JPS61152914A - Starting of thermal power plant - Google Patents

Starting of thermal power plant

Info

Publication number
JPS61152914A
JPS61152914A JP27360384A JP27360384A JPS61152914A JP S61152914 A JPS61152914 A JP S61152914A JP 27360384 A JP27360384 A JP 27360384A JP 27360384 A JP27360384 A JP 27360384A JP S61152914 A JPS61152914 A JP S61152914A
Authority
JP
Japan
Prior art keywords
steam
boiler
starting
turbine
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27360384A
Other languages
Japanese (ja)
Inventor
Kazue Takaku
高久 和重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP27360384A priority Critical patent/JPS61152914A/en
Publication of JPS61152914A publication Critical patent/JPS61152914A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/02Arrangements or modifications of condensate or air pumps
    • F01K9/023Control thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PURPOSE:To reduce incurring of starting loss and to improve the efficiency of a load regulating operation and the like, by a method wherein a turbine for driving a water feed pump is started by means of steam from other unit, and after, after ignition of a boiler, generated steam is increased enough in temperature and pressure, steam is extracted from the boiler. CONSTITUTION:During the starting of a plant, steam from other unit is fed to a water feed pump turbine 26 through an auxiliary steam header 28. This starts a water feed pump 37, and starts the feed of water to a boiler 31. After ignition of the boiler 31, after boiler generation steam is increased in temperature and a pressure to a value being high enough to allow driving of the water feed pump turbine 26, boiler generation steam is fed to the water feed pump turbine 26 through a steam line 27 for starting from the outlet of a heat transfer pipe 35 at the rear of a ceiling, and is switched to steam from an auxiliary steam header 28. This reduces incurring of starting loss and performs efficient load regulating operation.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は火力発電プラントの起動方法に係り、特に負荷
調整運転用プラントの起動に好適な火力発電プラントの
起動方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for starting a thermal power plant, and particularly to a method for starting a thermal power plant suitable for starting a plant for load adjustment operation.

(発明の技術的背景) 近年の電力需要の多様化に伴い、運用面での柔軟性に富
む火力発電プラントにおいては負荷負動に応じた負荷調
整運転の要請が強くなっている。
(Technical Background of the Invention) With the diversification of electric power demand in recent years, there is an increasing demand for load adjustment operation according to load fluctuation in thermal power plants that are highly flexible in terms of operation.

例えば電力需要の多い昼間は負荷運転(発電)を行ない
、電力需要の少ない夜間は運転を停止するDSS運転等
である。
For example, there is a DSS operation in which load operation (power generation) is performed during the day when power demand is high, and operation is stopped at night when power demand is low.

ところで一般に火力発電プラントは直接、発電に携わる
ボイラ、タービン、発電機等のいわゆる主審と、間接的
に発電に携わる給水ポンプ等のいわゆる補機とによって
構成されている。
By the way, thermal power plants are generally composed of so-called master equipment such as boilers, turbines, and generators that are directly involved in power generation, and so-called auxiliary equipment such as water pumps that are indirectly involved in power generation.

そして、火力発電プラントの起動に際しては、まず補機
を順次駆動し、次いで主機を駆動層る手順が採用される
。即ち系統へ発生電力を渡すまでには起動損失と称され
る一定の電力、燃料等の損失を生じる。この起動損失の
発生は避けることができないが、上述のようにプラント
の起動、停止の回数が増大する負荷調整運転の要請が強
まっている今日では、省エネルギの観点からも、この起
動損失をできる限り少なくすることが火力発電プラント
の重要課題となっている。
When starting up a thermal power plant, a procedure is adopted in which the auxiliary machines are first driven one after the other, and then the main machine is driven. That is, until the generated power is delivered to the grid, a certain amount of loss of power, fuel, etc., called startup loss, occurs. Although the occurrence of this startup loss cannot be avoided, as mentioned above, there is a growing demand for load adjustment operation that increases the number of plant startups and shutdowns, so it is possible to reduce this startup loss from an energy-saving perspective. An important issue for thermal power plants is to minimize the amount of heat generated.

(背景技術の問題点) 従来の火力発電プラントの起動方法を第2図によって説
明する。
(Problems with Background Art) A method of starting up a conventional thermal power plant will be explained with reference to FIG.

第2図は貫流ボイラを用いた火力発電プラントの給水お
よび蒸気系統の一例を示ず。ボイラ1は節炭器2、火炉
パス3、気水分離器4、伝熱部5および過熱器6などに
よって構成され、このボイラ1に給水ポンプ7からの給
水が行なわれる。必要給水量が確保されると、ボイラへ
の点火、燃料投入が行なわれ、それにより昇温、昇圧し
た給水は、気水分離器4で蒸気と水に分離される。分離
された蒸気は伝熱部5および過熱器6を経て、主蒸気管
8に送出される。プラント起動時において蒸気が所定の
温度、圧力に達するまでは、主蒸気管8の途中から分岐
した起動バイパス系統9を介して蒸気は復水器10に導
かれる。
Figure 2 does not show an example of the water supply and steam system of a thermal power plant using a once-through boiler. The boiler 1 includes a coal saver 2, a furnace path 3, a steam/water separator 4, a heat transfer section 5, a superheater 6, and the like, and water is supplied to the boiler 1 from a water supply pump 7. When the required amount of water supply is secured, the boiler is ignited and fuel is injected, and the water supply whose temperature and pressure have been raised thereby is separated into steam and water by the steam-water separator 4. The separated steam passes through a heat transfer section 5 and a superheater 6, and is sent to a main steam pipe 8. At the time of plant startup, the steam is guided to the condenser 10 via a startup bypass system 9 branched from the middle of the main steam pipe 8 until the steam reaches a predetermined temperature and pressure.

なお、気水分離器4で分離された水は分離タンク11を
経て、一部の水はボイラ再循環ポンプ12により節炭器
2の入口給水管へ戻され、他の水はフラッシュタンク1
3を経て復水器10へ導かれる。
The water separated by the steam-water separator 4 passes through the separation tank 11, and some of the water is returned to the inlet water supply pipe of the economizer 2 by the boiler recirculation pump 12, and the other water is sent to the flash tank 1.
3 and is led to the condenser 10.

そして、燃料投入量の増加とともに気水分離器4で発生
した蒸気は昇温、昇圧され、タービン通気条件に達した
後、開となる主蒸気止め弁14および加減弁15を介し
てタービン16に通気される。その後、併入、負荷上昇
の過程を経て通常運転状態となる。
As the amount of fuel input increases, the steam generated in the steam separator 4 is heated and pressurized, and after reaching the turbine ventilation condition, it is sent to the turbine 16 via the main steam stop valve 14 and control valve 15, which are opened. Ventilated. After that, it goes through the process of joining and increasing the load, and then returns to normal operation.

なお、通常運転中は、例えば高圧タービン16aの排気
が再熱器17を経て低圧タービン16bに供給され、そ
の後排蒸気となって復水器10に導かれる。復水は復水
ポンプ18、グランド蒸気復水器19、低圧ヒータ21
、脱気器22等を介して再び給水ポンプ7に運流し、さ
らに高圧ヒータ23を介して加熱され、ボイラ給水とし
てボイラ1に送給される。
Note that during normal operation, for example, the exhaust gas of the high-pressure turbine 16a is supplied to the low-pressure turbine 16b via the reheater 17, and then turned into exhaust steam and guided to the condenser 10. Condensate is handled by a condensate pump 18, a gland steam condenser 19, and a low pressure heater 21.
The water is fed back to the water supply pump 7 via the deaerator 22, etc., heated by the high-pressure heater 23, and fed to the boiler 1 as boiler feed water.

ところで、上記従来の起動方法では、給水ポンプ7を電
動機24で起動する電動機起動式としているため、電1
J11駆動用電力が起動損失として発生する。また、起
動時の燃料投入により給水に与えた熱量の大部分は蒸気
またはドレンとしてバイパス系統を介して復水器10に
導かれ、復水器冷却水を介して系外へ排出されることに
なり、その熱量が全て起動損失となっている。
By the way, in the conventional starting method described above, since the water supply pump 7 is started by the electric motor 24, the electric power is
J11 driving power is generated as a starting loss. In addition, most of the heat given to the feed water by fuel injection during startup is led to the condenser 10 via the bypass system as steam or condensate, and is discharged to the outside of the system via the condenser cooling water. Therefore, all of that heat becomes startup loss.

〔発明の目的〕[Purpose of the invention]

本発明はこのような事情に鑑みてなされたもので、従来
起動損失として発生していた給水ポンプ起動用の電力を
不要とするとともに、従来プラント起動時にバイパス系
統へ排出していた起動特発生蒸気の一部を給水ポンプの
起動に有効利用できるようにし、これにより起動損失を
低減して負荷調整運転等を効率よく行なえるようにした
火力発電プラントの起動方法を提供することを目的とす
る。
The present invention has been developed in view of these circumstances, and it eliminates the need for electricity for starting the feed water pump, which conventionally occurred as a starting loss, and eliminates the startup-specific steam that was conventionally discharged to the bypass system when starting the plant. An object of the present invention is to provide a method for starting a thermal power plant in which a part of the water can be effectively used for starting a water supply pump, thereby reducing starting loss and efficiently performing load adjustment operations, etc.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するために、本発明はボイラ点火前に
ボイラ給水を開始し、必要給水量が確保された後、ボイ
ラ点火、燃料投入を行ない、発生蒸気を所定の昇温、昇
圧状態となるまで起動バイパス系統に流通させる火力発
電プラントの起動方法において、給水系統にタービン駆
動型の給水ポンプを使用し、この給水ポンプ駆動用のタ
ービンを最初、他ユニットの蒸気発生系統からの蒸気に
よって起動させ、ボイラ点火後発生蒸気が前記タービン
駆動可能な値まで昇温、昇圧されたらボイラ途中から蒸
気を抽出し、その抽出蒸気を前記タービン起動用として
切換え供給することを特徴としている。
In order to achieve the above object, the present invention starts supplying water to the boiler before igniting the boiler, and after the necessary amount of water supply is secured, ignites the boiler and inputs fuel to raise the generated steam to a predetermined temperature and pressure state. In a method for starting a thermal power plant, a turbine-driven water pump is used in the water supply system, and the turbine for driving the water pump is first started with steam from the steam generation system of another unit. When the temperature and pressure of the steam generated after ignition of the boiler is raised to a value capable of driving the turbine, steam is extracted from the middle of the boiler, and the extracted steam is switched and supplied for starting the turbine.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図を参照して説明する。 An embodiment of the present invention will be described below with reference to FIG.

第1図は貫流ボイラを用いた火力発電プラントの給水お
よび蒸気系統の一例を示している。
FIG. 1 shows an example of a water supply and steam system of a thermal power plant using a once-through boiler.

ボイラ31は節炭器32、火炉バス33、気水分離器3
4、伝熱部35および過熱器36などによって構成され
、このボイラ31に給水ポンプ37からの給水が行なわ
れる。給水ポンプ37は、蒸気タービン駆動型とし、こ
の給水ポンプ駆動用のタービン(以下給水ポンプタービ
ンという)26に、ボイラ31の途中、例えば伝熱部(
詳しくは天井後部伝熱部)35の出口からボイラ発生蒸
気を供給するための起動用蒸気管路27を接続している
The boiler 31 includes a economizer 32, a furnace bus 33, and a steam/water separator 3.
4, a heat transfer section 35, a superheater 36, etc., and water is supplied to this boiler 31 from a water supply pump 37. The feed water pump 37 is of a steam turbine-driven type, and a turbine for driving the feed water pump (hereinafter referred to as a water feed pump turbine) 26 is connected to a part of the boiler 31, for example, a heat transfer section (
Specifically, a starting steam pipe line 27 for supplying boiler-generated steam is connected from the outlet of the ceiling rear heat transfer section (35).

また、この起動用蒸気管路27の途中に他ユニットの蒸
気発生源(図示せず)と連絡している補助蒸気ヘッダ2
8を、補助管路29を介して接続している。
In addition, an auxiliary steam header 2 is connected to a steam generation source (not shown) of another unit in the middle of this starting steam pipe line 27.
8 are connected via an auxiliary conduit 29.

そして、プラント起動時は、まず他ユニットからの蒸気
を補助蒸気ヘッダ28を介して給水ポンプタービン26
に供給する、これにより給水ポンプ37を起動させ、ボ
イラ31への給水を開始する。
When starting up the plant, steam from other units is first transferred to the water supply pump turbine 26 via the auxiliary steam header 28.
This starts the water supply pump 37 and starts supplying water to the boiler 31.

必要給水量が確保されたら、ボイラ31への点火、燃料
投入を行なう。燃料投入量の増加に伴い、給水は昇温、
昇圧され、気水分離器34で蒸気と水とに分離され、天
井後部伝熱部35から過熱器36側に流れる。そこで、
このボイラ発生蒸気が給水ポンプタービン26の駆動可
能な値まで昇温、昇圧されたら、天井後部伝熱部35の
出口から起動用蒸気管路27を介してボイラ発生蒸気を
抽出し、その蒸気を給水ポンプタービン26に起動用蒸
気として、補助蒸気ヘッダ28からの蒸気と切換え供給
する。
Once the required water supply amount is secured, the boiler 31 is ignited and fuel is supplied. As the amount of fuel input increases, the temperature of the water supply increases,
It is pressurized, separated into steam and water by the steam-water separator 34, and flows from the ceiling rear heat transfer section 35 to the superheater 36 side. Therefore,
When this boiler-generated steam is heated and pressurized to a value that allows the feedwater pump turbine 26 to be driven, the boiler-generated steam is extracted from the outlet of the ceiling rear heat transfer section 35 via the startup steam pipe 27, and the steam is The steam from the auxiliary steam header 28 is switched and supplied to the water supply pump turbine 26 as starting steam.

給水ポンプタービン26は、給水ポンプ37を運転する
ための比較的低温、低圧の蒸気で駆動し得るものであり
、この程度の蒸気はボイラ点火後、間もなく天井後部伝
熱部35から得られるものである。
The feed water pump turbine 26 can be driven by relatively low temperature, low pressure steam to operate the feed water pump 37, and this level of steam is obtained from the ceiling rear heat transfer section 35 shortly after the boiler is ignited. be.

なお、給水ポンプタービン26の駆動に要する以外の初
期発生蒸気は過熱器36を経て、主蒸気管38に送出さ
れる。蒸気が発電可能な一定の昇温、昇圧状態となるま
では、主蒸気管38の途中から分岐した起動バイパス系
統39を介して蒸気は復水器40に導かれる。
Note that the initially generated steam other than that required for driving the feedwater pump turbine 26 is sent to the main steam pipe 38 via the superheater 36. The steam is guided to the condenser 40 via the start-up bypass system 39 branched from the middle of the main steam pipe 38 until the steam reaches a certain temperature and pressure rise state that enables power generation.

なお、気水分離器34で分離された水は分離タンク41
を経て、一部の水はボイラ再循環ポンプ42により節炭
器32の入口給水管へ戻され、他の水はフラッシュタン
ク43を経て復水Fi40へ導かれる。
Note that the water separated by the steam-water separator 34 is transferred to the separation tank 41.
Some of the water is returned to the inlet water supply pipe of the economizer 32 by the boiler recirculation pump 42, and the other water is led to the condensate Fi 40 via the flash tank 43.

そして、燃料投入量の増加とともに気水分離器34で発
生した蒸気はざらに昇温、昇圧され、発電用のタービン
通気条件に達した優、開となる主蒸気止め弁44および
加減弁45を介してタービン46に通気される。その後
併入、負荷上昇の過程を経て通常運転となる。
As the amount of fuel input increases, the steam generated in the steam separator 34 is gradually heated and pressurized, and when the turbine ventilation conditions for power generation are reached, the main steam stop valve 44 and the control valve 45 are opened. The turbine 46 is vented through the air. After that, normal operation resumes after the process of merging and load increase.

なお、通常運転中は、例えば高圧タービン46aの排気
が再熱器17を経て低圧タービン46bに供給され、そ
の後排蒸気となって復水器40に導かれる。復水は復水
ポンプ48、グランド蒸気復水器49、低圧ヒータ51
、脱気器52等を介して再び給水ポンプ37に還流し、
さらに高圧ヒータ53を介して加熱され、ボイラ31に
送給される。
Note that during normal operation, for example, the exhaust gas of the high-pressure turbine 46a is supplied to the low-pressure turbine 46b via the reheater 17, and then turned into exhaust steam and guided to the condenser 40. Condensate is handled by a condensate pump 48, a gland steam condenser 49, and a low pressure heater 51.
, is returned to the water supply pump 37 via the deaerator 52 etc.,
It is further heated via a high-pressure heater 53 and fed to the boiler 31.

上記の起動方法によると、プラント起動時のボイラ給水
を給水ポンプタービン26への然気供給によって行なう
ので、電動機駆動型の給水ポンプを用いた従来の起動方
法と異なり、給水に係る電力の駆動損失を発生すること
がない。
According to the above startup method, water is supplied to the boiler at the time of plant startup by supplying natural air to the water supply pump turbine 26, so unlike the conventional startup method using an electric motor-driven water pump, driving loss of electric power related to water supply is reduced. will not occur.

また、給水ポンプ37の駆動に使用する蒸気として、ボ
≧う加熱初期の発生蒸気を利用するので、従来全てバイ
パス系統、復水器を介して機外に起動時の発生蒸気を放
出していたものと異なり、所内動力の有効利用が図れ、
起動損失をそれだけ低減することができる。
In addition, since the steam generated during the initial heating of the boiler is used as the steam used to drive the water supply pump 37, conventionally all steam generated during startup was discharged outside the machine via the bypass system and condenser. Unlike conventional models, effective use of in-house power can be achieved,
The starting loss can be reduced accordingly.

〔発明の効果〕〔Effect of the invention〕

以上で詳述したように、本発明は電動機駆動給水ポンプ
を駆動することなく、所内ボイラ発生蒸気を利用してプ
ラント起動時の給水ポンプ駆動を行なう火力発電プラン
トの起動方法に係るものであるから、電気的および所内
熱mに係る起動損失を低減することができる。
As detailed above, the present invention relates to a method for starting a thermal power plant that uses steam generated by an in-house boiler to drive a water pump during plant startup without driving an electric motor-driven water pump. , it is possible to reduce the starting loss related to electrical power and internal heat m.

したがって、起動損失を大幅に低減できるので、起動、
停止の繰返し回数が多くなる近年の負荷調整運転の効率
的な運転が可能となり、経済性の大幅な向上が図れる。
Therefore, startup loss can be significantly reduced, so startup,
This makes it possible to perform load adjustment operations more efficiently than in recent years, where the number of repeated stops is increased, and economic efficiency can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す系統図、第2図は従来
例を示す系統図である。 26・・・給水ポンプタービン、31・・・ボイラ、3
7・・・給水ポンプ、38・・・主蒸気管、39・・・
起動バイパス系統。
FIG. 1 is a system diagram showing one embodiment of the present invention, and FIG. 2 is a system diagram showing a conventional example. 26... Water pump turbine, 31... Boiler, 3
7... Water supply pump, 38... Main steam pipe, 39...
Startup bypass system.

Claims (1)

【特許請求の範囲】[Claims] ボイラ点火前にボイラ給水を開始し、必要給水量が確保
された後、ボイラ点火、燃料投入を行ない、発生蒸気を
所定の昇温、昇圧状態となるまで起動バイパス系統に流
通させる火力発電プラントの起動方法において、給水系
統にタービン駆動型の給水ポンプを使用し、この給水ポ
ンプ駆動用のタービンを最初、他ユニットの蒸気発生系
統からの蒸気によって起動させ、ボイラ点火後発生蒸気
が前記タービン駆動可能な値まで昇温、昇圧されたらボ
イラ途中から蒸気を抽出し、その抽出蒸気を前記タービ
ン起動用として切換え供給することを特徴とする火力発
電プラントの起動方法。
In a thermal power plant, water supply to the boiler is started before the boiler is ignited, and after the required amount of water supply is secured, the boiler is ignited, fuel is added, and the generated steam is circulated through the startup bypass system until the specified temperature and pressure are reached. In the startup method, a turbine-driven water supply pump is used in the water supply system, and the turbine for driving the water supply pump is first started with steam from a steam generation system of another unit, and after the boiler is ignited, the generated steam can drive the turbine. 1. A method for starting a thermal power plant, which comprises extracting steam from the middle of a boiler after the temperature and pressure have been raised to a certain value, and switching and supplying the extracted steam for starting the turbine.
JP27360384A 1984-12-27 1984-12-27 Starting of thermal power plant Pending JPS61152914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27360384A JPS61152914A (en) 1984-12-27 1984-12-27 Starting of thermal power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27360384A JPS61152914A (en) 1984-12-27 1984-12-27 Starting of thermal power plant

Publications (1)

Publication Number Publication Date
JPS61152914A true JPS61152914A (en) 1986-07-11

Family

ID=17530060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27360384A Pending JPS61152914A (en) 1984-12-27 1984-12-27 Starting of thermal power plant

Country Status (1)

Country Link
JP (1) JPS61152914A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102322307A (en) * 2011-06-18 2012-01-18 山西省电力勘测设计院 Condensed water automatic discharging system of water-feeding pump steam turbine of direct air cooling unit
WO2012074907A3 (en) * 2010-11-29 2012-09-07 Echogen Power Systems, Inc. Driven starter pump and start sequence
WO2014031526A1 (en) * 2012-08-20 2014-02-27 Echogen Power Systems, L.L.C. Supercritical working fluid circuit with a turbo pump and a start pump in series configuration
US8857186B2 (en) 2010-11-29 2014-10-14 Echogen Power Systems, L.L.C. Heat engine cycles for high ambient conditions
US8869531B2 (en) 2009-09-17 2014-10-28 Echogen Power Systems, Llc Heat engines with cascade cycles
US9014791B2 (en) 2009-04-17 2015-04-21 Echogen Power Systems, Llc System and method for managing thermal issues in gas turbine engines
US9062898B2 (en) 2011-10-03 2015-06-23 Echogen Power Systems, Llc Carbon dioxide refrigeration cycle
US9115605B2 (en) 2009-09-17 2015-08-25 Echogen Power Systems, Llc Thermal energy conversion device
US9118226B2 (en) 2012-10-12 2015-08-25 Echogen Power Systems, Llc Heat engine system with a supercritical working fluid and processes thereof
US9316404B2 (en) 2009-08-04 2016-04-19 Echogen Power Systems, Llc Heat pump with integral solar collector
US9341084B2 (en) 2012-10-12 2016-05-17 Echogen Power Systems, Llc Supercritical carbon dioxide power cycle for waste heat recovery
US9441504B2 (en) 2009-06-22 2016-09-13 Echogen Power Systems, Llc System and method for managing thermal issues in one or more industrial processes
US9458738B2 (en) 2009-09-17 2016-10-04 Echogen Power Systems, Llc Heat engine and heat to electricity systems and methods with working fluid mass management control
US9638065B2 (en) 2013-01-28 2017-05-02 Echogen Power Systems, Llc Methods for reducing wear on components of a heat engine system at startup
US9752460B2 (en) 2013-01-28 2017-09-05 Echogen Power Systems, Llc Process for controlling a power turbine throttle valve during a supercritical carbon dioxide rankine cycle
US9863282B2 (en) 2009-09-17 2018-01-09 Echogen Power System, LLC Automated mass management control
JP2020125736A (en) * 2019-02-06 2020-08-20 三浦工業株式会社 Steam system
US10934895B2 (en) 2013-03-04 2021-03-02 Echogen Power Systems, Llc Heat engine systems with high net power supercritical carbon dioxide circuits
US11187112B2 (en) 2018-06-27 2021-11-30 Echogen Power Systems Llc Systems and methods for generating electricity via a pumped thermal energy storage system
US11293309B2 (en) 2014-11-03 2022-04-05 Echogen Power Systems, Llc Active thrust management of a turbopump within a supercritical working fluid circuit in a heat engine system
US11435120B2 (en) 2020-05-05 2022-09-06 Echogen Power Systems (Delaware), Inc. Split expansion heat pump cycle
US11629638B2 (en) 2020-12-09 2023-04-18 Supercritical Storage Company, Inc. Three reservoir electric thermal energy storage system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS593107A (en) * 1982-06-30 1984-01-09 Toshiba Corp Drive steam pressure controlling apparatus of turbine for driving feed pump
JPS59131709A (en) * 1983-01-18 1984-07-28 Hitachi Ltd Combined plant starting system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS593107A (en) * 1982-06-30 1984-01-09 Toshiba Corp Drive steam pressure controlling apparatus of turbine for driving feed pump
JPS59131709A (en) * 1983-01-18 1984-07-28 Hitachi Ltd Combined plant starting system

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9014791B2 (en) 2009-04-17 2015-04-21 Echogen Power Systems, Llc System and method for managing thermal issues in gas turbine engines
US9441504B2 (en) 2009-06-22 2016-09-13 Echogen Power Systems, Llc System and method for managing thermal issues in one or more industrial processes
US9316404B2 (en) 2009-08-04 2016-04-19 Echogen Power Systems, Llc Heat pump with integral solar collector
US8869531B2 (en) 2009-09-17 2014-10-28 Echogen Power Systems, Llc Heat engines with cascade cycles
US9863282B2 (en) 2009-09-17 2018-01-09 Echogen Power System, LLC Automated mass management control
US9115605B2 (en) 2009-09-17 2015-08-25 Echogen Power Systems, Llc Thermal energy conversion device
US9458738B2 (en) 2009-09-17 2016-10-04 Echogen Power Systems, Llc Heat engine and heat to electricity systems and methods with working fluid mass management control
US9410449B2 (en) 2010-11-29 2016-08-09 Echogen Power Systems, Llc Driven starter pump and start sequence
EP2646658A4 (en) * 2010-11-29 2014-06-25 Echogen Power Systems Inc Driven starter pump and start sequence
US8857186B2 (en) 2010-11-29 2014-10-14 Echogen Power Systems, L.L.C. Heat engine cycles for high ambient conditions
KR20140048075A (en) * 2010-11-29 2014-04-23 에코진 파워 시스템스, 엘엘씨 Driven starter pump and start sequence
US9284855B2 (en) 2010-11-29 2016-03-15 Echogen Power Systems, Llc Parallel cycle heat engines
EP2646658A2 (en) * 2010-11-29 2013-10-09 Echogen Power Systems, Inc. Driven starter pump and start sequence
WO2012074907A3 (en) * 2010-11-29 2012-09-07 Echogen Power Systems, Inc. Driven starter pump and start sequence
CN102322307A (en) * 2011-06-18 2012-01-18 山西省电力勘测设计院 Condensed water automatic discharging system of water-feeding pump steam turbine of direct air cooling unit
US9062898B2 (en) 2011-10-03 2015-06-23 Echogen Power Systems, Llc Carbon dioxide refrigeration cycle
US9091278B2 (en) 2012-08-20 2015-07-28 Echogen Power Systems, Llc Supercritical working fluid circuit with a turbo pump and a start pump in series configuration
WO2014031526A1 (en) * 2012-08-20 2014-02-27 Echogen Power Systems, L.L.C. Supercritical working fluid circuit with a turbo pump and a start pump in series configuration
US9341084B2 (en) 2012-10-12 2016-05-17 Echogen Power Systems, Llc Supercritical carbon dioxide power cycle for waste heat recovery
US9118226B2 (en) 2012-10-12 2015-08-25 Echogen Power Systems, Llc Heat engine system with a supercritical working fluid and processes thereof
US9638065B2 (en) 2013-01-28 2017-05-02 Echogen Power Systems, Llc Methods for reducing wear on components of a heat engine system at startup
US9752460B2 (en) 2013-01-28 2017-09-05 Echogen Power Systems, Llc Process for controlling a power turbine throttle valve during a supercritical carbon dioxide rankine cycle
US10934895B2 (en) 2013-03-04 2021-03-02 Echogen Power Systems, Llc Heat engine systems with high net power supercritical carbon dioxide circuits
US11293309B2 (en) 2014-11-03 2022-04-05 Echogen Power Systems, Llc Active thrust management of a turbopump within a supercritical working fluid circuit in a heat engine system
US11187112B2 (en) 2018-06-27 2021-11-30 Echogen Power Systems Llc Systems and methods for generating electricity via a pumped thermal energy storage system
JP2020125736A (en) * 2019-02-06 2020-08-20 三浦工業株式会社 Steam system
US11435120B2 (en) 2020-05-05 2022-09-06 Echogen Power Systems (Delaware), Inc. Split expansion heat pump cycle
US11629638B2 (en) 2020-12-09 2023-04-18 Supercritical Storage Company, Inc. Three reservoir electric thermal energy storage system

Similar Documents

Publication Publication Date Title
JPS61152914A (en) Starting of thermal power plant
JP4540472B2 (en) Waste heat steam generator
US4274256A (en) Turbine power plant with back pressure turbine
JPS6149485B2 (en)
JPH08114104A (en) Composite gas-steam turbine power plant
JPS5968504A (en) Heat recovery system of gas turbine cooling medium
CN113107616A (en) BEST small steam turbine system and application method thereof
US5347814A (en) Steam system in a multiple boiler plant
EP0902168B1 (en) Method and arrangement for a combi power plant
US11879365B2 (en) Steam turbine plant and operation method, combined cycle plant and operation method
JP2017503105A (en) Pressure-selective kettle boiler for application to rotor air cooling
CN209761509U (en) System for reducing station power consumption rate of waste incineration power plant
JP3616826B2 (en) Gas turbine system and operation method thereof
CN215761819U (en) Rapid starting system for steam turbine set of coal-fired power plant
JP2004169625A (en) Co-generation plant and its starting method
JPH06146815A (en) Gas turbine composite power generator
CN214891122U (en) Boiler steam turbine set starting system
CN113865118B (en) Light energy access coal-fired unit and light-coal energy complementary load adjusting method
JPS60261908A (en) Waste heat recovery device for internal-combustion engine
JP2585328B2 (en) Operating method of combined plant and apparatus therefor
CN117028027A (en) Cascade steam supply system of combined cycle coupling back press of combustion turbine
JP2558855B2 (en) Method of operating steam-gas combined cycle power plant and its power plant
RU2031214C1 (en) Method of optimization of operating steam-gas power plant
JPH05296407A (en) After burning type combined cyclic power generating facility
JPH051508A (en) Operation of flexible cogeneration plant