiler stop state at, for example, 7:44 the next morning after approximately 11 hours have elapsed after the boiler stop, first, the main steam pipe drain valve 12 is kept closed, and the high-pressure turbine bypass valve 11 is turned off. The boiler is ignited in the squeezed state. Thus, the turbine inlet main steam temperature does not decrease. And
The steam generated from the boiler 1 flows through the superheater 8 and the high-pressure turbine bypass valve 11, but at this time,
Since the generated steam has a low temperature, the metal possessed heat is taken away by the superheater 8, and the outlet steam temperature of the superheater 8 decreases as shown in the figure. However, since the main steam pipe drain valve 12 is closed and the high-pressure turbine bypass valve 11 is throttled, the low-temperature generated steam does not flow through the main steam pipe 10 and its metal holding heat is not deprived, The steam temperature at the inlet of the high-pressure turbine 9 is not reduced, and the temperature of the main steam at the superheater outlet is not significantly reduced, so that the boiler is pressurized. Thereafter, the temperature of the steam generated from the boiler 1 increases, and the temperature of the steam at the outlet of the superheater 8 also increases. When the temperature difference from the main steam pipe temperature becomes 28 ° C due to the rise of the outlet steam temperature (8
At 10 hours, the main steam at the outlet of the superheater 8 is passed through the main steam pipe 10 to the high-pressure turbine 9. For this reason, the main steam pipe 10
Then, steam lower than the main steam pipe steam temperature flows, and the steam temperature at the inlet of the high-pressure turbine 9 decreases. However, this temperature decrease was very slight because the metal heat capacity of the main steam pipe 10 in the high temperature state was large, and was 3 ° C. in this embodiment. Then, such a temperature decrease does not increase the thermal stress on the turbine side. Therefore, even if the steam having a temperature 28 ° C. lower than the steam temperature at the inlet of the high-pressure turbine (approximately equal to the temperature of the first stage metal of the turbine) is supplied, no trouble occurs. Thereafter, both the superheater outlet steam temperature and the high-pressure turbine inlet steam temperature rise as shown in the figure (the steam temperature at the superheater outlet rises larger), and the turbines are operated in parallel at 8:20. At 26:26, full load operation was achieved. As described above, in the present embodiment, when the superheater outlet steam temperature is 28 ° C. lower than the high pressure turbine inlet steam temperature and the superheater outlet steam temperature rise rate is 0.3 ° C./H or more, the high pressure Since the steam at the outlet of the superheater is vented to the high-pressure turbine by closing the turbine bypass valve, the temperature of the steam at the superheater outlet is raised until it matches the temperature of the first stage metal of the turbine, and then compared to the conventional start-up in which the steam is vented. Then, the time can be reduced by about 10 minutes, and the start-up time (the time from ignition to the start of full load operation) can be reduced to about 100 minutes. or,
By reducing the startup time, the startup loss can be reduced. Note that, in the above embodiment, an example was described in which ventilation was performed when the difference between the superheater outlet steam temperature and the high-pressure turbine inlet steam temperature reached 28 ° C.
It was confirmed that ventilation was possible even at a low level. or,
Naturally, air can be ventilated even at 28 ° C. or less, but it is clear that the larger the difference, the shorter the shortening time. [Effects of the Invention] As described above, in the present invention, when the difference between the superheater outlet main steam temperature and the turbine inlet main steam temperature is equal to or less than the specified temperature difference corresponding to the heat capacity of the main steam pipe, the main steam is Since the ventilation is provided on the side, the startup time can be shortened, and the startup loss can be reduced.
【図面の簡単な説明】[Brief description of the drawings]
第1図は本発明の実施例によりボイラのホツトスタート
を行なつた場合の蒸気温度の特性図、第2図は変圧貫流
ボイラの系統図である。 1……ボイラ、2……給水ポンプ、5……気水分離器、
8……過熱器、9……高圧タービン、10……主蒸気管、
11……高圧タービンバイパス弁、12……主蒸気管ドレン
弁FIG. 1 is a characteristic diagram of steam temperature when hot start of a boiler is performed according to an embodiment of the present invention, and FIG. 2 is a system diagram of a variable-pressure once-through boiler. 1 ... boiler, 2 ... water supply pump, 5 ... steam-water separator,
8 ... superheater, 9 ... high-pressure turbine, 10 ... main steam pipe,
11… High pressure turbine bypass valve, 12 …… Main steam pipe drain valve