JP2585328B2 - Operating method of combined plant and apparatus therefor - Google Patents

Operating method of combined plant and apparatus therefor

Info

Publication number
JP2585328B2
JP2585328B2 JP62319060A JP31906087A JP2585328B2 JP 2585328 B2 JP2585328 B2 JP 2585328B2 JP 62319060 A JP62319060 A JP 62319060A JP 31906087 A JP31906087 A JP 31906087A JP 2585328 B2 JP2585328 B2 JP 2585328B2
Authority
JP
Japan
Prior art keywords
gas turbines
steam
gas
steam turbine
control valves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62319060A
Other languages
Japanese (ja)
Other versions
JPH01163406A (en
Inventor
章弘 川内
継男 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62319060A priority Critical patent/JP2585328B2/en
Publication of JPH01163406A publication Critical patent/JPH01163406A/en
Application granted granted Critical
Publication of JP2585328B2 publication Critical patent/JP2585328B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、複数台のガスタービンと、上記ガスタービ
ンの排ガスを熱源として発生させた蒸気で駆動される1
台の蒸気タービンとを設けたコンバインドプラントの運
転方法、及び運転装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a plurality of gas turbines and a gas turbine driven by steam generated using exhaust gas of the gas turbine as a heat source.
TECHNICAL FIELD The present invention relates to an operation method and an operation device of a combined plant provided with two steam turbines.

〔従来の技術〕[Conventional technology]

従来、一般に、多軸形コンバインドプラントの蒸気タ
ービンにおいては、部分負荷時に蒸気タービン加減弁を
絞つて前圧制御する運用をしており、部分負荷時のプラ
ント効率低下がみられた。
Conventionally, in general, in a steam turbine of a multi-shaft combined plant, the pre-pressure control is performed by squeezing a steam turbine control valve at a partial load, and a decrease in plant efficiency at a partial load has been observed.

特に、ガスタービン台数切替運用の際、ガスタービン
運転台数が少ない場合には、排熱回収ボイラ蒸発量が少
ない為、加減弁絞り損失が大きくなるという欠点があつ
た。なお、この種の技術に関しては火力原子力入門講座
「複合発電」の第V項「トータル制御」が公知である。
In particular, when switching the number of gas turbines, when the number of operating gas turbines is small, the amount of evaporation of the exhaust heat recovery boiler is small. Regarding this kind of technology, Section V “Total Control” of the introductory course on thermal and nuclear power “combined power generation” is known.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

多軸形コンバインドプラントでは、複数台のガスター
ビン、及び、これと同数の排熱回収ボイラ並びに1台の
蒸気タービンから構成され、ベース負荷運転では全ての
ガスタービンが運転され、全ての排熱回収ボイラの発生
蒸気が蒸気タービンへ導入される。
The multi-shaft combined plant is composed of multiple gas turbines, the same number of exhaust heat recovery boilers and one steam turbine. In base load operation, all gas turbines are operated and all exhaust heat recovery is performed. Steam generated by the boiler is introduced into a steam turbine.

ここで、多軸形コンバインドの部分負荷運転は、ガス
タービン効率及びガスタービン排ガス温度に係る蒸気サ
イクル効率から、ガスタービン均等部分負荷運転より
も、ガスタービン台数切替運転が採用されるのが一般的
である。
Here, in the partial load operation of the multi-shaft combined, the gas turbine number switching operation is generally adopted rather than the gas turbine equal partial load operation in view of the gas turbine efficiency and the steam cycle efficiency related to the gas turbine exhaust gas temperature. It is.

即ち、例えば、ガスタービン2台+蒸気タービン1台
のコンバインドプラントにおいて、50%負荷をとるの
に、(イ)ガスタービン1台停止した運用(ガスタービ
ン台数切替運転)が、(ロ)ガスタービン2台を50%負
荷とする運用(ガスタービン均等負荷運転)よりも優先
される。
That is, for example, in a combined plant including two gas turbines and one steam turbine, the operation (a) in which one gas turbine is stopped (the gas turbine number switching operation) is performed while (b) the gas turbine Priority is given to operation with two units at 50% load (gas turbine equal load operation).

この場合、ガスタービン台数を2台から1台へ減らす
ので、蒸気を発生している排熱回収ボイラも1台とな
る。これは、蒸気タービンにとつては定格の1/2の蒸気
量が流入していることになる為、蒸気圧力も1/2とな
る。
In this case, since the number of gas turbines is reduced from two to one, only one exhaust heat recovery boiler is generating steam. This means that the steam flow into the steam turbine is 1/2 of the rated value, so the steam pressure is also 1/2.

すなわち、運転している排熱回収ボイラは、蒸発量は
100%流量、蒸気圧力は50%圧力となる為排熱回収ボイ
ラの蒸発量あるいは、主蒸気管内の流速は概略2倍(蒸
気圧力が1/2となる為、蒸気比容積が約2倍となる。)
となり、配管エロージヨン発生の虞れがあつた。
In other words, the operating waste heat recovery boiler
100% flow rate and steam pressure are 50% pressure, so the amount of evaporation of the exhaust heat recovery boiler or the flow rate in the main steam pipe is almost double (the steam pressure is halved, so the steam specific volume is about twice) Become.)
Then, there was a fear that piping erosion might occur.

一方、このような不具合を防止する為、蒸気タービン
加減弁を絞つて蒸気圧力を確保する運用も行なわれてい
るが、蒸気タービン加減弁個数については、特にガスタ
ービン台数とは無関係に設定されており、加減弁サイズ
や配置上の制約条件から決定されているのが一般的であ
り、ガスタービン台数よりも少ない個数とされている。
On the other hand, to prevent such inconveniences, the steam turbine control valve is throttled to secure steam pressure.However, the number of steam turbine control valves is set irrespective of the number of gas turbines. Therefore, the number is generally determined based on the size of the control valve and constraints on the arrangement, and is set to be smaller than the number of gas turbines.

このように、ガスタービンの設置台数よりも少ない個
数の加減弁を設けた場合、プラントの部分負荷運転時に
は、蒸気タービン加減弁絞り運転される為、加減弁絞り
損失が大きくなり、蒸気タービン内部効率低下に伴いプ
ラント効率も低下するという問題があつた。
In this way, when a smaller number of control valves than the number of installed gas turbines is provided, the steam turbine control valve throttle operation is performed during the partial load operation of the plant, so that the control valve throttle loss increases and the internal efficiency of the steam turbine increases. There was a problem that the plant efficiency also decreased with the decrease.

本発明の目的は、上記従来技術の問題点に鑑み、プラ
ント部分負荷運転時に蒸気圧力が低下するのを防止する
と共に、配管エロージョン等が発生するのを防止でき、
また蒸気タービン加減弁の絞り損失を低減して、プラン
ト効率の低下を防ぐコンバインドプラントの運転方法を
提供することにあり、他の目的は、上記方法を的確に実
施し得るコンバインドプラントの運転装置を提供するこ
とにある。
An object of the present invention, in view of the above-described problems of the related art, is to prevent a decrease in steam pressure during a partial load operation of a plant, and to prevent a pipe erosion or the like from occurring,
Another object of the present invention is to provide a combined plant operating method that reduces the throttle loss of a steam turbine control valve and prevents a decrease in plant efficiency. To provide.

〔問題点を解決するための手段〕[Means for solving the problem]

多軸形コンバインドプラントの部分負荷時のプラント
効率向上については、蒸気タービン加減弁絞り損失を軽
減することが重要であり、これは、多軸形コンバインド
プラントの部分負荷運用が、ガスタービン台数切替運転
にて実現されることを考慮すれば、蒸気タービン加減弁
個数をガスタービン台数に合わせ、ガスタービン運転台
数に合わせた台数の蒸気タービン加減弁台数を運用する
ことにより達成される。
In order to improve the plant efficiency under partial load of a multi-shaft combined plant, it is important to reduce the throttle loss of the steam turbine control valve. In consideration of the fact that the number of steam turbine control valves is adjusted, the number of steam turbine control valves is adjusted to the number of gas turbines, and the number of steam turbine control valves corresponding to the number of operating gas turbines is operated.

即ち、本発明においては、予め、蒸気タービンにガス
タービンの台数と同様の数からなるN個の加減弁を設け
ておき、それらをガスタービンのうち、n台のガスター
ビンの運転時、前記N個の加減弁中のn個を全開運用す
ると共に、残りの加減弁を全閉運用する。
That is, in the present invention, the steam turbine is provided in advance with N number of control valves having the same number as the number of gas turbines, and these are set to N when operating n gas turbines among the gas turbines. The n control valves are fully opened and the remaining control valves are fully closed.

〔作用〕[Action]

多軸コンバインドプラントが部分負荷運転時にガスタ
ービン台数切替運転する場合、上述の如く、ガスタービ
ン台数と同数の蒸気タービン加減弁を設けると共に、そ
のガスタービンの運転台数に等しい数の蒸気タービン加
減弁を全開運用するので、蒸気圧力が低下するのを防止
でき、従来技術のような蒸気圧低下に伴う蒸発器や蒸気
配管部の高流速化によるエロージョンや振動子などが発
生するのを防止できる。しかも、加減弁を絞ることが不
要になり、加減弁絞り損失が大きくなるのを低減でき
る。
When the multi-shaft combined plant performs the gas turbine number switching operation during the partial load operation, as described above, the same number of steam turbine control valves as the number of gas turbines are provided, and the number of steam turbine control valves equal to the number of operating gas turbines is provided. Since the operation is fully opened, a decrease in steam pressure can be prevented, and the occurrence of erosion or a vibrator due to a high flow rate in an evaporator or a steam pipe caused by a decrease in steam pressure as in the prior art can be prevented. Moreover, it is not necessary to throttle the control valve, and it is possible to reduce an increase in the control valve throttle loss.

従って、部分負荷運転時のプラント効率を高く保持す
ることができる。
Therefore, the plant efficiency during the partial load operation can be kept high.

〔実施例〕 第1図は本発明に係る運転方法を実施する為に構成し
た、本発明に係る運転装置の1実施例の系統図である。
[Embodiment] Fig. 1 is a system diagram of an embodiment of an operating device according to the present invention configured to carry out an operating method according to the present invention.

本例においては2台のガスタービン1a,1bが設けら
れ、それぞれ発電機4a,4bを駆動している。上記それぞ
れのガスタービン1a,1bの高温排ガス5a,5bを熱源とする
2個の排熱回収ボイラ2a,2bが設けられている。
In this example, two gas turbines 1a and 1b are provided, and drive the generators 4a and 4b, respectively. Two exhaust heat recovery boilers 2a and 2b using the high temperature exhaust gases 5a and 5b of the respective gas turbines 1a and 1b as heat sources are provided.

上記2個の排熱回収ボイラ2a,2bそれぞれの蒸気管6a,
6bで発生された高温高圧の蒸気は主蒸気管7で合流す
る。
The steam pipes 6a, 6a, of the two waste heat recovery boilers 2a, 2b, respectively.
The high-temperature and high-pressure steam generated in 6b merges in the main steam pipe 7.

合流した蒸気は、並列に設けられた2個の加減弁8a,8
bを介して、作動蒸気として蒸気タービン3に供給さ
れ、該蒸気タービン3は発電機4cを駆動する。9は復水
器、10は復水ポンプである。
The combined steam is supplied to two control valves 8a, 8 provided in parallel.
Via b, it is supplied to the steam turbine 3 as working steam, and the steam turbine 3 drives the generator 4c. 9 is a condenser and 10 is a condensate pump.

本実施例において、ガスタービンの設置個数は2個、
加減弁の設置個数も2個である。本発明を実施する場
合、ガスタービンN個(Nは2以上の整数)であれば、
加減弁の設置個数もN個とする。
In this embodiment, the number of installed gas turbines is two,
The number of setting valves is also two. When implementing the present invention, if N gas turbines (N is an integer of 2 or more),
The number of setting valves is also N.

第2図は、本実施例における加減弁の開閉操作を実線
で描き、従来例における加減弁の開閉操作を破線で描い
た説明図表である。
FIG. 2 is an explanatory diagram in which the opening and closing operation of the control valve in the present embodiment is drawn by a solid line, and the opening and closing operation of the control valve in the conventional example is drawn by a broken line.

本実施例においては、第1図について説明したように
2個の加減弁8a,8bを設けてあるが、従来例(破線)で
は1個しか加減弁が設けられていない。
In this embodiment, two control valves 8a and 8b are provided as described with reference to FIG. 1, but only one control valve is provided in the conventional example (broken line).

1台のガスタービンが運転されたとき、従来例では1
個の加減弁を中間開度とした(図示の点A)。本例にお
いては、2個の内の1個の加減弁8aを全開にする(図示
の点B)。従って、本実施例では、1台のガスタービン
の運転時、1個の加減弁8aを全開すると共に、他の加減
弁8bを全閉とするようにしている。
When one gas turbine is operated, the conventional example
Each of the control valves was set to an intermediate opening (point A in the figure). In this example, one of the two control valves 8a is fully opened (point B in the drawing). Therefore, in this embodiment, when one gas turbine is operated, one control valve 8a is fully opened, and the other control valve 8b is fully closed.

図示の点Cにおいて2台目のガスタービンを起動し、
図示の点Dで定格運転となるように出力を上げてゆく場
合、従来例(破線)においては、中間開度(A)にして
いた1個の加減弁の開度を、矢印Eの如く上げてゆく。
Start the second gas turbine at point C shown in the figure,
In the case of increasing the output so as to achieve the rated operation at the point D shown in the figure, in the conventional example (broken line), the opening of one control valve, which was set to the intermediate opening (A), is increased as shown by the arrow E. Go on.

本例においては点Cでもう1個の加減弁8bを開き始
め、矢印Fの如く開度を上げてゆく。
In the present example, another control valve 8b starts to be opened at the point C, and the opening is increased as indicated by an arrow F.

2台のガスタービンを定格運転しているときは、従来
例、実施例ともに、図示の点Gの如く全弁全開とする。
When the two gas turbines are performing rated operation, in both the conventional example and the embodiment, all valves are fully opened as shown at point G in the drawing.

第3図は上記の操作における主蒸気圧力を示した図表
で、実線は実施例、破線は従来例である。本第3図から
理解されるごとく、第2図において2台目のガスタービ
ンの出力上昇に伴つて加減弁を徐開する場合、主蒸気圧
力を一定(定格圧力)な保つように加減弁開度を制御す
る。従って、本実施例では、加減弁8aの全開時、2台目
のガスタービンの運転に伴い、もう1個の加減弁8bを徐
開して全開するようにしている。
FIG. 3 is a table showing the main steam pressure in the above-mentioned operation. As understood from FIG. 3, when the control valve is gradually opened in accordance with the output rise of the second gas turbine in FIG. 2, the control valve is opened so that the main steam pressure is kept constant (rated pressure). Control the degree. Therefore, in this embodiment, when the control valve 8a is fully opened, another control valve 8b is gradually opened and fully opened in accordance with the operation of the second gas turbine.

第4図は、前述の操作に伴う蒸気タービン内部効率の
変化を示し、実線は実施例を、破線は従来例を、それぞ
れ表わしている。
FIG. 4 shows a change in the internal efficiency of the steam turbine due to the above-mentioned operation. The solid line represents the embodiment, and the broken line represents the conventional example.

ハツチングを付して示した部分が、本発明の適用によ
る内部効率の向上を表わしている。
The hatched portions indicate the improvement of the internal efficiency by applying the present invention.

〔発明の効果〕〔The invention's effect〕

本発明の運転方法によれば、コンバインドプラントに
おける部分負荷時のプラント効率を向上せしめることが
出来る。例えば50%負荷時においては、ガスタービン1
台を運転しているとき、従来技術では蒸気タービン加減
弁を絞り運用していたのに比して、本発明によれば蒸気
加減弁を全開運用する。このため、蒸気タービン内部効
率は2〜3%の向上が期待される。
According to the operation method of the present invention, it is possible to improve plant efficiency at the time of partial load in a combined plant. For example, at 50% load, the gas turbine 1
According to the present invention, the steam control valve is fully opened while the steam turbine control valve is throttled in the prior art when the table is operated. Therefore, the internal efficiency of the steam turbine is expected to be improved by 2 to 3%.

コンバインドプラントにおけるガスタービンと蒸気タ
ービンとの出力比を2対1と仮定すれば、前述の蒸気タ
ービン内部効率の向上が、プラント全体の向上に及ぼす
影響は(2〜3)×1/3=0.7〜1%相当の考えられる。
また、本発明の運転装置によれば、部分負荷時、運転し
ているガスタービンと同数の蒸気タービン加減弁を全開
するので、上記運転方法を的確に実施し得る。
Assuming that the output ratio between the gas turbine and the steam turbine in the combined plant is 2: 1, the effect of the improvement in the internal efficiency of the steam turbine on the improvement of the whole plant is (2-3) × 1/3 = 0.7. 11% equivalent.
Further, according to the operating device of the present invention, at the time of partial load, the same number of steam turbine control valves as the operating gas turbine are fully opened, so that the above-described operating method can be accurately performed.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係る運転装置の1実施例を備えたコン
バインドプラントの系統図である。 第2図乃至第4図は、本発明方法の実施例と従来例とを
対比した図表であつて、横軸は共通してガスタービンの
運転台数を示している。第2図は縦軸に加減弁開度をと
り、第3図は縦軸に主蒸気圧力をとり、第4図は縦軸に
蒸気タービン内部効率をとつた図表である。 1a,1b……ガスタービン、2a,2b……排熱回収ボイラ、3
……蒸気タービン、4a,4b,4c……発電機、7……主蒸気
管、8a,8b……蒸気タービン加減弁。
FIG. 1 is a system diagram of a combined plant provided with one embodiment of an operating device according to the present invention. FIGS. 2 to 4 are tables comparing the embodiment of the method of the present invention with the conventional example, and the horizontal axis indicates the number of operating gas turbines in common. FIG. 2 is a table in which the vertical axis indicates the degree of opening and closing of the control valve, FIG. 3 indicates the main steam pressure on the vertical axis, and FIG. 4 indicates the internal efficiency of the steam turbine on the vertical axis. 1a, 1b: gas turbine, 2a, 2b: waste heat recovery boiler, 3
... steam turbine, 4a, 4b, 4c ... generator, 7 ... main steam pipe, 8a, 8b ... steam turbine control valve.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】N台のガスタービンと、上記N台のガスタ
ービンそれぞれの排ガスを熱源とするN個の排熱回収ボ
イラと、加熱弁を有し、かつ上記N個の排熱回収ボイラ
で発生する蒸気を作動蒸気とする1台の蒸気タービンと
を設けた多軸形コンバインドプラントにおいて、予め、
蒸気タービンにガスタービンの台数と同様の数からなる
N個の加減弁を設けておき、前記N台のガスタービンの
うち、n台のガスタービンの運転時、前記N個の加減弁
のn個を全開運用すると共に、残りの加減弁を全閉運用
することを特徴とするコンバインドプラントの運転方
法。 ただし、Nは2以上の整数、nは1以上の整数である。
An exhaust heat recovery boiler having N gas turbines, N exhaust heat recovery boilers using exhaust gas from each of the N gas turbines as heat sources, and a heating valve, wherein the N exhaust heat recovery boilers are provided. In a multi-shaft combined plant provided with one steam turbine that uses generated steam as working steam,
The steam turbine is provided with N number of control valves having the same number as the number of gas turbines, and when the number of the N gas turbines is n, the number of the N control valves is n. , And the remaining control valve is fully closed. Here, N is an integer of 2 or more, and n is an integer of 1 or more.
【請求項2】前記N台のガスタービンのうち、n台のガ
スタービンの運転からN台のガスタービンに切替運転す
るとき、前記N個の加減弁のn個の全開運用と残りの加
減弁の全閉運用状態から、残りの加減弁を次第に除開す
ることを特徴とする特許請求の範囲第1項に記載のコン
バインドプラントの運転方法。
2. When the operation of switching from n gas turbines out of the N gas turbines to N gas turbines is performed, n of the N control valves are fully opened and the remaining control valves are operated. 2. The operating method for a combined plant according to claim 1, wherein the remaining control valve is gradually opened from the fully closed operation state.
【請求項3】N台のガスタービンと、上記N台のガスタ
ービンそれぞれの排ガスを熱源とするN個の排熱回収ボ
イラと、加熱弁を有し、かつ上記N個の排熱回収ボイラ
で発生する蒸気を作動蒸気とする1台の蒸気タービンと
を設けた多軸形コンバインドプラントにおいて、前記N
個の非熱回収ボイラからの作動蒸気を合流させる主蒸気
管を配管すると共に、その主蒸気管と1台の蒸気タービ
ンとの間に、 主蒸気管からの作動蒸気を蒸気タービンに供給し得るN
個の加減弁を並列に設け、かつN台のガスタービンのう
ち、n台のガスタービンの運転時、前記N個の加減弁の
n個を全開運用すると共に、残りの加減弁を全閉運用す
る加減弁制御手段を有することを特徴とするコンバイン
ドプラントの運転装置。
3. An N exhaust gas recovery boiler having N gas turbines, N exhaust heat recovery boilers using exhaust gas from each of the N gas turbines as heat sources, and a heating valve. In a multi-shaft combined plant provided with one steam turbine that uses generated steam as working steam,
A main steam pipe for joining working steam from the non-heat recovery boilers is connected, and working steam from the main steam pipe can be supplied to the steam turbine between the main steam pipe and one steam turbine. N
Are provided in parallel, and when n gas turbines out of N gas turbines are operated, n of the N control valves are fully opened and the remaining control valves are fully closed. An operating device for a combined plant, comprising: an adjusting valve control unit that performs the control.
【請求項4】前記加減弁制御手段は、前記N台のガスタ
ービンのうち、n台のガスタービンの運転からN台のガ
スタービンに切替運転するとき、前記N個の加減弁のn
個の全開運用と残りの加減弁の全閉運用との状態から、
残りの加減弁を次第に除開することを特徴とする特許請
求の範囲第3項に記載のコンバインドプラントの運転装
置。
4. The controller according to claim 1, wherein the controller controls the number of the N gas turbines when switching from the operation of the n gas turbines to the operation of the N gas turbines.
From the state of the fully open operation of the individual and the fully closed operation of the remaining control valve,
The operating device for a combined plant according to claim 3, wherein the remaining control valve is gradually opened.
JP62319060A 1987-12-18 1987-12-18 Operating method of combined plant and apparatus therefor Expired - Fee Related JP2585328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62319060A JP2585328B2 (en) 1987-12-18 1987-12-18 Operating method of combined plant and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62319060A JP2585328B2 (en) 1987-12-18 1987-12-18 Operating method of combined plant and apparatus therefor

Publications (2)

Publication Number Publication Date
JPH01163406A JPH01163406A (en) 1989-06-27
JP2585328B2 true JP2585328B2 (en) 1997-02-26

Family

ID=18106050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62319060A Expired - Fee Related JP2585328B2 (en) 1987-12-18 1987-12-18 Operating method of combined plant and apparatus therefor

Country Status (1)

Country Link
JP (1) JP2585328B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2724941B2 (en) * 1992-06-17 1998-03-09 株式会社日立製作所 Exhaust gas reburning combined plant and operation control method of the plant
JP2013079580A (en) * 2011-09-30 2013-05-02 Toshiba Corp Method of operating combined power generating facility and combined power generating facility

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6069219A (en) * 1983-09-26 1985-04-19 Toshiba Corp Prime mover controlling apparatus
JPH0680285B2 (en) * 1985-03-20 1994-10-12 三菱重工業株式会社 Steam turbine controller

Also Published As

Publication number Publication date
JPH01163406A (en) 1989-06-27

Similar Documents

Publication Publication Date Title
JP2003214182A (en) Gas turbine combined plant and its operating method
JPS61152914A (en) Starting of thermal power plant
JP2747543B2 (en) Method of operating a steam turbine device at low load level
JP2585328B2 (en) Operating method of combined plant and apparatus therefor
JP2017503105A (en) Pressure-selective kettle boiler for application to rotor air cooling
JPS5925853B2 (en) Power plant operation control method and device for implementing this method
CN216554037U (en) System for utilize outside steam to carry out steam turbine and dash commentaries on classics
JP3616826B2 (en) Gas turbine system and operation method thereof
JPH10131716A (en) Method and device for controlling steam cooling system of gas turbine
EP3306044A1 (en) Fast frequency response systems with thermal storage for combined cycle power plants
JPH0932512A (en) Steam supply device of steam turbine gland seal
JPH1193618A (en) Steam pressure control method for gas turbine steam cooling system
JPH0688502A (en) Power generating plant
JP2645128B2 (en) Coal gasification power plant control unit
JPS59113216A (en) Steam-turbine plant
JPH05296407A (en) After burning type combined cyclic power generating facility
JP3354776B2 (en) Operation method of incinerator complex plant equipment
JPS5823206A (en) Thermal power plant equipped with stored steam power generation system
JPS60122232A (en) Combined cycle turbine plant control equipment
JPH10103078A (en) Gas turbine cycle
JPH0586900A (en) Gas turbine cogeneration system
JPH02163402A (en) Compound electric power plant and its operation
JPH11270348A (en) Gas turbine cogeneration facility
RU2031214C1 (en) Method of optimization of operating steam-gas power plant
JPH0424084Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees